
Taylor expansion policy optimization

A. Derivation of results for generalized trust-region policy optimization
A.1. Controlling the residuals of Taylor expansions

We summarize the bound on the magnitude of the Taylor expansion residuals of the Q-function as a proposition.
Proposition 1. Recall the definition of the Taylor expansion residual of the Q-function from the main text, EK ,∑∞
k=K+1 Uk. Let || · || be the infinity norm ||A|| , maxx,a |A(x, a)|. Let Rmax be the maximum reward in the entire MDP,

Rmax , maxx,a |r(x, a)|. Finally, let ε , ||π − µ||1. Then

||EK || ≤
(

γ

1− γ
ε

)K+1(
1− γ

1− γ
ε

)−1
Rmax

1− γ
· (13)

Proof. The proof follows by bounding each the magnitude of term ||Uk||,

||EK || =

∥∥∥∥∥
∞∑

k=K+1

Uk

∥∥∥∥∥ ≤
∞∑

k=K+1

||Uk||

=

∞∑
k=K+1

‖γk
(
(I − γPµ)−1(Pµ − Pµ)

)k‖ · ||Qµ||
≤

∞∑
k=K+1

(
γ

1− γ

)k
εk
Rmax

1− γ

=

(
γ

1− γ
ε

)K+1(
1− γ

1− γ
ε

)−1
Rmax

1− γ
·

The above derivation shows that once we have ε < 1−γ
γ

, ||EK || → 0 as K →∞. In the above derivation, we have applied

the bound ||Uk|| ≤
(

γ
1−γ

)k
εk Rmax

1−γ
, which will also be helpful in later derivations.

A.2. Deriving Taylor expansions of RL objective

Recall that the RHS of Eq. 2 are the Taylor expansions of Q-functions Qπ . By construction, Qπ −Qµ =
∑
k≥0 Uk. Though

Eq. 2 shows the expansion of the entire vector Qπ , for optimization purposes, we care about the RL objective from a starting
state x0, J(π) = Eπ,a0∼π(·|x0),x0

[Qπ(x0, a0)] = πT
0Q

π, where π0 ∈ R|X ||A| follows the definition from the main paper
π0(x, a) , π(a|x)δx=x0 .

Now we focus on calculating LK(π, µ) for general K ≥ 0. For simplicity, we write Lk(π, µ) as Lk and henceforth we
might use these notations interchangeably. Now consider the RHS of Eq. 3. By definition of the k-th order Taylor expansion
Lk (1 ≤ k ≤ K) of J(π) − J(µ), we maintain terms where π/µ − 1 appears at most K times. Equivalently, in matrix
form, we remove the higher order terms of π − µ while only maintaining terms such as (π − µ)k, k ≤ K. This allows us to
conclude that

K∑
i=1

Lk = (π0 − µ0)
T

Qµ +

K−1∑
k≥1

Uk

+ µT

0

(
K∑
k=1

Uk

)
.

Furthermore, we can single out each term

Lk = (π0 − µ0)TTk−1 + µT

0Uk, k ≥ 2

L1 = (π0 − µ0)TQµ + µT

0U1.

B. Proof of Theorem 1
Proof. We derive the Taylor expansion of Q-function Qπ into different orders of Pπ − Pµ. For that purpose, we recursively
make use of the following matrix equality

(I − γPπ)−1 = (I − γPµ)−1 + γ(I − γPµ)−1(Pπ − Pµ)(I − γPπ)−1,

Taylor expansion policy optimization

which can be derived either from matrix inversion equality or directly verified. Since Qπ = (I − γPπ)−1R, we can use the
previous equality to get

Qπ = (I − γPµ)−1R+ γ(I − γPµ)−1(Pπ − Pµ)(I − γPπ)−1R

= Qµ + γ(I − γPµ)−1(Pπ − Pµ)Qπ.

Next, we recursively apply the equality K times,

Qπ = Qµ +

K∑
k=1

(
γ(I − γPµ)−1(Pπ − Pµ)

)k
Qµ +

(
γ(I − γPµ)−1(Pπ − Pµ)

)K+1
Qπ.

Now if ||π − µ||1 < (1− γ)/γ then we can bound the sup-norm in of the above term as

‖γ(I − γPµ)−1(Pπ − Pµ)‖∞ =
γ

1− γ
||π − µ||1 < 1,

thus the (K + 1)-th order residual term vanishes when K → ∞. As a result, the limit K → ∞ is well defined and we
deduce

Qπ =

∞∑
k=0

(
γ(I − γPµ)−1(Pπ − Pµ)

)k
Qµ.

C. Proof of Theorem 2
Proof. To derive the monotonic improvement theorem for generalized TRPO, it is critical to bound

∑∞
k=K+1 Lk. We

achieve this by simply bounding each term separately. Recall that from Appendix A.1 we have ||Uk|| ≤
(

γ
1−γ

)k
εkRmax.

Without loss of generality, we first assume Rmax = 1− γ for ease of derivations.

|Lk| ≤ ε||Uk−1||+ ||Uk|| ≤ ε
(

γ

1− γ

)k−1

εk−1 +

(
γ

1− γ

)k
εk =

(
γ

1− γ

)k−1
1

1− γ
εk.

This leads to a bound over the residuals∣∣∣∣∣
∞∑

k=K+1

Lk

∣∣∣∣∣ ≤
∞∑

k=K+1

|Lk| ≤
∞∑

k=K+1

(
γ

1− γ

)k−1
1

1− γ
εk =

1

γ

(
1− γ

1− γ
ε

)−1(
γε

1− γ

)K+1

.

