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Abstract
Typical architectures of Generative Adversarial
Networks make use of a unimodal latent/input
distribution transformed by a continuous gener-
ator. Consequently, the modeled distribution al-
ways has connected support which is cumbersome
when learning a disconnected set of manifolds.
We formalize this problem by establishing a "no
free lunch" theorem for the disconnected manifold
learning stating an upper-bound on the precision
of the targeted distribution. This is done by build-
ing on the necessary existence of a low-quality
region where the generator continuously samples
data between two disconnected modes. Finally,
we derive a rejection sampling method based on
the norm of generator’s Jacobian and show its effi-
ciency on several generators including BigGAN.

1. Introduction
GANs (Goodfellow et al., 2014) provide a very effective
tool for the unsupervised learning of complex probability
distributions. For example, Karras et al. (2019) generate
very realistic human faces while Yu et al. (2017) match state-
of-the-art text corpora generation. Despite some early theo-
retical results on the stability of GANs (Arjovsky & Bottou,
2017) and on their approximation and asymptotic proper-
ties (Biau et al., 2018), their training remains challenging.
More specifically, GANs raise a mystery formalized by
Khayatkhoei et al. (2018): how can they fit disconnected
manifolds when they are trained to continuously transform
a unimodal latent distribution? While this question remains
widely open, we will show that studying it can lead to some
improvements in the sampling quality of GANs.

Indeed, training a GAN with the objective of continuously
transforming samples from an unimodal distribution into a
disconnected requires balancing between two caveats. On
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(a) Heatmap of the generator’s Jaco-
bian norm. White circles: quantiles
of the latent distributionN (0, I).

(b) Green: target distribution. Coloured dots:
generated samples colored w.r.t. the Jacobian
Norm using same heatmap than (a).

Figure 1. Learning disconnected manifolds leads to the apparition
of an area with high gradients and data sampled in between modes.

one hand, the generator could just ignore all modes but one,
producing a very limited variety of high quality samples:
this is an extreme case of the well known mode collapse
(Arjovsky & Bottou, 2017). On the other hand, the generator
could cover the different modes of the target distribution and
necessarily generates samples out of the real data manifold
as previously explained by Khayatkhoei et al. (2018).

As brought to the fore by Roth et al. (2017), there is a den-
sity mis-specification between the true distribution and the
model distribution. Indeed, one cannot find parameters such
that the model density function is arbitrarily close to the true
distribution. To solve this issue, many empirical works have
proposed to over-parameterize the generative distributions,
as for instance, using a mixture of generators to better fit
the different target modes. Tolstikhin et al. (2017) rely on
boosting while Khayatkhoei et al. (2018) force each gener-
ator to target different sub-manifolds thanks to a criterion
based on mutual information. Another direction is to add
complexity in the latent space using a mixture of Gaussian
distributions (Gurumurthy et al., 2017).
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To better visualize this phenomenon, we consider a simple
2D motivational example where the real data lies on two
disconnected manifolds. Empirically, when learning the
distribution, GANs split the Gaussian latent space into two
modes, as highlighted by the separation line in red in Fig-
ure 1a. More importantly, each sample drawn inside this
red area in Figure 1a is then mapped in the output space in
between the two modes (see Figure 1b). For the quantita-
tive evaluation of the presence of out-of-manifold samples,
a natural metric is the Precision-Recall (PR) proposed by
Sajjadi et al. (2018) and its improved version (Improved
PR) (Kynkäänniemi et al., 2019). A first contribution of this
paper is to formally link them. Then, taking advantage of
these metrics, we lower bound the measure of this out-of-
manifold region and formalize the impossibility of learning
disconnected manifolds with standard GANs. We also ex-
tend this observation to the multi-class generation case and
show that the volume of off-manifold areas increases with
the number of covered manifolds. In the limit, this increase
drives the precision to zero.

