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Abstract
Many popular reinforcement learning problems
(e.g., navigation in a maze, some Atari games,
mountain car) are instances of the episodic set-
ting under its stochastic shortest path (SSP) for-
mulation, where an agent has to achieve a goal
state while minimizing the cumulative cost. De-
spite the popularity of this setting, the exploration-
exploitation dilemma has been sparsely studied
in general SSP problems, with most of the theo-
retical literature focusing on different problems
(i.e., finite-horizon and infinite-horizon) or mak-
ing the restrictive loop-free SSP assumption (i.e.,
no state can be visited twice during an episode).
In this paper, we study the general SSP prob-
lem with no assumption on its dynamics (some
policies may actually never reach the goal). We
introduce UC-SSP, the first no-regret algorithm
in this setting, and prove a regret bound scaling
as eO(DS

p

ADK) after K episodes for any un-
known SSP with S states, A actions, positive costs
and SSP-diameter D, defined as the smallest ex-
pected hitting time from any starting state to the
goal. We achieve this result by crafting a novel
stopping rule, such that UC-SSP may interrupt the
current policy if it is taking too long to achieve
the goal and switch to alternative policies that are
designed to rapidly terminate the episode.

1. Introduction
We consider the problem of exploration-exploitation in
episodic Markov decision processes (MDPs), where the
objective is to minimize the expected cost to reach a spe-
cific goal state. Several popular reinforcement learning
(RL) problems fall into this framework, such as navigation
problems, many Atari games (e.g., breakout) and Mujoco
environments (e.g., reacher). In all these problems, the
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length of an episode (i.e., the time to reach the goal state)
is unknown and depends on the policy executed during the
episode. Furthermore, the performance is not directly con-
nected to the length of the episode, as the objective is to
minimize the cost over time rather than reaching the goal
state as fast as possible. The conditions for the existence and
the computation of an optimal policy have been studied in
the MDP literature under the name of the stochastic shortest
path (SSP) problem (Bertsekas, 2012, Sect. 3).

The exploration-exploitation dilemma has been extensively
studied in the finite-horizon (see e.g., Azar et al., 2017;
Zanette & Brunskill, 2019) and infinite-horizon settings (see
e.g., Jaksch et al., 2010; Fruit et al., 2018a;b). In the former,
the performance is optimized over a fixed and known hori-
zon of H steps. Typically, this model is used to solve SSP
problems by setting H large enough. While for H ! 1 the
optimal finite-horizon policy converges to the optimal SSP
policy, for any finite H , this approach may introduce a bias
leading exploration algorithms to converge to suboptimal
policies and suffer linear regret (see e.g., Toromanoff et al.,
2019, for a discussion of this problem in Atari games). In
the latter, the performance is optimized for the asymptotic
average cost. While this removes any strict “deadline”, it
does not introduce any incentive to reach the goal state. This
may favor policies with small average cost and yet poor per-
formance in the SSP sense, as they may never terminate.
Note that SSP forms an important class of MDPs as both
infinite-horizon (discounted) and finite-horizon MDPs, two
much more extensively researched settings, are a subtype of
SSP-MDPs (Bertsekas, 2012; Guillot & Stauffer, 2020).

Prior work on exploration in SSPs can be divided in two
cases. The first is the online shortest path routing problem,
which has deterministic dynamics and stochastic rewards.
In this case, the optimal policy is open-loop (i.e., it is a se-
quence of actions independent from the states) and it can be
solved as an instance of a combinatorial bandit problem (see
e.g., György et al., 2007; Talebi et al., 2017). Exploration
algorithms know the set of admissible paths of bounded
length and regret bounds are available in both the semi- and
full-bandit setting. The second case allows for stochastic
transitions and mostly considers adversarial problems, but
it is restricted to loop-free environments (see e.g., Jin et al.,
2020; Rosenberg & Mansour, 2019a;b; Neu et al., 2012;
2010; Zimin & Neu, 2013). Under this assumption, the state
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space can be decomposed into L non-intersecting layers
X0, . . . , XL such that X0 = {x0} and XL = {xL}, and
transitions are only possible between consecutive layers. In
this case, it is possible to derive regret bounds leveraging the
fact that any episode length is upper bounded by L almost
surely. Unfortunately, this requirement is restrictive and
fails to hold in many realistic environments.

In this paper, exploration in general SSP problems is inves-
tigated for the first time. The solution of an SSP is obtained
by computing the policy minimizing the value function, i.e.,
the expected costs accumulated until reaching the goal state.
Studying SSP value functions poses technical difficulties
that do not appear in the conventional settings such as loop-
free SSP, finite-horizon and infinite-horizon: 1) it features
two possibly conflicting objectives: quickly reaching the
goal state while minimizing the costs along the way; 2) it is
unbounded for policies that may never reach the goal state
(i.e., non-proper policies); 3) it is not state-independent (a
crucial property of the gain of any optimal policy in infinite-
horizon); 4) its number of summands may differ from one
trajectory to another due to variations in the time to reach
the goal state (thus making the regret decomposition tricky
compared to finite-horizon); 5) it cannot be computed us-
ing backward induction (a crucial technique used in finite-
horizon); 6) it cannot be discounted (since a discount factor
would have a undesirable effect of biasing importance to-
wards short-term behavior and thus weakening the incentive
to eventually reach the goal state). This last point means that
SSP-MDPs do not have a notion of “equivalent horizon”,
which is 1/(1��) in the special case of infinite-horizon dis-
counted MDPs with known discount factor �, thus making
the general setting of SSP-MDPs more difficult to analyze.