Since we have the equality J(π) = J(µ) +
∑∞
k=1 Lk for ||π − µ||1 ≤ ε < 1−γ

γ
, we can deduce the following monotonic

improvement,

J(π) ≥ J(µ) +

K∑
k=1

Lk −
1

γ

(
1− γ

1− γ
ε

)−1(
γε

1− γ

)K+1

. (14)

To write the above statement in a compact way, we define the gap

GK =
1

γ

(
1− γ

1− γ
ε

)−1(
γε

1− γ

)K+1

.

To derive the result for general Rmax, note that the gap GK has a linear dependency on Rmax. Hence the general gap is

GK ,
1

γ(1− γ)

(
1− γ

1− γ
ε

)−1(
γε

1− γ

)K+1

Rmax,

which gives produces the monotonic improvement result (Eq. 10) stated in the main paper.

Taylor expansion policy optimization

D. Proof of Theorem 3
Proof. It is known that for K = 1, replacing Qµ(x, a) by Aµ(x, a) in the estimation can potentially reduce variance
(Schulman et al., 2015; 2017) yet keeps the estimate unbiased. Below, we show that in general, replacing Qπ(x, a) by
Aπ(x, a) renders the estimate of LK(π, µ) unbiased for general K ≥ 1.

As shown above and more clearly in Appendix F, LK(π, µ) can be written as

LK(π, µ) = E(x(i),a(i))1≤i≤K

[
K∏
i=1

(
π(ai|xi)
µ(ai|xi)

− 1

)
Qµ(xK , aK)

]
. (15)

Note that for clarity, in the above expectation, we omit an explicit sequence of discounted visitation distributions (for detailed
derivations of this sequence of visitation distributions, see Appendix F). Next, we leverage the conditional expectation with
respect to (x(i), a(i)), 1 ≤ i ≤ K − 1 to yield

LK(π, µ) = E(x(i),a(i))1≤i≤K−1

[
K−1∏
i=1

(
π(ai|xi)
µ(ai|xi)

− 1

)
E(xK ,aK)

[(
π(aK |xK)

µ(aK |xK)
− 1

)
Qµ(xK , aK)

]]

= E(x(i),a(i))1≤i≤K−1

[
K−1∏
i=1

(
π(ai|xi)
µ(ai|xi)

− 1

)
E(xK ,aK)

[(
π(aK |xK)

µ(aK |xK)
− 1

)
Aµ(xK , aK)

]]

= E(x(i),a(i))1≤i≤K

[
K∏
i=1

(
π(ai|xi)
µ(ai|xi)

− 1

)
Aµ(xK , aK)

]
. (16)

The above derivation shows that indeed, replacing Qµ(x, a) by Aµ(x, a) does not change the value the expectation, while
potentially reducing the variance of the overall estimation.

E. Proof of Theorem 4
Proof. From the definition of the return off-policy evaluation operator Rπ,µ1 , we have

Rπ,µ1 Q = Q+ (I − γPµ)
−1

(r + γPπQ−Q)

= (I − γPµ)
−1

(r + γPπQ−Q+ (I − γPµ)Q)

= (I − γPµ)
−1
r + γ(I − γPµ)

−1
(Pπ − Pµ)Q

= Qµ + γ(I − γPµ)
−1

(Pπ − Pµ)Q.

Thus Q 7→ Rπ,µ1 Q is a linear operator, and

(Rπ,µ1)
2
Q = Qµ + γ(I − γPµ)

−1
(Pπ − Pµ)(Rπ,µ1)

2
Q

= Qµ + γ(I − γPµ)
−1

(Pπ − Pµ)Qµ +
[
γ(I − γPµ)

−1
(Pπ − Pµ)

]2
Q.

Applying this step K times, we deduce

(Rπ,µ1)
K
Q = Qµ +

K−1∑
k=1

[
γ(I − γPµ)

−1
(Pπ − Pµ)

]k
Qµ +

[
γ(I − γPµ)

−1
(Pπ − Pµ)

]K
Q.

Applying the above operator to Qµ we deduce that

(Rπ,µ1)
K
Qµ = Qµ +

K∑
k=1

[
γ(I − γPµ)

−1
(Pπ − Pµ)

]k
Qµ︸ ︷︷ ︸

=Uk

,

which proves our claim.

Taylor expansion policy optimization

F. Alternative derivation for Taylor expansions of RL objective
In this section, we provide an alternative derivation of the Taylor expansion of the RL objective. Let πt/µt = 1 + εt. In
cases where π ≈ µ (e.g., for the trust-region case), ε ≈ 0. To calculate J(π) using data from µ, a natural technique is
employ importance sampling (IS),

J(π) = Eµ,x0

[(∞∏
t=0

πt
µt

) ∞∑
t=0

rtγ
t

]
= Eµ,x0

[(∞∏
t=0

(1 + εt)

) ∞∑
t=0

γtrt

]
·

To derive Taylor expansion in an intuitive way, consider expanding the product
∏∞
t=0(1 + εt), assuming that this infinite

product is finite. Assume all εt ≤ ε with some small ε > 0. A second-order Taylor expansion is

∞∏
t=0

(1 + εt) = 1 +

∞∑
t=0

εt +

∞∑
t=0

∞∑
t′>t

εtεt′ +O(ε3). (17)

Now, consider the term associated with
∑∞
t=0 εt,

Eµ,x0

[∞∑
t=0

εt

∞∑
t=0

γtrt

]
= Eµ,x0

[∞∑
t=0

εt

∞∑
t′=t

rtγ
t′

]

= Eµ,x0

[∞∑
t=0

εt

∞∑
t′=t

rtγ
tγt
′−t

]

= Eµ,x0

[∞∑
t=0

εtQ
µ(xt, at)γ

t

]

= (1− γ) E
x,a∼dµγ (·,·|x0,a0,0)

a0∼µ(·|x0)

[(
π(a|x)

µ(a|x)
− 1

)
Qµ(x, a)

]
. (18)

Note that in the last equality, the γt factor is absorbed into the discounted visitation distribution dµγ(·, ·|x0, a0, 0). It is then
clear that this term is exactly the first-order expansion L1(π, µ) shown in the main paper.

