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Abstract 
Standard reinforcement learning (RL) aims to find 
an optimal policy that identifies the best action 
for each state. However, in healthcare settings, 
many actions may be near-equivalent with respect 
to the reward (e.g., survival). We consider an 
alternative objective – learning set-valued poli-
cies to capture near-equivalent actions that lead to 
similar cumulative rewards. We propose a model-
free algorithm based on temporal difference learn-
ing and a near-greedy heuristic for action selec-
tion. We analyze the theoretical properties of the 
proposed algorithm, providing optimality guar-
antees and demonstrate our approach on simu-
lated environments and a real clinical task. Em-
pirically, the proposed algorithm exhibits good 
convergence properties and discovers meaning-
ful near-equivalent actions. Our work provides 
theoretical, as well as practical, foundations for 
clinician/human-in-the-loop decision making, in 
which humans (e.g., clinicians, patients) can in-
corporate additional knowledge (e.g., side effects, 
patient preference) when selecting among near-
equivalent actions. 

1. Introduction 
In the standard RL setup, one aims to find an optimal policy, 
which identifies the action for each state that maximizes 
some discounted expected cumulative reward. However, 
in healthcare, the reward can be difficult to define; e.g., 
one might want to optimize for long-term quality of life vs.
short-term stabilization of the symptoms (without treating 
the underlying disease process). Past work has augmented 
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reward signals via reward shaping (Lizotte et al., 2012; 
Raghu et al., 2017a; Nemati et al., 2016). Still, designing a 
single reward function that captures the goals and objectives 
across different individuals remains challenging. As a result, 
when applying RL in healthcare, survival is often used as the 
reward, since it represents a clear goal and is straightforward 
to measure (Raghu et al., 2017b; Komorowski et al., 2018; 
Li et al., 2018). 

While using survival as the reward signal can simplify 
the RL setup, we hypothesize that it induces many near-
equivalent actions that could otherwise differ. For example, 
different doses of a drug might perform similarly in terms of 
keeping the patient alive, yet doses that are too large might 
cause severe side effects. In other cases, patients may opt 
for less invasive treatments, if they are likely to yield similar 
outcomes to more invasive ones. In such cases, learning a 
single best action and ignoring near-equivalent actions may 
be undesirable, as important considerations not captured 
through the reward signal can impact decision making. 

Thus, we consider the task of learning a “set-valued policy” 
(SVP), which returns a set of near-equivalent actions rather 
than a single optimal action. This allows for interaction 
between the clinician (or patient) and the decision support 
system (i.e., clinician/patient-in-the-loop). Such a setup pro-
vides clinicians/patients with an opportunity to incorporate 
additional information (e.g., patient preferences, adverse 
drug reactions, costs/availability of equipment) when choos-
ing among near-equivalent actions. 

We study a particular formalization of SVPs introduced by 
Fard & Pineau (2011) where they consider the problem of 
computing SVPs (planning). In contrast to their exhaus-
tive search based approach, which requires a model of the 
underlying environment, we propose a model-free learn-
ing algorithm. The sequential nature of decisions makes 
learning such policies non-trivial, as near-equivalent actions 
should be not only similar in the short term (immediate 
reward), but also similar for all possible future trajectories 
(expected cumulative rewards). Our contributions are: 

• we propose a new algorithm based on temporal differ-
ence methods and a near-greedy heuristic for learning 
near-optimal set-valued policies, 
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• we investigate its convergence behavior and optimal-
ity using a worst-case analysis, providing theoretical 
guarantees in a directed acyclic graph (DAG) setting, 

• we demonstrate the algorithm’s behavior in both DAG 
and non-DAG synthetic environments, and 

• on a clinical task, we demonstrate how the algo-
rithm can help discover clinically meaningful near-
equivalencies among treatment actions. 

Our work provides both theoretical and practical founda-
tions for learning near-optimal SVPs, and represents an im-
portant step towards clinician/human-in-the-loop decision 
support systems. Beyond applications in healthcare, this 
framework could also be applied to other domains involving 
human-machine-cooperative decision making, including in-
telligent tutoring systems and self-driving cars. The code to 
reproduce our experiments is available online1. 

2. Background 
We consider finite Markov decision processes (MDPs) 
defined by a tuple (S, A, P, R, γ), where S is the set 
of states (finite or infinite), A is a finite set of actions, 
P : S × A× S → [0, 1] defines the transition model with 
p(s0|s, a) specifying the probability of moving from state 
s to s0 given action a, and R : S × A → R defines the 
reward function (can be stochastic in general) with r(s, a) 
denoting the expected instantaneous reward obtained from 
taking action a in state s, and discount factor γ  [0, 1]. ∈

2.1. Set-Valued Policy 

In this work, we focus on set-valued policies (SVP), first 
formalized in Fard & Pineau (2011)2. 

Definition 1. An SVP, π, is a function that maps each state 
to a non-empty subset of actions, π : S → 2A \ {∅}. 

SVPs have been explored as a way to encode alternative 
choices (Fard & Pineau, 2011; Lizotte et al., 2012) and 
to encapsulate an (approximately) exponential number of 
deterministic policies (Lizotte & Laber, 2016). In particu-
lar, Fard & Pineau (2011) proposed a mixed-integer pro-
gramming (MIP) formulation to find SVP solutions for a 
finite-horizon planning problem. However, their approach 
involves an exhaustive search with exponential complexity 
over the state and action spaces. In contrast, we propose a 
scalable model-free learning algorithm that does not require 
knowledge of the MDP. Moreover, our proposed approach 
allows the extent of near-optimality to be set a priori, pro-
viding increased flexibility and optimality guarantees. 