While we leverage algorithmic and technical tools from both
finite- and infinite-horizon settings, tackling the general SSP
problem requires introducing novel techniques to manage
the challenges highlighted above. Notably, we investigate
the properties of optimistic policies and their associated
discrete phase-type distributions (i.e., the hitting time dis-
tribution) to design a novel criterion to stop executing the
current optimistic SSP policy during an episode and switch
to alternative policies designed to rapidly reach the goal.

The main contributions of this paper are: 1) We formalize
exploration-exploitation in SSP problems by defining an
adequate notion of regret (Sect. 2). 2) We show that the
special case of SSP with uniform costs can be cast as an
infinite-horizon problem and tackled by UCRL2 (Jaksch
et al., 2010) with a regret bound adapting to the complexity
of the environment (Sect. 3). 3) We then introduce UC-SSP,
the first algorithm with vanishing regret in general SSP
problems (Sect. 4). We also show that not only UC-SSP
effectively deals with the general case, but it remains com-
petitive (if not better) even in the limit cases of uniform costs

or loop-free SSP, which can be addressed by infinite- and
finite-horizon regret minimization algorithms respectively.
4) Moreover, we demonstrate how our (mild) assumptions
(e.g., no dead-end states, positive costs) can be effectively
relaxed using variants of UC-SSP (Sect. 5). Finally, we
support our theoretical findings with experiments in App. J.

2. Stochastic Shortest Path (SSP)
We consider a finite stochastic shortest path problem (Bert-
sekas, 2012, Sect. 3) M := hS

0,A, c, p, s0i, where S
0 :=

S [ {s} is the set of states with s being the goal state (also
called the terminal state) and s0 2 S being the starting
state1, and A is the set of actions. We denote by A = |A|

and S = |S| the number of actions and non-goal states.
Each state-action pair (s, a) 2 S ⇥A is characterized by a
known, deterministic cost c(s, a) and an unknown transition
probability distribution p(· | s, a) over next states. The goal
state s is absorbing (i.e., p(s | s, a) = 1 for all a 2 A) and
cost-free (i.e., c(s, a) = 0 for all a 2 A). We assume the
following property of the cost function.

Assumption 1. There exist known constants 0 < cmin 

cmax such that c(s, a) 2 [cmin, cmax] for all (s, a) 2 S ⇥A.

Extending the setting to unknown, stochastic costs poses
no major difficulty, as long as the learner knows in advance
the range of the costs, i.e., the constants cmin and cmax (see
App. I.1). Moreover, in Sect. 5 we derive a variant of our
algorithm that can handle zero costs (i.e., cmin = 0).

Bertsekas (2012) showed that under Asm. 1 we can restrict
the attention to the set of stationary deterministic policies
⇧SD := {⇡ : S ! A}. For any ⇡ 2 ⇧SD and (s, s0) 2

S ⇥ S
0, the (possibly unbounded) hitting time to s0 starting

from s is denoted by ⌧⇡(s ! s0) := inf{t � 0 : st+1 =
s0 | s1 = s,⇡}. We also set ⌧⇡(s) := ⌧⇡(s ! s).

Assumption 2. We define the SSP-diameter D as

D := max
s2S

min
⇡2⇧SD

E[⌧⇡(s)], (1)

and we assume that D < +1.

We say that M is SSP-communicating when Asm. 2 holds.
We defer to Sect. 5 the treatment of the case D = +1.

The value function (also called expected cost-to-go) of any
⇡ 2 ⇧SD is defined as

V ⇡(s0) := E
 ⌧⇡(s0)X

t=1

c(st,⇡(st))
��� s0

�
.

For any vector V 2 RS , the optimal Bellman operator is
1 Our algorithm can handle any (possibly unknown) distribution

of initial states.



No-Regret Exploration in Goal-Oriented Reinforcement Learning

defined as

LV (s) := min
a2A

n
c(s, a) +

X

y2S
p(y | s, a)V (y)

o
.

An important role in the definition of the SSP is played by
the set ⇧PSD

✓ ⇧SD of proper stationary policies.
Definition 1. A stationary policy ⇡ is proper if s is reached
with probability 1 from any state in S following ⇡.2

The next lemma shows that the SSP problem is well-posed.
Lemma 1. Under Asm. 1 and 2, there exists an optimal
policy ⇡?

2 argmin⇡2⇧PSD V ⇡(s0) for which V ? = V ⇡
?

is
the unique solution of the optimality equations V ? = LV ?

and V ?(s) < +1 for any s 2 S .

Similarly to the average-reward case, we can provide a
bound on the range of the optimal value function depending
on the largest cost and the SSP-diameter.
Lemma 2. Under Asm. 1 and 2, kV ?

k1  cmaxD.