To solve this issue and increase the precision of GANs, we
argue that it is possible to remove out-of-manifold sam-
ples using a truncation method. Building on the work of
Arvanitidis et al. (2017) who define a Riemaniann metric
that significantly improves clustering in the latent space,
our truncation method is based on information conveyed by
the Jacobian’s norm of the generator. We empirically show
that this rejection sampling scheme enables us to better fit
disconnected manifolds without over-parametrizing neither
the generative class of functions nor the latent distribution.
Finally, in a very large high dimensional setting, we discuss
the advantages of our rejection method and compare it to
the truncation trick introduced by (Brock et al., 2019).

In a nutshell, our contributions are the following:

• We discuss evaluation of GANs and formally link the
PR measure (Sajjadi et al., 2018) and its Improved PR
version (Kynkäänniemi et al., 2019).

• We upper bound the precision of GANs with Gaussian
latent distribution and formalize an impossibility result
for disconnected manifolds learning.

• Using toy datasets, we illustrate the behavior of GANs
when learning disconnected manifolds and derive a
new truncation method based on the Jacobian’s Frobe-
nius norm of the generator. We confirm its empirical
performance on state-of-the-art models and datasets.

2. Related work
Fighting mode collapse. Goodfellow et al. (2014) were
the first to raise the problem of mode collapse in the learning
of disconnected manifolds with GANs. They observed that

when the generator is trained too long without updating
the discriminator, the output distribution collapses to a few
modes reducing the diversity of the samples. To tackle this
issue, Salimans et al. (2016); Lin et al. (2018) suggested
feeding several samples to the discriminator. Srivastava
et al. (2017) proposed the use of a reconstructor network,
mapping the data to the latent space to increase diversity.

In a different direction, Arjovsky & Bottou (2017) showed
that training GANs using the original formulation (Goodfel-
low et al., 2014) leads to instability or vanishing gradients.
To solve this issue, they proposed a Wasserstein GAN ar-
chitecture (Arjovsky et al., 2017) where they restrict the
class of discriminative functions to 1-Lipschitz functions
using weight clipping. Pointing to issues with this clipping,
Gulrajani et al. (2017); Miyato et al. (2018) proposed re-
laxed ways to enforce the Lipschitzness of the discriminator,
either by using a gradient penalty or a spectral normaliza-
tion. Albeit not exactly approximating the Wasserstein’s
distance (Petzka et al., 2018), both implementations lead to
good empirical results, significantly reducing mode collapse.
Building on all of these works, we will further assume that
generators are now able to cover most of the modes of the tar-
get distribution, leaving us the problem of out-of-manifold
samples (a.k.a. low-quality pictures).

Generation of disconnected manifolds. When learning
complex manifolds in high dimensional spaces using deep
generative models, Fefferman et al. (2016) highlighted the
importance of understanding the underlying geometry. More
precisely, the learning of disconnected manifold requires the
introduction of disconnectedness in the model. Gurumurthy
et al. (2017) used a multi-modal entry distribution, making
the latent space disconnected, and showed better coverage
when data is limited and diverse. Alternatively, Khayatkhoei
et al. (2018) studied the learning of a mixture of generators.
Using a mutual information term, they encourage each gen-
erator to focus on a different submanifold so that the mixture
covers the whole support. This idea of using an ensemble
of generators is also present in the work of Tolstikhin et al.
(2017) and Zhong et al. (2019), though they were primarily
interested in the reduction of mode collapse.

In this paper, we propose a truncation method to separate
the latent space into several disjoint areas. It is a way to
learn disconnected manifolds without relying on the pre-
viously introduced over-parameterization techniques. As
our proposal can be applied without retraining the whole
architecture, we can use it successfully on very larges nets.
Close to this idea, Azadi et al. (2019) introduced a rejection
strategy based on the output of the discriminator. However,
this rejection sampling scheme requires the discriminator to
be trained with a classification loss while our proposition
can be applied to any generative models.
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Evaluating GANs. The evaluation of generative models
is an active area of research. Some of the proposed metrics
only measure the quality of the generated samples such as
the Inception score (Salimans et al., 2016) while others de-
fine distances between probability distributions. This is the
case of the Frechet Inception distance (Heusel et al., 2017),
the Wasserstein distance (Arjovsky et al., 2017) or kernel-
based metrics (Gretton et al., 2012). The other main caveat
for evaluating GANs lies in the fact that one does not have
access to the true density nor the model density, prohibiting
the use of any density based metrics. To solve this issue,
the use of a third network that acts as an objective referee
is common. For instance, the Inception score uses outputs
from InceptionNet while the Fréchet Inception Distance
compares statistics of InceptionNet activations. Since our
work focuses on out-of-manifold samples, a natural measure
is the PR measure (Sajjadi et al., 2018) and its Improved PR
version (Kynkäänniemi et al., 2019), extensively discussed
in the next section.