Similarly, we could derive the second-order expansion by studying the term associated with
∑∞
t=0

∑∞
t′>t εtεt′ .

Eµ,x0

[∞∑
t=0

∞∑
t′>t

εtεt′
∞∑
t=0

γtrt

]
= Eµ,x0

[∞∑
t=0

∞∑
t′>t

εtεt′
∞∑
τ=t′

rτγ
τ

]

= Eµ,x0

[∞∑
t=0

∞∑
t′>t

εtεt′
∞∑
τ=t′

rτγ
τ−t′γtγt

′−t

]

= Eµ,x0

[∞∑
t=0

∞∑
t′>t

εtεt′Q
µ(xt′ , at′)γ

tγt
′−t

]

=
(1− γ)2

γ
E

x,a∼dµγ (·,·|x0,a0,0)

a0∼µ(·|x0)
x′,a′∼dµγ (·,·|x,a,1)

[(
π(a|x)

µ(a|x)
− 1
)(π(a′|x′)

µ(a′|x′)
− 1

)
Qµ(x′, a′)

]
. (19)

Note that similar to the first-order expansion, the discount factor γtγt
′−t is absorbed into the discounted visitation distribution

dµγ(·, ·|x0, a0, 0) and dµγ(·, ·|x, a, 1) respectively. Here note that the second discounted visitation distribution is dµγ(·, ·|x, a, 1)
instead of dµγ(·, ·|x, a, 0) — this is because t′ − t ≥ 1 by construction and we need to sample the second state conditional
on the time difference to be ≥ 1. The above is exactly the second-order expansion L2(π, µ).

By a similar argument, we can derive expansion for all higher-order expansion by considering the term associated with∑∞
t1=0

∑∞
t2>t1

...
∑∞
tK>tK−1

ε1ε2 . . . εK . This would introduce K discounted visitation distributions dµγ(·, ·|x0, a0, 0) and
dµγ(·, ·|xk, ak, 1), 1 ≤ k ≤ K.

Taylor expansion policy optimization

The above derivation also illustrates how these higher-order terms can be estimated in practice. For the k-th order, given
a trajectory under µ, sequentially sample K time difference ∆tk along the trajectory, where t1 ∼ Geometric(1− γ). For
k ≥ 2, tk ∼ Geometric(1 − γ) while conditional on ∆tk ≥ 1. Then define the time tk =

∑
i≤k ∆ti. Let xi = xti and

ai = ati , Then, a one sample estimate is

K∏
i=1

(
π(ai|xi)
µ(ai|xi)

− 1

)
Qµ(xK , aK). (20)

F.1. Connection between off-policy evaluation and generalized advantage estimation (GAE)

Generalized advantage estimation (GAE, Schulman et al. 2016) is a technique for advantage estimation. According to
Schulman et al. (2016; 2017), GAE trades-off bias and variance in the advantage estimation and can boost the performance
of downstream policy optimization. On the other hand, off-policy evaluation operators (Harutyunyan et al., 2016; Munos
et al., 2016) are dedicated to evaluations of Q-function Qπ(x, a). What are the connections between these approaches?

The actor-critic algorithm that uses GAE maintains a policy π(a|x) and value function Vϕ(x) with parameter ϕ. Data are
collected on-policy, i.e., µ = π. Let ÂGAE(x, a) be the GAE estimation for (x, a). Naturally, GAE can be interpreted as first
carrying out a Q-function estimation Q̂(x, a) and then subtracting the baseline

ÂGAE(x, a) , Q̂(x, a)− Vϕ(x). (21)

Now we show that the Q-function estimation Q̂(x, a) can be interpreted as applying theQ(λ) operator to an initial Q-function
estimate. Here importantly, to make the connection exact, we assume the initial Q-function estimate to be bootstrapped from
the value function Qinit(x, a) , Vϕ(x). To sum up,

ÂGAE(x, a) = [Rπ,πc=λQinit](x, a)− Vϕ(x), (22)

whereRπ,µc=λ refers to the evaluation operator with trace coefficients c(x, a) = λ. Finally, the evaluation operator is replaced
by sample estimates in practice. From the above, we see that there is a link between advantage estimation (i.e., GAE) with
policy evaluation (i.e., the Q(λ) operator).

G. Second-order expansions for value-based algorithms
In this section, we provide algorithmic details on value-based algorithms in our experiments. The application of Taylor
expansions allow us to derive the expansion for RL objective, which is useful in policy-optimization where algorithms
maintain a parameterized policy πθ. Taking one step back, Taylor expansion can be used for policy evaluation as well, and
can be useful in algorithms where Q-functions (value functions) are parameterized Qθ where the policy is implicitly defined
(e.g., ε-greedy). In our experiments, we take R2D2 (Kapturowski et al., 2019) as the baseline algorithm. Below, we briefly
introduce the algorithmic procedure of R2D2 and present the Taylor expansion variants.