For any ⇡ 2 ⇧PSD, its (almost surely finite) hitting time
starting from any state in S follows a discrete phase-type
distribution, or in short discrete PH distribution (see e.g., La-
touche & Ramaswami, 1999, Sect. 2.5 for an introduction).
Indeed, its induced Markov chain is terminating with a
single absorbing state s and all the other states are tran-
sient. The transition matrix associated to ⇡, denoted by
P⇡ 2 R(S+1)⇥(S+1), can thus be arranged in the following
canonical form

P⇡ =


Q⇡ R⇡

0 1

�
,

where Q⇡ 2 RS⇥S is the transition matrix between non-
absorbing states (i.e., S) and R⇡ 2 RS is the transition
vector from S to s. Note that Q⇡ is strictly substochas-
tic (Q⇡1  1 where 1 := (1, . . . , 1)T 2 RS and 9j
s.t. (Q⇡1)j < 1). Denoting by 1s the S-sized one-hot
vector at the position of state s 2 S , we have the following
result (see e.g., Latouche & Ramaswami, 1999, Thm. 2.5.3).
Proposition 1. For any ⇡ 2 ⇧PSD, s 2 S and n > 0,

P(⌧⇡(s) > n) = 1>
s
Qn

⇡
1 =

X

s02S
(Qn

⇡
)ss0 .

Finally, for any X 2 Rm⇥n we define the 1-matrix-norm
kXk1 := max1im

P
n

j=1|Xij |.

Learning problem. We consider the learning problem
where S

0,A, and c are known, while the dynamics p is
2Note that Def. 1 is slightly different from (and is implied

by) the conventional definition of Bertsekas (2012, Sect. 3.1), for
which a policy is proper if there is a positive probability that s will
be reached after at most S stages.

unknown and can be estimated online. An environmental
episode starts at s0 and ends only when the goal state s is
reached. We evaluate the performance of an algorithm A af-
ter K environmental episodes by its cumulative SSP-regret

�(A,K) :=
KX

k=1

⇣ ⌧k(s0)X

h=1

c(sk,h, µk(sk,h))
⌘
� V ?(s0)

�
,

where for any k 2 [K],3 ⌧k(s0) is the length of
episode k following a possibly non-stationary policy µk =
(⇡k,0,⇡k,1,⇡k,2, . . .), ⇡k,i 2 ⇧SD, until s is reached. More-
over, sk,h denotes the h-th state visited during episode k.
�(A,K) also corresponds to the cumulative SSP-regret af-
ter TK steps, where TK :=

P
K

k=1 ⌧k(s0) is the time step at
the end of episode K. This definition resembles the infinite-
horizon regret, where the performance of the algorithm is
evaluated by the costs accumulated by executing µk. At
the same time, it incorporates the episodic nature of finite-
horizon problems, where the performance of the optimal
policy is evaluated by its value function at the initial state.
Nonetheless, notice that we cannot use the finite-horizon
regret definition, i.e.,

P
K

k=1 V
µk(s0)�V ?(s0), where a pol-

icy µk is chosen at the beginning of the episode and run until
its termination. Indeed, as µk may be non-proper and sat-
isfy V µk(s0) = +1, the execution of a single non-proper
policy would directly lead to an unbounded regret.

3. Uniform-cost SSP
In this section we focus on the SSP problems with uniform
costs to illustrate a very first case where a sublinear regret
can be achieved without any restrictive loop-free assumption.
In particular, we show that in this case the SSP problem can
be cast as an infinite-horizon problem and that an algorithm
such as UCRL2 (Jaksch et al., 2010) can be directly applied
and achieve surprisingly good regret guarantees.

Assumption 3 (only in Sect. 3). The costs c(s, a) are con-
stant (equal to 1 w.l.o.g.) for all (s, a) 2 S ⇥A.

In this case, solving the SSP problem corresponds to com-
puting the policy minimizing the expected hitting time to
the goal s.

We introduce the infinite-horizon reward-based MDP
M1 := hS

0,A, r1, p1, s0i, with reward r1 = 1s and
p1(· | s, a) = p(· | s, a) for s 6= s and p1(· | s, a) = 1s0

for all a. In words, the transitions in M1 behave as in M
and give zero rewards except at s where all actions give a
reward of 1 and loop back to s0 instead of self-looping with
probability 1. We show that the solution of M1 coincides
with solving the original SSP and we bound the SSP-regret
of UCRL2 applied to this problem.

3For any integer n, we denote by [n] the set {1, . . . , n}.
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Theorem 1. For any policy ⇡ 2 ⇧SD, let ⇢⇡ :=
limT!+1 E⇡

⇥P
T

t=1 rt/T
⇤

be the average reward of ⇡ in
the MDP M1. Under Asm. 3, we have

⇡? = argmin
⇡

V ⇡(s0) = argmin
⇡

E[⌧⇡(s0)] = argmax
⇡

⇢⇡.