In the following, alongside precise definitions, we exhibit an
upper bound on the precision of GANs with high recall (i.e.
no mode collapse) and present a new truncation method.

3. Our approach
We start with a formal description of the framework of
GANs and the relevant metrics. We later show a "no free
lunch" theorem proving the necessary existence of an area
in the latent space that generates out-of-manifold samples.
We name this region the no GAN’s land since any data point
sampled from this area will be in the frontier in between
two different modes. We claim that dealing with it requires
special care. Finally, we propose a rejection sampling pro-
cedure to avoid points out of the true manifold.

3.1. Notations

In the original setting of Generative Adversarial Networks
(GANs), one tries to generate data that are “similar” to
samples collected from some unknown probability measure
µ?. To do so, we use a parametric family of generative
distribution where each distribution is the push-forward
measure of a latent distribution Z and a continuous function
modeled by a neural network.

Assumption 1 (Z Gaussian). The latent distribution Z is a
standard multivariate Gaussian.

Note that for any distribution µ, Sµ refers to its support.
Assumption 1 is common for GANs as in many practical
applications, the random variable Z defined on a low di-
mensional space Rd is either a multivariate Gaussian. Prac-
ticioners also studied distribution or uniform distribution
defined on a compact.

The measure µ? is defined on a subset E of RD (potentially
a highly dimensional space), equipped with the norm ‖ · ‖.
The generator has the form of a parameterized class of
functions from Rd (a space with a much lower dimension)
to E, say G = {Gθ : θ ∈ Θ}, where Θ ⊆ Rp is the set of
parameters describing the model. Each function Gθ thus
takes input from a d-dimensional random variable Z (Z
is associated with probability distribution γ) and outputs
“fake” observations with distribution µθ. Thus, the class of
probability measures P = {µθ : θ ∈ Θ} is the natural
class of distributions associated with the generator, and the
objective of GANs is to find inside this class of candidates
the one that generates the most realistic samples, closest to
the ones collected from the unknown distribution µ?.

Assumption 2. Let L > 0. The generator Gθ takes the
form of a neural network whose Lipchitz constant is smaller
than L, i.e. for all (z, z′), we have ‖Gθ(z′) − Gθ(z)‖ 6
L‖z − z′‖.

This is a reasonable assumption, since Virmaux & Scaman
(2018) present an algorithm that upper-bounds the Lipschitz
constant of deep neural networks. Initially, 1-Lipschitzness
was enforced only for the discriminator by clipping the
weigths (Arjovsky et al., 2017; Zhang et al., 2018), adding
a gradient penalty (Gulrajani et al., 2017; Roth et al., 2017;
Petzka et al., 2018), or penalizing the spectral norms (Miy-
ato et al., 2018). Nowadays, state-of-the-art architectures
for large scale generators such as SAGAN (Zhang et al.,
2019) and BigGAN (Brock et al., 2019) also make use of
spectral normalization for the generator.