Basic components. The baseline R2D2 maintains a Q-functionQθ(x, a) parameterized by a neural network θ. The central
learner maintains an updated parameter θ and distributed actors maintain slightly delayed copies θold. Distributed actors
collect data using behavior policy µ, defined as ε-greedy with respect to Qθold(x, a). The target policy π is defined as greedy
with respect to Qθ(x, a). Actors send data to a replay buffer, and the learner samples partial trajectories (xt, at, rt)

T
t=1 from

the buffer and computes updates to the parameter θ. In particular, the learner calculates regression targets Qtarget(xt, at) and
the Q-function is updated via θ ← θ − α · ∇θ(Qθ(xt, at)−Qtarget(xt, at))

2 with learning rate α > 0.

Algorithmic variants. Algorithmic variants of R2D2 differ in how they compute the targets Qtarget(x, a). A useful unified
view provided by Rowland et al. (2020) is that Qtarget(x, a) aims to approximate Qπ(x, a) such that Qθ(x, a)→ Qπ(x, a)
during the update.

Along sampled trajectories, we recursively calculate the targets Qtarget(xt, at), 1 ≤ t ≤ T based on recipes of different
variants. Below are a few alternatives we evaluated in our experimenst, where we e.g., use Q̂zero(xt, at) to represent
Qtarget(xt, at) for the zero-order baseline.

• Zero-order: Q̂zero(xt, at) , rt + γQ̂zero(xt+1, at+1)

Taylor expansion policy optimization

• First-order: Q̂first(xt, at) , rt + γ(Eπ[Qθ(xt+1, ·)]−Qθ(xt+1, at+1)) + γQ̂first(xt+1, at+1)

• Second-order: Q̂second(xt, at) , rt + γ
(
Eπ
[
Q̂′first(xt+1, ·)

]
− Q̂first(xt+1, at+1)

)
+ γQ̂second(xt+1, at+1)

• Retrace: Q̂retrace(xt, at) , rt + γct+1(Eπ[Qretrace(xt+1, ·)]−Qretrace(xt+1, at+1)]) + γct+1Q̂retrace(xt+1, at+1).

For retrace, we set the trace coefficient ct , λ ·min
{
π(at|xt)
µ(at|xt) , 1

}
following Munos et al. (2016). All baselines bootstrap

Q̂target(xT , aT) = Qθ(xt, aT) from the Q-function network for the last state-action pair.

As shown above, the zero-order baseline reduces to discounted sum of returns (plus a bootstrap value at the end of the
trajectory). The first-order adopts the Q(λ), λ = 1 recursive update rule. The second-order corresponds to applying
Q(λ), λ = 1 twice to the partial trajectory—in particular, this corresponds to replacing the Q-function baseline Qθ(x, a) by
first-order approximations Qfirst(x, a). For the above, we define Q̂′first(xt, a) , Ia=atQ̂first(xt, a) + (1− Ia=at)Qθ(xt, a)
where I is the indicator function. This ensures that the expectations are well defined in the recursive updates.

As discussed in the main paper, it is not always necessarily optimal to carry out exact first/second-order correction, it might
be potentially beneficial to strike a balance in between for bias-variance trade-off. To this end, we define the ultimate
second-order target as Q̂target-final = Q̂first + η(Q̂second − Q̂first) for η ≥ 0.

See Figure 4 and Figure 7 for the comparison results of these algorithmic variants. Further hyper-parameter details are
specified in Appendix H.7.

H. Additional experimental details and results
H.1. Random MDP

The random MDP is identified by the number of states |X | and actions |A|. The transitions p(x′|x, a) are generated as
samples from a Dirichlet distribution. The reward function r(x, a) is generated as a Dirac, sampled uniformly at random
from [−1, 1]. The discount factor is set to γ , 0.9. The results in Figure 1 are averaged over 10 MDPs.

We randomly fix a target policy π and randomly sample another behavior policy µ in the vicinity of π such that ||π−µ||1 ≤ ε,
for some fixed ε > 0. Effectively, ε controls the off-policiness measured as the difference between π and , µ. When using
the reward estimate R̂ to compute the Q-function estimate, trajectories are generated under the behavior policy µ. The
reward estimate is initialized to be zeros R̂(x, a) , 0 for all x and a. Since the rewards are deterministic, we have have that
when (x, a) is encountered then R̂(x, a)← R(x, a).

H.2. Evaluation of distributed experiments

For this part, the evaluation environments is the entire suite of Atari games (Bellemare et al., 2013) consisting of 57 levels.
Since each level has very different reward scale and difficulty, we report human-normalized scores for each level, calculated
as zi = (ri − oi)/(hi − oi), where hi and oi are the performances of human and a random policy on level i respectively.

For all experiments, we report summarizing statistics of the human-normalized scores across all levels. For example, at any
point in training, the mean human-normalized score is the mean statistic across zi, 1 ≤ i ≤ 57.

H.3. Details on distributed algorithms

Distributed algorithms have led to significant performance gains on challenging domains (Nair et al., 2015; Mnih et al.,
2016; Babaeizadeh et al., 2017; Barth-Maron et al., 2018; Horgan et al., 2018). Here, our focus is on recent state-of-the-art
algorithms. In general, distributed agents consist of one central learner, multiple actors and optionally a replay buffer.
The central learner maintains a parameter copy θ and updates parameters based on sampled data. Multiple actors each
maintaining a slighted delayed parameter copy θold and interact with the environment to generate partial trajectories. Actors
synchronize parameters from the learner periodically.