With probability 1� �, UCRL2 run for any K � 1 episodes
suffers a regret

�(UCRL2,K)  34(V ?(s0)+1)DS

r
ATK log

⇣
TK

�

⌘
, (2)

with

TK  2(V ?(s0) + 1)K + eO
�
V ?(s0)

2D2S2A
�
. (3)

Up to logarithmic and lower-order terms, the pre-
vious bound scales as eO(V ?(s0)DS

p
ATK). This

can be contrasted with the infinite-horizon regret
�1 := T⇢? �

P
t
rt of UCRL2, which in general infinite-

horizon problems scales as eO(D1S
p
AT ), where

D1 := maxs 6=s02S0 min⇡2⇧SD E[⌧⇡(s ! s0)] is the diam-
eter of M1 (Jaksch et al., 2010) and measures the longest
shortest path between any two states. We first notice that
the “extra” factor V ?(s0) is a direct consequence of the
different definition of regret in the two settings. In fact,
we have � = (V ?(s0) + 1)�1. As UCRL2 is designed
for general infinite-horizon problems, we can only bound
the regret �1 and use the previous equality to translate
it into the corresponding SSP-regret. As such, the factor
V ?(s0) is the price to pay for adapting UCRL2 to the SSP
case. On the other hand, it is easy to see that in general
D  D1. Interestingly, Asm. 2 does not imply that M1 is
communicating, which is needed for proving regret bounds
for UCRL2 in general MDPs. Thm. 1 shows that even when
M1 is weakly-communicating (D1 = +1) and some
states may not be accessible from one another, UCRL2 is
able to adapt to the SSP nature of the problem and achieve
a bounded regret.

Importantly, notice that no assumption is made about the
properness of the policies. The key for UCRL2 to manage
policies that may never reach the goal state is the construc-
tion of internal episodes, where policies are interrupted
when the number of samples collected in a state-action pair
is doubled. This allows UCRL2 to avoid accumulating too
much regret when executing non-proper policies (they are
eventually stopped) and, at the same time, perform well
when the current policy is near-optimal (it is not stopped
too early). Nonetheless, the stopping condition only relies
on the number of samples and it is completely agnostic to
the episodic nature of the SSP problem.

While the previous analysis suggests that algorithms for
infinite-horizon MDPs could be readily executed in SSP

s0 s

action a1,
cost cmin

action a2,
cost cmax

Figure 1. Deterministic two-state
SSP M with two available actions:
a1 which self-loops on s0 with
cost cmin and a2 which goes from
s0 to s with cost cmax > 2cmin.

problems with strong regret guarantees, this is no longer
the case when moving to the general setting of non-uniform
costs. Indeed, in order to estimate the performance of a
stationary policy w.r.t. its value function, we cannot use the
average-cost criterion since it does not capture the incentive
to reach the goal state. As an illustrative example, consider
the deterministic two-state SSP M from Fig. 1. The optimal
SSP policy ⇡? always selects action a2 since it has minimal
value V ?(s0) = cmax. The optimal infinite-horizon policy
always selects action a1 since it has minimal average cost
⇢? = cmin, whereas ⇢⇡? = cmax/2. Consequently, running
UCRL2 in general SSP may converge to a suboptimal policy
and yield linear SSP-regret.

In the next section, we propose a novel algorithm designed
to target the general SSP objective function (non-uniform
costs) with a two-phase structure and a carefully designed
condition to interrupt executing policies.

4. General SSP
The general SSP problem requires (i) to quickly reach the
goal state while (ii) at the same time minimizing the cu-
mulative costs. On the one hand, if we constrain the costs
to be all equal, objectives (i) and (ii) coincide and the SSP
problem can be addressed using infinite-horizon algorithms
as seen in Sect. 3. On the other hand, all previous works in
the SSP setting constrain the hitting time of all policies (i.e.,
the loop-free assumption), which means that objective (i) is
always guaranteed and the algorithm can focus its efforts on
objective (ii).

In this section, we tackle head-on the general SSP prob-
lem for the first time, where we need to optimize over the
two possibly conflicting objectives (i) and (ii) at the same
time. This poses algorithmic and technical challenges (e.g.,
non-proper policies may never reach the goal state and have
unbounded value function) that require devising a novel op-
timistic algorithm, specifically designed for SSP problems.

4.1. The UC-SSP Algorithm

We present UC-SSP, an algorithm for efficient exploration in
general SSP problems (Alg. 1). At a high level, UC-SSP pro-
ceeds through each environmental episode k in a two-phase
fashion. In phase ¨, UC-SSP executes a policy trying to
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Algorithm 1 UC-SSP algorithm
Input: Confidence � 2 (0, 1), costs, S 0

,A.
Initialization: Set the state-action counter N0,0(s, a) := 0 for
any (s, a) 2 S ⇥A and the time step t := 1.
Set k := 0. // episode index

Set G0,0 := 0. // number of attempts in phases ≠

while k < K do
// New environmental episode

Increment k += 1.
Set j := 0 // attempts in phase ≠ of episode k

while st 6= s do
Set tk,j := t and counter ⌫k,j(s, a) := 0.
Set Gk,j = Gk,0 + j

Compute (e⇡k,j , Hk,j) := EVISSP(k, j).
while t  tk,j +Hk,j and st 6= s do

Execute action at = e⇡k,j(st), observe cost c(st, at)
and next state st+1.
Set ⌫k,j(st, at) += 1.
Set t += 1.

end while
if st 6= s then
// Switch to phase ≠

Set Nk,j+1(s, a) := Nk,j(s, a) + ⌫k,j(s, a)
Set j += 1

end if
end while
Set Nk+1,0(s, a) := Nk,j(s, a) + ⌫k,j(s, a).
Set Gk+1,0 := Gk,j .