3.2. Evaluating GANs with Precision and Recall

When learning disconnected manifolds, Srivastava et al.
(2017) proved the need of measuring simultaneously the
quality of the samples generated and the mode collapse. Saj-
jadi et al. (2018) proposed the use of a PR metric to measure
the quality of GANs. The key intuition is that precision
should quantify how much of the fake distribution can be
generated by the true distribution while recall measures how
much of the true distribution can be re-constructed by the
model distribution. More formally, it is defined as follows:

Definition 1. (Sajjadi et al., 2018) LetX,Y be two random
variables. For α, β ∈ (0, 1], X is said to have an attainable
precision α at recall β w.r.t. Y if there exists probability
distributions µ, νX , νY such that

Y = βµ+ (1− β)νY and X = αµ+ (1− α)νX

The component νY denotes the part of Y that is “missed”
by X , whereas, νX denotes the "noise" part of X . We
denote ᾱ (respectively β̄) the maximum attainable precision
(respectively recall). Th. 1 of (Sajjadi et al., 2018) states:

X
(
SY
)

= ᾱ and Y
(
SX
)

= β̄
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Improved PR metric. Kynkäänniemi et al. (2019) high-
lighted an important drawback of the PR metric proposed
by Sajjadi et al. (2018): it cannot correctly interpret situa-
tions when a large numbers of samples are packed together.
To better understand this situation, consider a case where
the generator slightly collapses on a specific data point, i.e.
there exists x ∈ E,µθ(x) > 0. We show in Appendix A
that if µ? is a non-atomic probability measure and µθ is
highly precise (i.e. α = 1), then the recall β must be 0.

To solve these issues, Kynkäänniemi et al. (2019) proposed
an Improved Precision-Recall (Improved PR) metric built
on a nonparametric estimation of support of densities.

Definition 2. (Kynkäänniemi et al., 2019) Let X,Y be two
random variables and DX , DY two finite sample datasets
such that DX ∼ Xn and DY ∼ Y n. For any x ∈ DX (re-
spectively for any y ∈ DY ), we consider (x(1), . . . , x(n−1)),
the re-ordening of elements in DX \ x given their euclidean
distance with x. For any k ∈ N and x ∈ DX , the precision
αnk (x) of point x is defined as

αnk (x) = 1 ⇐⇒ ∃y ∈ DY , ‖x− y‖ 6 ‖y(k) − y‖

Similarly, the recall βnk (y) of any given y ∈ DY is

βnk (y) = 1 ⇐⇒ ∃x ∈ DX , ‖y − x‖ 6 ‖x(k) − x‖

Improved precision (respectively recall) are defined as the
average over DX (respectively DY ) as follows

αnk =
1

n

∑
xi∈DX

αnk (xi) βnk =
1

n

∑
yi∈DY

βnk (yi)

A first contribution is to formalize the link between PR and
Improved PR with the following theorem:

Theorem 1. Let X,Y two random variables with prob-
ability distributions µ and ν. Assume that both µ and
ν are associated with uniformly continuous probability
density functions fµ and fν . Besides, there exists con-
stants a1 > 0, a2 > 0 such that for all x ∈ E we have
a1 < fµ?(x) 6 a2 and a1 < fµθ (x) 6 a2 for some c > 0.
Also, (k, n) are such that k

log(n) → +∞ and k
n → 0. Then,

αnk → ᾱ in probability and βnk → β̄ in proba.

This theorem, whose proof is delayed to Appendix B, un-
derlines the nature of the Improved PR metric: the metric
compares the supports of the modeled probability distribu-
tion µθ and of the true distribution µ?. This means that
Improved PR is a tuple made of both maximum attainable
precision ᾱ and recall β̄ (e.g. Theorem 1 of (Sajjadi et al.,
2018)). As Improved PR is shown to have a better perfor-
mance evaluating GANs sample quality, we use this metric
for both the following theoretical results and experiments.

3.3. Learning disconnected manifolds

In this section, we aim to stress the difficulties of learning
disconnected manifolds with standard GANs architectures.
To begin with, we recall the following lemma.

Lemma 1. Assume that Assumptions 1 and 2 are satisfied.
Then, for any θ ∈ Θ, the support Sµθ is connected.

There is consequently a discrepancy between the connect-
edness of Sµθ and the disconnectedness of Sµ? . In the case
where the manifold lays on two disconnected components,
our next theorem exhibit a no free lunch theorem:

Theorem 2. ("No free lunch" theorem) Assume that As-
sumptions 1 and 2 are satisfied. Assume also that true
distribution µ? lays on two equally measured disconnected
manifolds distant from a distance D > 0. Then, any esti-
mator µθ that samples equally in both modes must have a

precision ᾱ such that ᾱ+ D√
2πL

e
−Φ−1( ᾱ

2
)2

2 6 1, where Φ is
the c.d.f. of a standard normal distribution.