Algorithms differ by how are data and parameters passed between each component. We focus on two types of state-of-
the-art scalable topologies: Type I adopts IMPALA-typed architecture (Espeholt et al., 2018; see blue arrows in Figure
5 in Appendix H), data are directly passed from actors to the learner. See Section 5.1 and Section 5.2; Type II. adopts

Taylor expansion policy optimization

Figure 5. Architecture of distributed agents. Agents differ by the topology, i.e., how actors/learner/replay pass data/parameters between
them. The above architecture summarizes common setups such as IMPALA (Espeholt et al., 2018) as blue arrows and R2D2 (Kapturowski
et al., 2019) as orange arrows.

R2D2-typed architecture (Kapturowski et al. 2019, see orange arrows in Figure 5 in Appendix H), data are sent from actors
to a replay, and later sampled according to priorities to the learner (Horgan et al., 2018).

H.4. Details on TayPO-2 for policy optimization

Discussion on the first-order objective. By construction, the first-order objective (Eq. 5) samples states with a discounted
visitation distribution. Though such an objective is conducive to theoretical analysis, it is too conservative in practice.
Indeed, the practical objective is usually undiscounted ≈ Ex0,a0 [

∑Te
t=0 rt] where Te is an artificial threshold of the episode

length. Therefore, in practice, the state x is sampled ‘uniformly’ from generated trajectories, i.e., without the discount
factor γt.

Discussion on the TayPO-2 objective. For the second-order objective (Eq. 6), recall that we sample two state-action pairs
(x, a), (x′, a′). In practice, we sample (x, a) uniformly (without discount) as the first-order objective and sample (x′, a′)
with discount factors γ∆t where ∆t is the time difference between x′ and x. This is to ensure that we have a comparable
loss function L̂2(π, µ) compared to the first-order L̂1(π, µ).

Further practical considerations. In practice, loss functions are computed on partial trajectories (xt, at)
T
t=1 with

length T . Though, theoretically, evaluating L̂2(πθ, µ) requires generating time steps from a geometric distribution
Geometric(1 − γ) which can exceed the length T , in practice, we apply the truncation at T . In addition, we evalu-
ate L̂2(πθ, µ) by enumerating over the entire (truncated) trajectory instead of sampling time steps. This comes at several
trade-offs: enumerating the trajectory require O(T 2) computations while sampling can reduce this complexity to O(T);
enumerating over all steps could reduce the variance by pooling all data of the trajectory, but could also increase the variance
due to correlations of state-action pairs on a single trajectory. In practice, we find enumerating all steps along the trajectory
works well.

H.5. Near on-policy policy optimization

Additional results. The additional results on the Atari suite are in Figure 6, where, we show the median human normalized
scores during training. We notice that the second-order still steadily outperforms other baselines.

Discussion on proximal policy optimization (PPO) implementation. By design, PPO (Schulman et al., 2017) alternates
between data collection and policy update. The data are always collected under µ = π and the new policy gets updated via
several gradient steps on the same batch of data. In practice, such a ‘fully-synchronized‘ implementation is not efficient
because it does not leverage a distributed computational architecture. To improve the implementation, we modify the original
algorithm and adapt it to an asynchronous setting. To this end, several changes must be made to the algorithm.

• The data are collected with actor policy µ instead of the previous policy.

• The number of gradient descent per batch is one instead of multiple, to balance the data throughput from the actor.

Taylor expansion policy optimization

Figure 6. Near on-policy optimization. The x-axis is the number of frames (millions) and y-axis shows the median human-normalized
scores averaged across 57 Atari levels. The plot shows the mean curve averaged across 3 random seeds. We observe that second-order
expansions allow for faster learning and better asymptotic performance given the fixed budget on actor steps.

Details on computational architecture. For the near on-policy optimization experiments, we set up an agent with an
algorithmic architecture similar to that of IMPALA (Espeholt et al., 2018). In order to minimize the delays between actors
and the central learner, we schedule all components of the algorithms on a single host machine. The learner uses a single
TPU for fast inference and computation, while the actors use CPUs for fast batched environment rollouts.

We apply a small network similar to Mnih et al. (2016), please see Appendix H.6 for detailed descriptions of the architecture.

Following the conventional practice of training on Atari games (Mnih et al., 2016), we clip the reward between [−1, 1].
The learner applies a discount γ = 0.99 to calculate value function targets. The total loss function is a linear combination
of policy loss Lpolicy, value function loss Lvalue and entropy regularization Lentropy, i.e., L , Lpolicy + cvLvalue + ceLentropy

where cv , 0.5 and ce , 0.01. All missing details are the same as the hyper-parameter setup of the IMPALA architecture to
be introduced below.

The networks are optimized with a RMSProp optimizer (Tieleman and Hinton, 2012) with the learning rate α , 10−3.

H.6. Distributed off-policy policy optimization

V-trace implementations. V-trace is a strong baseline for correcting off-policy data (Espeholt et al., 2018). Given a partial
trajectory (xt, yt, rt)

T
t=1, let ρt , min{ρ, π(at|xt)/µ(at|xt)} be the truncated IS ratio. Let Vϕ(x) be a value function

baseline. Define δtV , ρt(rt + γV (xt+1)− V (xt)) be a temporal difference. V-trace targets are calculated recursively as

v(xt) , V (xt) + δtV + γct(v(xt+1)− V (xt+1)), (23)

where ct , min{c, π(at|xt)/µ(at, xt)} is the trace coefficient. The value function baseline is then trained to approximate
these targets Vϕ(x) ≈ v(x).