end while

solve the SSP problem by tackling both objectives (i) and (ii)
(i.e., reach the goal while minimizing the cumulative costs).
We refer to this first policy as an attempt in phase ¨. As
UC-SSP relies on estimates of the true (unknown) SSP, it
may select a non-proper policy that would never reach the
goal state and incur an unbounded regret. In order to avoid
this situation, if the goal state is not reached after a given
pivot horizon, the algorithm deems the whole episode as a
failure and it switches to phase ≠, whose only objective is
to terminate the episode as fast as possible (i.e., it only con-
siders objective (i) and disregards the costs). Nonetheless,
optimizing an estimate of the hitting time (i.e., objective
(i)) does not guarantee that the corresponding policy suc-
cessfully reaches the goal state (i.e., is proper) and multiple
attempts (i.e., policies) in phase ≠ may be needed. Similar
to phase ¨, whenever the goal state is not reached after a
certain pivot horizon, the current policy is terminated and a
new policy is computed. Phase ≠ and the overall episode
ends when the goal state is eventually reached. Notation-
wise, the k-th phase ¨ is indexed by (k, 0) (note that k
coincides with the current number of episodes), while the
j-th attempt in the phase ≠ of episode k is indexed by (k, j)
for j � 1. Moreover, we denote by Jk the number of at-
tempts performed during the phase ≠ of episode k, and by
Gk,j the total number of attempts in phases ≠ up to (and
including) attempt (k, j).

Optimistic policies. UC-SSP relies on the principle of opti-

Algorithm 2 EVISSP

Input: Attempt index (k, j) and Nk,j(s, a) samples.
if j = 0 then

"k,0 := cmin
2tk,0

, �k,j := 1p
k

.
else

"k,j := 1
2tk,j

, �k,j := 1p
Gk,j

.

end if
Compute estimates bpk,j and confidence set Mk,j with the Nk,j

samples collected so far.
Define the extended optimal Bellman operator eLk,j as in Eq. (4).
// EVI scheme
Set m := 0, v0 := 0 (S-sized vector) and v1 := eLk,jv0.
while kvm+1 � vmk1 > "k,j do

m += 1.
vm+1 := eLk,jvm.

end while
Set evk,j := vm.
Compute e⇡k,j the optimistic greedy policy w.r.t. evk,j .
Compute epk,j the corresponding optimistic model.
Compute eQk,j the transition matrix of e⇡k,j in the optimistic
model epk,j over S, i.e., for any (s, s0) 2 S2,

eQk,j(s, s
0) :=

X

a2A

e⇡k,j(a|s)epk,j(s0|s, a).

Compute Hk,j := min
n
n > 1 : k eQn�1

k,j k1  �k,j

o
.

Output: policy e⇡k,j and horizon Hk,j .

mism in face of uncertainty. At each attempt, it executes a
policy with either lowest optimistic (cost-weighted) value
for an attempt in phase ¨, or with lowest optimistic expected
hitting time for an attempt in phase ≠. At the beginning
of any attempt (k, j), the algorithm computes a set of plau-
sible MDPs defined as Mk,j := {hS,A, c, epi | ep(·|s, a) 2
Bk,j(s, a)} where Bk,j(s, a) is a high-probability confi-
dence set on the transition probabilities of the true MDP M .
We set Bk,j(s, a) := {ep 2 C | ep(· | s, a) = 1s, kep(· | s, a)�
bpk,j(· | s, a)k1  �k,j(s, a)}, with C the S0-dimensional
simplex, bpk,j the empirical average of transitions prior to
attempt (k, j) and

�k,j(s, a) :=

vuut8S log
�
2AN+

k,j
(s, a) ��1

�

N+
k,j

(s, a)
,

where N+
k,j

(s, a) := max{1, Nk,j(s, a)} with Nk,j being
the state-action counts prior to attempt (k, j). The construc-
tion of �k,j(s, a) guarantees that M 2 Mk,j with high
probability, as shown in the following lemma.

Lemma 3. Introduce the event E :=
T+1

k=1

T
Jk

j=1{M 2

Mk,j}. Then P(E) � 1� �

3 .

Once Mk,j has been computed, UC-SSP applies an ex-
tended value iteration (EVI) scheme (Alg. 2) to compute
a policy with lowest optimistic value (if j = 0) or lowest
optimistic expected hitting time (if j � 1). Formally, we
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define the extended optimal Bellman operator eLk,j such that
for any v 2 RS and s 2 S ,

eLk,jv(s) :=min
a2A

n
ck,j(s, a)

+ min
ep2Bk,j(s,a)

X

y2S
ep(y | s, a)v(y)

o
, (4)

where the costs ck,j depend on the phase as follows

ck,j(s, a) :=

⇢
c(s, a) if j = 0
1 otherwise.

As explained by Jaksch et al. (2010, Sect. 3.1), we can com-
bine all the MDPs in Mk,j into a single MDP fM with
extended action set A0. As proved by Bertsekas (2012,
Sect. 3.3) about the generalization of the SSP results to a
compact action set, the Bellman operator eLk,j satisfies the
contraction property and thus EVISSP converges to a vector
we denote by eV ?

k,j
. We have the following component-wise

inequalities when the stopping condition of Alg. 2 is met.4

Lemma 4. For any attempt (k, j), denote by evk,j the out-
put of EVISSP with operator eLk,j and accuracy "k,j . Then
eLk,jevk,j  evk,j + "k,j . Furthermore, under the event E we
have evk,j  V ? if j = 0 or evk,j  min⇡ E(⌧⇡) otherwise.