Besides, if ᾱ > 3/4, ᾱ . 1−
√

2
πW ( D

2

4L2 ) where W is the
Lambert W function.

The proof of this theorem is delayed to Appendix C. It
is mainly based on the Gaussian isoperimetric inequality
(Borell, 1975; Sudakov & Tsirelson, 1978) that states that
among all sets of given Gaussian measure in any finite
dimensional Euclidean space, half-spaces have the minimal
Gaussian boundary measure. If in Fig. 1, the generator has
thus learned the optimal separation, it is yet not known, to
the limit of our knowledge, how to enforce such geometrical
properties in the latent space.

In real world applications, when the number of distinct
sub-manifolds increases, we expect the volume of these
boundaries to increase with respect to the number of differ-
ent classes covered by the modeled distribution µθ. Going
in this direction, we better formalize this situation, and
show an extended "no free lunch theorem" by expliciting an
upper-bound of the precision ᾱ in this broader framework.

Assumption 3. The true distribution µ? lays on M equally-
measured disconnected components at least distant from
some constant D > 0.

This is likely to be true for datasets made of symbol de-
signed to be highly distinguishable (e.g. digits in the MNIST
dataset). In very high dimension, this assumption also holds
for complex classes of objects appearing in many different
contexts (e.g. the bubble class in ImageNet, see Appendix).

To better apprehend the next theorem, note Am the pre-
image in the latent space of mode m and Arm its r-
enlargement: Arm := {z ∈ Rd | dist(z,Am) ≤ r}, r > 0.

Theorem 3. (Generalized "no free lunch" theorem) Assume
that Assumptions 1, 2, and 3 are satisfied, and that the pre-
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(a) WGAN 4 classes:
visualisation of ‖JG(z)‖F .

(b) WGAN 9 classes:
visualisation of ‖JG(z)‖F .

(c) WGAN 25 classes:
visualisation of ‖JG(z)‖F .

(d) Precision w.r.t. D (mode
distance) and M (classes).

Figure 2. Illustration of Theorem 3. If the number of classes
M →∞ or the distance D →∞, then the precision ᾱ→ 0. We
provide in appendix heatmaps for more values of M .

image enlargements Aεm, with ε = D
2L , form a partition of

the latent space with equally measured elements.

Then, any estimator µθ with recall β̄ > 1
M must have a

precision ᾱ at most 1+x2

x2 e−
1
2 ε

2

e−εx where x = Φ−1(1 −
1
β̄M

) and Φ is the c.d.f. of a standard normal distribution.

Theorem 3, whose proof is delayed to Appendix D, states a
lower-bound the measure of samples mapped out of the true
manifold. We expect our bound to be loose since no theo-
retical results are known, to the best of our knowledge, on
the geometry of the separation that minimizes the boundary
between different classes (when M > 3). Finding this opti-
mal cut would be an extension of the honeycomb theorem
(Hales, 2001). In Appendix D.2 we give a more techni-
cal statement of Theorem 3 without assuming equality of
measure of the sets Aεm.

The idea of the proof is to consider the border of an individ-
ual cell with the rest of the partition. It is clear that at least
half of the frontier will be inside this specific cell. Then, to
get to the final result, we sum the measures of the frontiers
contained inside all of the different cells. Remark that our
analysis is fine enough to keep a dependency in M which
translates into a maximum precision that goes to zero when
M goes to the infinity and all the modes are covered. More
precisely, in this scenario where all pre-images have equal

measures in the latent space, one can derive the following
bound, when the recall β̄ is kept fixed and M increases:

ᾱ
M→∞
6 e−

1
2 ε

2

e−ε
√

2 log(β̄M) where ε =
D

2L
(1)

For a fixed generator, this equation illustrates that the preci-
sion ᾱ decreases when either the distance D (equivalently
ε) or the number of classes M increases. For a given ε, ᾱ
converges to 0 with a speed O( 1

(β̄M)
√

2ε
). To better illus-

trate this asymptotic result, we provide results from a 2D
synthetic setting. In this toy dataset, we control both the
number M of disconnected manifolds and the distance D.
Figure 2 clearly corroborates (1) as we can easily get the
maximum precision close to 0 (M = 25, D = 27).