The policy gradient is corrected by clipped IS ratio as well. The policy parameter θ is updated using the gradient

min{ρ, π(at|xt)/µ(at|xt)}∇θ log π(at|xt)ât, (24)

where the advantage estimates are ât , rt + γv(xt+1)− v(xt) and the derivative ∇θ is taken with respect to the learner
parameter π(a|x) = πθ(a|x). Following the original setup (Espeholt et al., 2018), we set ρ , c , 1.

Hyper-parameters for Taylor expansions. The Taylor expansion variants (including first-order and second-order ex-
pansions) all adopt the surrogate loss functions introduced in the main text. The second-order expansion requires a
hyper-parameter η which we set to η = 1.

The value function targets are estimated as uncorrected cumulative returns, computed recursively v(xt) = rt + γv(xt+1)
and then the value function baseline is trained to Vϕ(x) ≈ v(x). Though adopting more complex estimation techniques
such as GAE (Schulman et al., 2016) could potentially improve the accuracy of the bootstrapped values.

Taylor expansion policy optimization

Additional results. Additional detailed results on Atari games are in Table 1 and Table 2. In both tables, we show the
performance of different algorithmic variants (first-order, second-order, V-trace) across all Atari games after training for
400M frames. In Table 1, there is no artificial delay between actors and the learner, though there is still delay due to the
computational setup across multiple machines. In Table 2, there is an artificial delay between actors and the learner.

Details on the distributed architecture. The general policy-based distributed agent follows the architecture design of
IMPALA (Espeholt et al., 2018), i.e., a central GPU learner andN , 512 distributed CPU actors. The actors keep generating
data by executing their local copies of the policy µ, and sending data to the queue maintained by the learner. The parameters
are periodically synchronized between the actors and the learner.

The architecture details are the same the ones of Espeholt et al. (2018). For completeness, we give some important details
below; please refer to the original paper for the full description. For the delay experiments (Figure 3), we used two different
model architectures: a shallow model based on work of Mnih et al. (2016) with an LSTM between the torso embedding and
the output of policy/value function. The deep model refers to a deep network model with residual network (He et al., 2016).
See Figure 3 of (Espeholt et al., 2018) for details, in particular the layer size and activation’s functions.

The policy/value function networks are both trained with RMSProp optimizers (Tieleman and Hinton, 2012) with learning
rate α , 5·10−4 and no momentum. To encourage exploration, the policy loss is augmented by an entropy regularization term
with coefficient ce , 0.01 and a baseline loss with coefficient cv , 0.5, i.e., the full loss is L , Lpolicy +cvLvalue +ceLentropy.
These single hyper-parameters are selected according to Appendix D of Espeholt et al. (2018).

Actors send partial trajectories of length T , 20 to the learner. For robustness of the training, rewards rt are clipped between
[−1, 1]. We adopt frame stacking and sticky actions as Mnih et al. (2013). The discount factor is γ , 0.99 for calculating
the baseline estimations.

H.7. Distributed value-based learning

Hyper-parameters for Taylor expansions. The algorithmic details (e.g., the expression for recursive updates) are
specified in Appendix G. Given a partial trajectory, the zero-order variant calculates the targets recursively along the entire
trajectory. For first-order and second-order variants, we find that calculating the targets recursively along the entire trajectory
tends to destabilize the updates. We suspect that this is because the function approximation error accumulates along the
recursive computation, leading to very poor estimates at the beginning of the partial trajectory. Note that this is very different
from update rules such as Retrace (Munos et al., 2016), where the trace coefficient ct , λmin{c, πt/µt} tends to be zero
frequently because πt is a greedy policy, traces are cut automatically and function approximation errors do not accumulate
as much along the trajectory. For Taylor expansion variants with order K ≥ 2, the trace coefficient is effectively ct , 1 and
the trace is not cut at all. To remedy such an issue, we compute corrected n-step updates with n , 3. This ensures that the
errors do not propagate up to n steps and stabilize the learning process.

Importantly, we note that the accumulation of errors along trajectories might also happen for policy-based algorithms.
However, we speculate that policy-based agents are more robust to such errors because it is the relative values which
influence the direction of policy updates. See Appendix H.6 for details on policy-based algorithms.

In the experiments, we found η = 0.2 to work the best. This best hyper-parameter was selected across η ∈
{0, 0.2, 0.5, 0.8, 1.0} where η = 0 corresponds to the first-order. Note that this best hyper-parameter differs from those
of previous experiments with policy-based agents. This means that carrying out the full second-order expansion does not
outperform the first-order; the best outcome is obtained in the middle.

Additional results. We provide additional results on Atari games in Figure 7, where in order to present a more complete
picture of the training properties of different algorithmic variants, we provide mean/median/super-human ratio of the
human-normalized scores. At each point of the training (e.g., fixing a number of training frames), we have access to the full
set of human-normalized scores zi, 1 ≤ i ≤ 57. Then, the three statistics are computed as usual across these scores. The
super-human ratio is computed as the proportion of games such that zi > 1, i.e., such that the learning algorithm reaches
super-human performance.