The optimistic policy e⇡k,j executed during attempt (k, j)
is the greedy policy w.r.t. evk,j . We also denote by epk,j the
optimistic transition probabilities and by eQk,j the transition
matrix of e⇡k,j in epk,j over the non-goal states S .

The pivot horizon. A crucial aspect for the correct func-
tioning of the algorithm is to carefully select the “pivot”
horizon. If the pivot horizon is too small, the algorithm may
switch from phase ¨ to ≠ too quickly and may perform
too many attempts in phase ≠. As the policies in phase ≠
completely disregard the costs, they may lead to suffer large
regret. On the other hand, if the pivot horizon is too large
and UC-SSP selects a non-proper policy in phase ¨, then
the regret accumulated during phase ¨ would be too large.

We select the following length for attempt (k, j)

Hk,j = min
n
n>1 : k( eQk,j)

n�1k1  1j=0p
k

+
1j�1p
Gk,j

o
. (5)

If e⇡k,j is executed for Hk,j steps without reaching s, then
attempt (k, j) is said to have failed and the next attempt
(k, j + 1) (necessarily in phase ≠) is performed. Otherwise,
the attempt is said to have succeeded, a new episode begins
and the next attempt (k + 1, 0) (in phase ¨) is performed.

4Note that the stopping condition is different from the standard
one for VI for average reward MDPs (see e.g., Puterman, 2014;
Jaksch et al., 2010) that is defined in span seminorm. Also note
that as opposed to standard VI, we do not have guarantees of the
type kvn � eV ?

k,jk1  ✏ where eV ?
k,j = eLk,j

eV ?
k,j .

Denote by e⌧k,j the hitting time in the model epk,j of the
policy e⇡k,j . We first prove that e⇡k,j is proper in epk,j by
connecting its value function to evk,j , which is finite from
Lem. 4 (see App. E and Eq. 13). As a result, e⌧k,j follows a
discrete PH distribution and plugging Prop. 1 into Eq. (5)
entails that

max
s2S

P(e⌧k,j(s) � Hk,j) 
1j=0
p
k

+
1j�1p
Gk,j

.

Hk,j is thus selected so that the tail probability of the op-
timistic hitting time is small enough, i.e., there is a high
probability that e⇡k,j will optimistically reach s within Hk,j

steps. The maximum over s 2 S guarantees this property
for any state s from which attempt (k, j) begins (since at-
tempts in phase ≠ do not necessarily start at s0).

4.2. Regret Analysis of UC-SSP

As proved in the following theorem, UC-SSP is the first
no-regret learning algorithm in the general SSP setting.
Theorem 2. With overwhelming probability, for any K � 1,
if at each attempt (k, j) EVISSP is run with accuracy "k,j :=
cmin1j=0+1j�1

2tk,j

, where tk,j is the time index at the beginning
of the attempt, then UC-SSP suffers a regret

�(UC-SSP,K) = eO
⇣
cmaxDS

r
cmax

cmin
ADK

+ cmaxS
2AD2

⌘
.

Dependency on K and D. Significantly, UC-SSP achieves
an overall rate eO(

p
K) which is optimal w.r.t. the number of

episodes K. The bound also illustrates how UC-SSP is able
to adapt to the complexity of navigating through the MDP
as shown by the dependency on the SSP-diameter D, which
measures the longest shortest path to the goal state from
any state. Interestingly, this is achieved without any prior
knowledge either on an upper bound of the optimal value
function V ? (or of the SSP-diameter itself), or whether the
set of policies ⇧SD contains proper policies or not. We can
further inspect the dependency on D by rewriting the regret
bound of UC-SSP, which scales as D3/2

p
K in Thm. 2, as

D
p
TK , where TK is the total number of steps executed

until the end of episode of K.5 As shown in Lem. 2, up to
a factor of cmax, the SSP-diameter D is an upper bound on
the range of the optimal value function and as such it can be
(qualitatively) related to the horizon H in the finite-horizon
setting and the diameter D1 in the infinite-horizon setting,
which bound the range of the optimal value function and
bias function respectively.

Dependency on cost range. The multiplicative constant
cmax
cmin

appearing in the bound quantifies the range of the cost

5Even though TK is a random quantity, inspecting the proof
(see Sect. 4.3) provides a bound TK . DK for K large enough.



No-Regret Exploration in Goal-Oriented Reinforcement Learning

function and accounts for the difference from the uniform-
cost setting. Interestingly, the presence of the ratio cmax

cmin

implies that the regret bound is not invariant w.r.t. a uniform
additive perturbation of all costs. This behavior, which does
not appear in the finite- or infinite-horizon settings, stems
from the fact that an additive offset of costs may alter the
optimal policy in the SSP sense (see Lem. 17, App. I).

While the previous discussion shows that UC-SSP success-
fully tackles general SSP problems, we can also study its
behavior in the limit (and much simpler) cases of uniform-
cost and loop-free SSP, and compare its regret to infinite-
and finite-horizon algorithms respectively.