3.4. Jacobian-based truncation (JBT) method

The analysis of the deformation of the latent space offers
a grasp on the behavior of GANs. For instance, Arvan-
itidis et al. (2017) propose a distance accounting for the
distortions made by the generator. For any pair of points
(z1, z2) ∼ Z2, the distance is defined as the length of the
geodesic d(z1, z2) =

∫
[0,1]
‖JGθ (γt)

dγt
dt ‖dt where γ is the

geodesic parameterized by t ∈ [0, 1] and JGθ (z) denotes
the Jacobian matrix of the generator at point z. Authors
have shown that the use of this distance in the latent space
improves clustering and interpretability. We make a similar
observation that the generator’s Jacobian Frobenius norm
provides meaningful information.

Indeed, the frontiers highlighted in Figures 2a, 2b, and 2c
correspond to areas of low precision mapped out of the
true manifold: this is the no GAN’s land. We argue that
when learning disconnected manifolds, the generator tries
to minimize the number of samples that do not belong to
the support of the true distribution and that this can only be
done by making paths steeper in the no GAN’s land. Con-
sequently, data points Gθ(z) with high Jacobian Frobenius
norm (JFN) are more likely to be outside the true manifold.
To improve the precision of generative models, we thus
define a new truncation method by removing points with
highest JFN.

However, note that computing the generators’s JFN is ex-
pensive to compute for neural networks, since being defined
as follows,

‖JGθ (z)‖2F =

m∑
i=1

n∑
j=1

(
∂Gθ(z)i
∂zj

)2

,

it requires a number of backward passes equal to the output
dimension. To make our truncation method tractable, we
use a stochastic approximation of the Jacobian Frobenius
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norm based on the following result from Rifai et al. (2011):

‖JGθ (z)‖2 = lim
N→∞
σ→0

1

N

N∑
εi

1

σ2
‖Gθ(z + εi)−Gθ(z)‖2

where εi ∼∼ N (0, σ2I and I is the identity matrix of
dimension d. The variance σ of the noise and the number
of samples are used as hyper-parameters. In practice, σ in
[1e−4; 1e−2] and N = 10 give consistent results.

Based on the preceding analysis, we propose a new
Jacobian-based truncation (JBT) method that rejects a
certain ratio of the generated points with highest JFN. This
truncation ratio is considered as an hyper-parameter for the
model. We show in our experiments that our JBT can be
used to to detect samples outside the real data manifold and
that it consequently improves the precision of the generated
distribution as measured by the Improved PR metric.

4. Experiments
In the following, we show that our truncation method,
JBT, can significantly improve the performances of gen-
erative models on several models, metrics and datasets.
Furthermore, we compare JBT with over-parametrization
techniques specifically designed for disconnected manifold
learning. We show that our truncation method reaches or
surpasses their performance, while it has the benefit of not
modifying the training process of GANs nor using a mixture
of generators, which is computationally expensive. Finally,
we confirm the efficiency of our method by applying it on
top of BigGAN (Brock et al., 2019).

Except for BigGAN, for all our experiments, we use Wasser-
stein GAN with gradient penalty (Gulrajani et al., 2017),
called WGAN for conciseness. We give in Appendix K the
full details of our experimental setting. The use of WGAN
is motivated by the fact that it was shown to stabilize the
training and significantly reduce mode collapse (Arjovsky
& Bottou, 2017). However, we want to emphasise that our
method can be plugged on top of any generative model
fitting disconnected components.