Overall, we see that the second-order expansion provides benefits in terms of the mean performance. In median performance,
first-order and second-order are very similar, both providing a slight advantage over Retrace. Across these two statistics,
the zero-order achieves the worst results, since the performance plateaus at a low level. However, the super-human ratio

Taylor expansion policy optimization

Levels Random Human V-trace First-order Second-order (TayPO-2)

ALIEN 227.75 7127.8 11358 5004 9634
AMIDAR 5.77 1719.53 1442 1368 1350
ASSAULT 222.39 742 13759 9930 11505
ASTERIX 210 8503.33 135730 152980 170490

ASTEROIDS 719.1 47388.67 29545 35385 44015
ATLANTIS 12850 29028.13 711170 724230 700410

BANK HEIST 14.2 753.13 1188 1166 1218
BATTLE ZONE 2360 37187.5 13370 13828 13755
BEAM RIDER 363.88 16926.53 24031 18798 23735

BERZERK 123.65 2630.42 1292 1383 1347
BOWLING 23.11 160.73 50 50 53
BOXING 0.05 12.06 99 99 99

BREAKOUT 1.72 30.47 551 580 637
CENTIPEDE 2090.87 12017.04 10166 8773 7747

CHOPPER COMMAND 811 7387.8 19256 17129 17776
CRAZY CLIMBER 10780.5 35829.41 139190 132670 134310

DEFENDER 2874.5 18688.89 73020 72658 133090
DEMON ATTACK 152.07 1971 119130 117860 133030
DOUBLE DUNK -18.55 -16.4 -7.6 -7.4 -8.5

ENDURO 0 860.53 0 0 0
FISHING DERBY -91.71 -38.8 33 32 31.4

FREEWAY 0.01 29.6 0 0 0
FROSTBITE 65.2 4334.67 302 298 302

GOPHER 257.6 2412.5 23232 20805 26123
GRAVITAR 173 3351.43 373 386 430

HERO 1026.97 30826.38 32757 33277 36639
ICE HOCKEY -11.15 0.88 0.7 1.6 4.3
JAMESBOND 29 302.8 759 548 693
KANGAROO 52 3035 1147 1339 1181

KRULL 1598.05 2665.53 9545 8408 9971
KUNG FU MASTER 258.5 22736.25 44920 33004 41516

MONTEZUMA REVENGE 0 4753.33 0 0 0
MS PACMAN 307.3 6951.6 4018 4982 9702

NAME THIS GAME 2292.35 8049 18084 12345 13316
PHOENIX 761.4 7242.6 148840 91040 94131
PITFALL -229.44 6463.69 -5.9 -4.2 -4.5

PONG -20.71 14.59 21 21 21
PRIVATE EYE 24.94 69571.27 100 94 99

QBERT 163.88 13455 16044 20862 20891
RIVERRAID 1338.5 17118 24116 22151 21253

ROAD RUNNER 11.5 7845 39513 43974 38177
ROBOTANK 2.16 11.94 7.2 7.1 7
SEAQUEST 68.4 42054.71 1731 1735 1743

SKIING -17098.09 -4336.93 -10865 -13303 -10386
SOLARIS 1236.3 12326.67 2375 2263 2486

SPACE INVADERS 148.03 1668.67 13503 13544 13171
STAR GUNNER 664 10250 265480 190920 214580

SURROUND -9.99 6.53 4.3 3.4 2.4
TENNIS -23.84 -8.27 20.6 22 21.8

TIME PILOT 3568 5229.1 28871 32813 32447
TUTANKHAM 11.43 167.59 243 278 277
UP N DOWN 533.4 11693.23 193520 163130 188190

VENTURE 0 1187.5 0 0 0
VIDEO PINBALL 0 17667.9 359610 326060 315930

WIZARD OF WOR 563.5 4756.52 7302 5114 7646
YARS REVENGE 3092.91 54576.93 81584 90581 93680

ZAXXON 32.5 9173.3 21635 21149 25603

Table 1. Scores across 57 Atari levels for experiments on general policy-optimization with distributed architecture with no artificial
delays between actors and learner. We compare several alternatives for off-policy correction: V-trace, first-order and second-order. We
also provide scores for random policy and human players as reference. All scores are obtained by training for 400M frames. Best results
per game are highlighted in bold font.

Taylor expansion policy optimization

Levels Random Human V-trace First-order Second-order (TayPO-2)

ALIEN 227.75 7127.8 464 1820 3257
AMIDAR 5.77 1719.53 81 428 541
ASSAULT 222.39 742 1764 4868 6490
ASTERIX 210 8503.33 2151 165170 161800

ASTEROIDS 719.1 47388.67 2256 1329 3886
ATLANTIS 12850 29028.13 311111 543210 621920

BANK HEIST 14.2 753.13 71 483 524
BATTLE ZONE 2360 37187.5 9021 10481 13820
BEAM RIDER 363.88 16926.53 7391 16769 19030

BERZERK 123.65 2630.42 631 757 826
BOWLING 23.11 160.73 40 36 50
BOXING 0.05 12.06 51 93 95

BREAKOUT 1.72 30.47 71 298 387
CENTIPEDE 2090.87 12017.04 8847 6545 6924

CHOPPER COMMAND 811 7387.8 2340 4837 8064
CRAZY CLIMBER 10780.5 35829.41 23745 63982 117830

DEFENDER 2874.5 18688.89 20594 18088 34684
DEMON ATTACK 152.07 1971 36491 40324 63758
DOUBLE DUNK -18.55 -16.4 -11.7 -9.9 -7.2

ENDURO 0 860.53 0 0 0
FISHING DERBY -91.71 -38.8 -6.6 15.4 15.7

FREEWAY 0.01 29.6 0 0 0.01
FROSTBITE 65.2 4334.67 230 257 267

GOPHER 257.6 2412.5 1551 2213 5376
GRAVITAR 173 3351.43 263 300 351

HERO 1026.97 30826.38 2012 3452 12027
ICE HOCKEY -11.15 0.88 -1.5 -0.9 1.01
JAMESBOND 29 302.8 307 406 389
KANGAROO 52 3035 416 342 805