Uniform-cost SSP. Under Asm. 3, UC-SSP achieves a
regret of eO(DS

p
ADK), in contrast with the bound

eO(V ?(s0)DS
p
AV ?(s0)K) of UCRL2 derived in Sect. 3.

While in this restricted setting UCRL2 performs better when
s0 is a privileged starting state to reach s compared to the
rest of states in S, UC-SSP yields an improvement over
UCRL2 whenever V ?(s0) � D1/3. Our experiments in
App. J illustrate that UC-SSP suffers smaller regret than
UCRL2 in a gridworld with uniform costs, showcasing that
UC-SSP manages to better adapt to the goal-oriented struc-
ture of the problem.

Loop-free SSP. Let us assume that there exists a known
upper bound H on the hitting time of any policy. Then a
slight variation of the finite-horizon algorithm UCBVI (Azar
et al., 2017) can be applied. While its bound would scale as
eO(
p
HSAT ) and showcase an improved

p
S-dependency,

it would regrettably scale with
p
H which may be much

larger than the D factor appearing in Thm. 2 as soon as
the hitting times ⌧⇡ differ significantly across policies ⇡.
Moreover, UC-SSP does not require the prior knowledge of
H , as opposed to UCBVI or any other existing algorithm in
the finite-horizon or loop-free setting.

The analysis of UC-SSP reveals the crucial role of the pivot
horizon in shaping the behavior and performance of the
algorithm. In the uniform-cost case, EVISSP and standard
EVI used in UCRL2 both converge to the same policy. The
main difference between the two algorithms consists in the
stopping criterion for the execution of the optimistic policy.
While UCRL2 applies a generic doubling scheme (i.e., an
internal episode is terminated when the number of samples
is doubled in at least a state-action pair), UC-SSP leverages
the episodic nature of the SSP problem and sets a pivot
horizon such that the current policy should successfully
terminate with high (optimistic) probability. In the loop-
free setting, UCBVI picks a single policy per episode and
waits until termination. While all policies are guaranteed
to terminate in finite time, the length of the episode may
still be very long. On the other hand, UC-SSP goes through
different policies within each episode whenever they are
taking too long to reach the goal state.

4.3. Proof Sketch of Thm. 2

As explained in Sect. 2, tackling the general SSP problem
requires introducing the novel notion of SSP-regret. It can
neither be managed by a step-by-step comparison between
the algorithmic and optimal performances as in infinite-
horizon, nor by an episode-by-episode comparison as in
finite-horizon. We thus need to derive a new analysis to
handle the specificities of the SSP-regret.

Denoting by TK the total number of steps at the end of
episode K, we decompose TK = TK,1 + TK,2, with
TK,1 (resp.TK,2) the total time during attempts in phase
¨ (resp. phase ≠). We introduce the truncated regret

WK :=
KX

k=1

⇣Hk,0X

h=1

c(sk,h, e⇡k,0(sk,h))
⌘
� V ?(s0)

�
, (6)

which is obtained by considering the cumulative cost up to
Hk,0 steps rather than for the actual duration of each attempt
in phase ¨. By assigning a regret of cmax to each step in
phase ≠, we can then decompose the regret as

�(UC-SSP,K)  WK + cmaxTK,2. (7)

This decomposition directly justifies the different nature
of the two phases employed by UC-SSP. While phase ¨
directly tries to minimize WK , phase ≠ only needs to keep
TK,2 under control, which requires executing policies that
reach the goal state as quickly as possible.

Bound on WK . We first bound WK by drawing inspira-
tion from techniques in the finite-horizon setting (see e.g.,
Azar et al., 2017), by successively unrolling the Bellman
operator to get a telescopic sum which can be bounded using
the Azuma-Hoeffding inequality and a pigeonhole principle.
Lemma 5. Introduce ⌦K := maxk2[K] Hk,0. With proba-
bility at least 1� �,

WK = O

✓
cmaxDS

r
A⌦KK log

⇣⌦KK

�

⌘◆
.

Bound on ⌦K . On the one hand, since WK directly scales
with

p
⌦K , we must ensure that the lengths of attempts in

phase ¨ are not too long. Ideally, we would set them as
relatively tight upper bounds of V ?(s0) or D, yet these are
critically unknown. Instead, in Eq. (5) we tune the lengths
Hk,0 depending on optimistic quantities (which can be eas-
ily computed at the start of each attempt), and prove in the
following lemma that they crucially scale as eO(D).
Lemma 6. Under the event E ,

⌦K 

⇠
6
cmax

cmin
D log(2

p

K)

⇡
.
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Proof sketch. Consider a state y 2 S such that

k( eQk,0)
Hk,0�2

k1 = 1>
y
( eQk,0)

Hk,0�21.

From Lem. 1, the above is equal to P(e⌧k,0(y) � Hk,0 � 1).
To bound it, we apply a corollary of Markov’s inequality

P(e⌧k,0(y) � Hk,0 � 1) 
E[(e⌧k,0)r]
(Hk,0 � 1)r

,

for a carefully chosen exponent r := dlog(2
p
k)e � 1. We

then prove that e⌧k,0 follows a discrete PH distribution that
satisfies E[e⌧k,0(s)]  2cmaxD

cmin
for all s 2 S. This leads us

to derive an upper bound on the r-th moment of any hitting
time distribution with bounded expectation starting from
any state (Lem. 15, App. E, which may be of independent
interest). Applying this result to e⌧k,0 yields

E[(e⌧k,0)r]  2

✓
r
2cmaxD

cmin

◆r

,

which gives on the one hand

k( eQk,0)
Hk,0�2

k1 

2
⇣
r 2cmaxD

cmin

⌘r

(Hk,0 � 1)r
.