4.1. Evaluation metrics

To measure performances of GANs when dealing with low
dimensional applications - as with synthetic datasets - we
equip our space with the standard Euclidean distance. How-
ever, for high dimensional applications such as image gen-
eration, Brock et al. (2019); Kynkäänniemi et al. (2019)
have shown that embedding images into a feature space
with a pre-trained convolutional classifier provides more
semantic information. In this setting, we consequently use
the euclidean distance between the images’ embeddings
from a classifier. For a pair of images (a, b), we define
the distance d(a, b) as d(a, b) = ‖φ(a) − φ(b)‖2 where

(a) WGAN - 2500 samples (b) WGAN 90% JBT.

(c) WGAN 70% JBT. (d) 97% confidence intervals .

Figure 3. Mixture of 9 Gaussians in green, generated points in
blue. Our truncation method (JBT) removes least precise data
points as marginal precision plummets.

φ is a pre-softmax layer of a supervised classifier, trained
specifically on each dataset. Doing so, they will more easily
separate images sampled from the true distribution µ? from
the ones sampled by the distribution µθ.

We compare performances using Improved PR (Kynkään-
niemi et al., 2019). We also report the Marginal Precision
which is the precision of newly added samples when increas-
ing the ratio of kept samples. Besides, for completeness, we
report FID (Heusel et al., 2017) and recall precise defini-
tions in Appendix G. Note that FID was not computed with
InceptionNet, but a classifier pre-trained on each dataset.

4.2. Synthetic dataset

We first consider the true distribution to be a 2D Gaussian
mixture of 9 components. Both the generator and the dis-
criminator are modeled with feed-forward neural networks.

Interestingly, the generator tries to minimize the sampling
of off-manifolds data during training until its JFN gets satu-
rated (see Appendix H). One way to reduce the number of
off-manifold samples is to use JBT. Indeed, off-manifold
data points progressively disappear when being more and
more selective, as illustrated in Figure 3c. We quantitatively
confirm that our truncation method (JBT) improves the pre-
cision. On Fig. 3d, we observe that keeping the 70% of
lowest JFN samples leads to an almost perfect precision of
the support of the generated distribution. Thus, off-manifold
samples are in the 30% samples with highest JFN.
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(a) MNIST dataset. (b) F-MNIST dataset. (c) CIFAR10 datatset.

Figure 4. For high levels of kept samples, the marginal precision plummets of newly added samples, underlining the efficiency of our
truncation method (JBT). Reported confidence intervals are 97% confidence intervals. On the second row, generated samples ordered by
their JFN (left to right, top to bottom). In the last row, the data points generated are blurrier and outside the true manifold.

4.3. Image datasets

We further study JBT on three different datasets: MNIST
(LeCun et al., 1998), FashionMNIST (Xiao et al., 2017)
and CIFAR10 (Krizhevsky et al., 2009). Following (Khay-
atkhoei et al., 2018) implementation, we use a standard CNN
architecture for MNIST and FashionMNIST while training
a ResNet-based model for CIFAR10 (Gulrajani et al., 2017).

MNIST Prec. Rec. FID
WGAN 91.2±0.3 93.7±0.5 24.3±0.3

WGAN JBT 90% 92.5±0.5 92.9±0.3 26.9±0.5

WGAN JBT 80% 93.3±0.3 91.8±0.4 33.1±0.3

W-Deligan 89.0±0.6 93.6±0.3 31.7±0.5

DMLGAN 93.4±0.2 92.3±0.2 16.8±0.4
F-MNIST
WGAN 86.3±0.4 88.2±0.2 259.7±3.5

WGAN JBT 90% 88.6±0.6 86.6±0.5 257.4±3.0
WGAN JBT 80% 89.8±0.4 84.9±0.5 396.2±6.4

W-Deligan 88.5±0.3 85.3±0.6 310.9±3.1

DMLGAN 87.4±0.3 88.1±0.4 253.0±2.8

Table 1. JBT x% means we keep the x% samples with lowest
Jacobian norm. Our truncation method (JBT) matches over-
parameterization techniques. ± is 97% confidence interval.

Figure 4 highlights that JBT also works on high dimensional

datasets as the marginal precision plummets for high trunca-
tion ratios. Furthermore, when looking at samples ranked
by increasing order of their JFN, we notice that samples
with highest JFN are standing in-between manifolds. For
example, those are ambiguous digits resembling both a "0"
and a "6" or shoes with unrealistic shapes.