KRULL 1598.05 2665.53 5737 5416 9101
KUNG FU MASTER 258.5 22736.25 12991 12968 23741

MONTEZUMA REVENGE 0 4753.33 0 0 0
MS PACMAN 307.3 6951.6 960 2542 2763

NAME THIS GAME 2292.35 8049 13315 15510 15510
PHOENIX 761.4 7242.6 6538 16566 32146
PITFALL -229.44 6463.69 -4.5 -4.5 -3.2

PONG -20.71 14.59 -14 13 18.1
PRIVATE EYE 24.94 69571.27 88 80 185

QBERT 163.88 13455 1155 8856 10578
RIVERRAID 1338.5 17118 4607 2632 5064

ROAD RUNNER 11.5 7845 6404 16792 36857
ROBOTANK 2.16 11.94 6.2 5.5 8.07
SEAQUEST 68.4 42054.71 1884 1881 2283

SKIING -17098.09 -4336.93 -27463 -11778 -22189
SOLARIS 1236.3 12326.67 2435 2269 2320

SPACE INVADERS 148.03 1668.67 1029 2955 4399
STAR GUNNER 664 10250 25622 27001 51257

SURROUND -9.99 6.53 -8.4 -2.5 -0.74
TENNIS -23.84 -8.27 -20 -8.84 4.89

TIME PILOT 3568 5229.1 8963 18295 17884
TUTANKHAM 11.43 167.59 97 161 172
UP N DOWN 533.4 11693.23 18726 18693 49468

VENTURE 0 1187.5 0 0 0
VIDEO PINBALL 0 17667.9 28962 210960 191240

WIZARD OF WOR 563.5 4756.52 4142 5234 5349
YARS REVENGE 3092.91 54576.93 3375 26302 29403

ZAXXON 32.5 9173.3 6251 9040 9359

Table 2. Scores across 57 Atari levels for experiments on general policy-optimization with distributed architecture with severe delays
between actors and learner. We compare several alternatives for off-policy correction: V-trace, first-order and second-order. We also
provide scores for random policy and human players as reference. All scores are obtained by training for 400M frames. The performance
across all algorithms generally degrade significantly compared to Table 1, the second-order degrades more gracefully than other baselines.
Best results per game are highlighted in bold.

Taylor expansion policy optimization

Figure 7. Value-based learning with distributed architecture (R2D2). The x-axis is number of frames (millions) and y-axis shows the
mean/median/super-human ratio of human-normalized scores averaged across 57 Atari levels over the training of 2000M frames. Each
curve averages across 2 random seeds. The second-order correction performs marginally better than first-order correction and retrace, and
significantly better than zero-order. The super-human ratio is computed as the proportion of games with normalized scores zi > 1.

statistics implies that the zero-order variant can achieve super-human performance on almost all games as quickly as other
more complex variants.

Details on the distributed architecture. We follow the architecture designs of R2D2 (Kapturowski et al., 2019). We
recap the important details for completeness. For a complete description, please refer to the original paper.

The agent contains a single GPU learner and 256 CPU actors. The policy/value network applies the same architecture as
(Mnih et al., 2016), with a 3-layer convnet followed by an LSTM with 512 hidden units, whose output is fed into a dueling
head (with hidden layer size of 512, Wang et al. 2016). Importantly, to leverage the recurrent architecture, each time step
consists of the current observation frame, the reward and one-hot action embedding from the previous time step. Note that
here we do no stack frames as practiced in e.g., IMPALA (Espeholt et al., 2018).

The actor sends partial trajectories of length T , 120 to the replay buffer. Here, the first T1 , 40 steps are used for burn-in
while the rest T2 , 80 steps are used for loss computations. The replay buffer can hold 4 · 106 time steps and replays
according to a priority exponent of 0.9 and IS exponent of 0.6 (Horgan et al., 2018). The actor synchronizes parameters
from the learner every 400 environment time steps.

To calculate Bellman updates, we take a very high discount factor γ = 0.997. To stabilize the training, a target network is
applied to compute the target values. The target network is updated every 2500 gradient updates of the main network. We
also apply a hyperbolic transform in calculating the Bellman target (Pohlen et al., 2018).

All networks are optimized by an Adam optimizer (Kingma and Ba, 2014) with learning rate α , 10−4.

H.8. Ablation study

In this part we study the impact of the hyper-parameter η on the performance of algorithms derived from second-order
expansion. In particular, we study the effect of η in the near on-policy optimization as in the context of Section 5.1. In
Figure 8, x-axis shows the training frames (400M in total) and y-axis shows the mean human-normalized scores across Atari
games. We select η ∈ {0.5, 1.0, 1.5} and compare their training curves. We find that when η is selected within this range,
the training performance does not change much, which hints on some robustness with respect to η. Inevitably, when η takes
extreme values the performance degrades. When η = 0 the algorithm reduces to the first-order case and the performance
gets marginally worse as discussed in the main text.

Value-based learning. The effect of η on value-based learning is different from the case of policy-based learning. Since
the second-order expansion partially corrects for the value function estimates, its effect becomes more subtle for value-based
algorithms such as R2D2. See discussions in Appendix G.

Taylor expansion policy optimization

Figure 8. Ablation study on the effect of varying η. The x-axis shows the training frames (a total of 400M frames) and y-axis shows the
mean human-normalized scores averaged across all Atari games. We select η ∈ {0.5, 1.0, 1.5}. In the legend, numbers in the brackets
indicate the value of η.