On the other hand, the choice of Hk,0 in Eq. (5) entails that

1
p
k
< k( eQk,0)

Hk,0�2
k1.

Combining the two previous inequalities finally provides
the desired upper bound on Hk,0.

Bound on TK,2. On the other hand, since TK,2 increases
with the number of attempts in phase ≠, we must ensure
that there are not too many of such attempts and that their
lengths can be adequately controlled. In light of this and
leveraging the way the length Hk,0 is constructed (Eq. 5),
we bound the number of failed attempts in phase ¨ up to
episode K, which we denote by FK .

Lemma 7. With probability at least 1� �,

FK  2
p

K + 2

s

2⌦KK log

✓
2(⌦KK)2

�

◆

+ 4S

s

8A⌦KK log

✓
2A⌦KK

�

◆
.

Proof sketch. We write FK = F 0
K

+ F 00
K

with
F 0
K

:=
P

K

k=1 P(e⌧k,0(s0) > Hk,0) and F 00
K

:=P
K

k=1

⇥
1{⌧k,0(s0)>Hk,0} � P(e⌧k,0(s0) > Hk,0)

⇤
. A martin-

gale argument and the pigeonhole principle bound F 00
K

,
while the choice of Hk,0 controls each summand of F 0

K
.

Equipped with Lem. 7, we proceed in bounding the total
duration of the attempts in phase ≠.
Lemma 8. With probability at least 1� �,

TK,2 = eO
✓
DS

r
cmax

cmin
ADK + S2AD2

◆
.

Putting everything together, we obtain Thm. 2 by plugging
Lem. 5, 6 and 8 into Eq. (7). Note that while the regret
decomposition in the two-phase process (Eq. 7) has the ad-
vantage of making the analysis intuitive and modular, it
renders Bernstein techniques less effective in capturing low-
variance deviations, as opposed to the analysis of UCBVI
and UCRL2B (Fruit et al., 2020) which shave off a term of
p
H or

p
D1 for large enough time steps in the finite- and

infinite-horizon settings, respectively.

5. Relaxation of Assumptions
Although Asm. 1 and 2 seem natural in the SSP problem, we
design variants of UC-SSP that can handle dead-end states
and/or zero costs. We defer to App. I the complete analysis.

Relaxation of Asm. 2 (D = +1). If M is non-SSP-
communicating, there exists at least one (possibly unknown)
dead-end state from which reaching the goal s is impossible.
This implies that EVISSP, which operates on the entire state
space S , fails to converge since the values at dead-end states
are infinite. To tackle this problem, we assume that the agent
has prior knowledge on an upper bound J � V ?(s0) and
that it has at any time step the “resetting” ability to transition
with probability 1 to s0 with a cost of J (to prevent it from
getting stuck). Equipped with these two assumptions, by
optimizing a value function that is truncated at J (Kolobov
et al., 2012), we prove that a variant of UC-SSP achieves a
regret guarantee identical to Thm. 2 except that the infinite
term D is replaced by J (see Lem. 16, App. I.2).

Relaxation of Asm. 1 (cmin = 0). Under the existence of
zero costs, the optimal policy is not even guaranteed to be
proper (Bertsekas, 2012). We thus change the definition of
SSP-regret and compare to the best proper policy, by con-
sidering as optimal comparator the quantity min⇡2⇧PSD V ⇡

instead of min⇡2⇧SD V ⇡ . We observe that having cmin = 0
renders the bound on ⌦K of Lem. 6 vacuous. To circumvent
this issue, we introduce an additive perturbation ⌘k,0 > 0 to
the cost of each transition in the optimistic model of each
attempt (k, 0). Our resulting variant of UC-SSP achieves a
eO(K2/3) regret bound (see Lem. 18, App. I.3 for the com-
plete bound). The difference in rate (K2/3 vs.

p
K) com-

pared to Thm. 2 stems from the fact that our procedure of
offsetting the costs introduces a bias, which we minimize
with the choice of perturbation ⌘k,0 = 1/k1/3. Note that
the later work of (Cohen et al., 2020) devises an algorithm
with a Bernstein-based analysis that achieves a

p
K-rate in

the case cmin = 0.
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6. Conclusion and Extensions
Although it encompasses numerous goal-oriented RL prob-
lems, the setting of episodic RL under its general SSP for-
mulation had until now been neglected by the theoretical
literature of RL, or had been studied under the strong, loop-
free restriction on the MDP structure. Our key contribution
is the design and analysis of UC-SSP, the first no-regret
algorithm in the challenging setting of goal-oriented RL.
Our analysis carefully combines existing techniques from
the related settings of finite-horizon and infinite-horizon
RL, as well as introduces refined ingredients to address the
novel trade-off between minimizing costs and reaching the
goal state. Interesting directions for further investigation
include (1) designing a model-free algorithm for exploration
in SSP, and (2) tackling SSP in the setting of linear function
approximation.
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