To further assess the efficiency of our truncation method,
we also compare its performances with two state-of-the-art
over-parameterization techniques that were designed for
disconnected manifold learning. First, (Gurumurthy et al.,
2017) propose DeliGAN, a reparametrization trick to trans-
form the unimodal Gaussian latent distribution into a mix-
ture. The different mixture components are later learnt by
gradient descent. For fairness, the re-parametrization trick is
used on top of WGAN. Second, (Khayatkhoei et al., 2018)
define DMLGAN, a mixture of generators to better learn
disconnected manifolds. In this architecture, each generator
is encouraged to target a different submanifold by enforcing
high mutual information between generated samples and
generator’s ids. Keep in mind that for DeliGAN (respec-
tively DMLGAN), the optimal number of components (re-
spectively generators) is not known and is a hyper-parameter
of the model that has to be cross-validated.

The results of the comparison are presented in Table 1. In
both datasets, JBT 80 % outperforms DeliGAN and DML-
GAN in terms of precision while keeping a reasonnable
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(a) House finch. (b) Parachute. (c) Bubble.

Figure 5. On the first row, per-class precision-recall curves comparing Brock et al. (2019)’s truncation trick and our truncation method
(JBT), on three ImageNet classes generated by BigGAN. We show better results on complex and disconnected classes (e.g. bubble).
Reported confidence intervals are 97% confidence intervals. On the second row, generated samples ordered by their JFN (left to right, top
to bottom). We observe a concentration of off-manifold samples for images on the bottom row, confirming the soundness of JBT.

recall. This confirms our claim that over-parameterization
techniques are unnecessary. As noticed by Kynkäänniemi
et al. (2019), we also observe that FID does not correlate
properly with the Improved PR metric. Based on the Frechet
distance, only a distance between multivariate Gaussians,
we argue that FID is not suited for disconnected manifold
learning as it approximates distributions with unimodal ones
and looses many information.

4.4. Spurious samples rejections on BigGAN

Thanks to the simplicity of JBT, we can also apply it on
top of any trained generative model. In this subsection,
we use JBT to improve the precision of a pre-trained Big-
GAN model (Brock et al., 2019), which generates class-
conditionned ImageNet (Deng et al., 2009) samples. The
class-conditioning lowers the problem of off-manifold sam-
ples, since it reduces the disconnectedness in the output
distribution. However, we argue that the issue can still exist
on high-dimensional natural images, in particular complex
classes can still be multi-modal (e.g. the bubble class). The
bottom row in Figure 5 shows a random set of 128 images
for three different classes ranked by their JFN in ascending
order (left to right, top to bottom). We observe a clear con-
centration of spurious samples on the bottom row images.

To better assess the Jacobian based truncation method, we
compare it with the truncation trick from Brock et al. (2019).

This truncation trick aims to reduce the variance of the latent
space distribution using truncated Gaussians. While easy
and effective, this truncation has some issues: it requires
to complexify the loss to enforce orthogonality in weight
matrices of the network. Moreover, as explained by Brock
et al. (2019) "only 16% of models are amenable to trun-
cation, compared to 60% when trained with Orthogonal
Regularization". For fairness of comparison, the pre-trained
network we use is optimized for their truncation method.
On the opposite, JBT is simpler to apply since 100% of the
tested models were amenable to the proposed truncation.

Results of this comparison are shown in the upper row of
Figure 5. Our method can outperform their truncation trick
on difficult classes with high intra-class variation, e.g. bub-
ble and house finch. This confirms our claim that JBT can
detect outliers within a class. However, one can note that
their trick is particularly well suited for simpler unimodal
classes, e.g. parachute and reaches high precision levels.

5. Conclusion
In this paper, we provide insights on the learning of dis-
connected manifolds with GANs. Our analysis shows the
existence of an off-manifold area with low precision. We
empirically show on several datasets and models that we can
detect these areas and remove samples located in between
two modes thanks to a newly proposed truncation method.
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