1https://gitlab.eecs.umich.edu/MLD3/RL-Set-Valued-Policy 
2In Fard & Pineau (2011), this was referred to as “non-

deterministic policy”; however, since the policy is indeed a deter-
ministic mapping, we prefer the term “set-valued policy” to avoid 
confusion. 

2.2. Value Functions for SVPs 

In contrast to the standard RL setting, here, a learning agent 
can suggest a set of actions. Thus, our notion of “value” 
must account for all possible policies consistent with the 
proposed set of actions, regardless of which proposed action 
is selected. To this end, we consider a worst-case analysis 
(Fard & Pineau, 2011), where the value of a state s is taken 
as the worst case over all the actions in the set π(s). 
Definition 2. The worst-case value functions of an SVP π 
are defined as 

V π(s) = min {Qπ (s, a)}, 
a∈π(s) 

Qπ(s, a) = r(s, a) + γEs0|s,a [V π(s0 )] . 

2.3. Near-Optimal SVPs 

We quantify the “goodness” of an SVP according to how 
far it is from the optimal value function, V ∗ . This gives 
rise to the definition of near-optimal SVPs. In some of the 
MDP literature, near-optimality has been formalized with 
an additive constraint: ∀s, V π(s) ≥ V ∗(s) − � (Kearns 
& Singh, 2002), which specifies a constant margin of sub-
optimality across all states. This could lead to conservative 
action choices in some states, as � is fixed but the magni-
tude of V π(s) and V ∗(s) could vary across different states. 
We argue that in healthcare settings this is not a suitable 
formalization, since at any point of decision making (in 
any particular state), the SVP should be near-optimal with 
respect to what we could achieve in that state; accepting the 
same value margin in a “healthy” state (larger value) vs. a 
“sick” state (smaller value) may not be desirable, because 
a margin that leads to acceptable outcomes in a “healthy” 
state can have a larger relative impact (perhaps devastating) 
in a “sick” state. We consider the additive near-optimality 
formalization as a baseline, providing the derivations of 
this setting in Appendix A. However, given the limitations, 
we focus on a multiplicative constraint for near-optimality, 
which accounts for differences in values at different states. 
Definition 3. An SVP π is ζ-optimal, with ζ ∈ [0, 1], if 

V π(s) ≥ (1 − ζ)V ∗ (s), ∀s ∈ S. 

Here, ζ is a hyperparameter that defines the sub-optimality 
margin, quantifying the trade-off between action variety and 
optimality. 
Remark. Note that this definition requires V ∗(s) ≥ 0, ∀s ∈ 
S. A sufficient (though not necessary) condition to ensure 
this is to enforce r(s, a) ≥ 0. In experiments with clinical 
data (Section 4), we discuss practical considerations to deal 
with problem domains having negative rewards. 

As a naı̈ve solution, one might construct π as: 

π(s) = {a : Q∗  (s, a) ≥ (1 − ζ)V ∗ (s)}. 

https://gitlab.eecs.umich.edu/MLD3/RL-Set-Valued-Policy
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However, this construction fails to satisfy near-optimality. 
By using Q∗(s, a) = r(s, a) + γEs0|s,aV ∗(s0), the optimal 
Q-function, it assumes all future returns V ∗(s0) are obtained 
following π∗ as opposed to π. During the roll-out of a pol-
icy, this fails to account for the fact that the future must be 
consistent with the policy. Alternatively, one might con-
sider an exponentially large action space, Ã = 2A \ {∅} 
and apply standard value-based methods to learn Q-values 
defined over S × Ã, but analysis shows that this naı̈ve ap-
proach defaults to the greedy optimal policy (Appendix B). 
In the sections that follow, we propose a new approach to 
learn SVPs that does not violate the ζ-optimal constraint in 
Definition 3 and focuses on value functions in the original 
action space A. 

3. Methods 
We present an algorithm that jointly learns SVPs and their 
value functions. First, we provide two heuristics to con-
struct near-optimal SVPs given the value functions. Using 
these heuristics as action selection strategies, we describe a 
variant of temporal difference (TD) learning and provide a 
theoretical analysis of its convergence and optimality. 

3.1. Heuristics for Constructing Near-Optimal SVPs 

To guarantee near-optimality, we start with a conservative 
approach based on a loose lower bound of future returns. 
Then, we improve on this approach and propose a near-
greedy heuristic that leverages the learned policy. 

Conservative. Assuming the future follows a ζ-optimal 
policy, one could construct π as: 

π(s) = {a : Q̌ ∗ 
ζ (s, a) ≥ (1 − ζ)V ∗ (s)}, (1) 

where Q̌∗ 
ζ (s, a) = r(s, a) + γ(1 − ζ)Es0 |s,a[V ∗(s0)] ≤ 

Q∗(s, a) is the action-value function using a loose lower 
bound for near-optimal future returns. 

The conservative heuristic is consistent with the definition 
by Fard & Pineau (2011); however, one key difference is that 
we provide an explicit way to construct a conservative SVP 
given an oracle for the optimal value function V ∗ . Though 
this will not violate the near-optimality bound, it may limit 
action diversity. 

To encourage action diversity while satisfying the near-
optimality criteria, we can formulate a fixed-point equa-
tion for computing a near-optimal SVP. Recall that, in a 
standard RL setup, the optimal policy π∗ is the unique 
fixed-point solution to the following equation: π∗(s) = 
arg maxa Q

π ∗ 
(s, a) ∀s ∈ S which applies a greedy action 

selection over optimal Q-values. For a near-optimal SVP, 
we seek the fixed-point solution to a similar equation with a 
near-greedy action selection. 

Near-Greedy. Consider the fixed-point solution to the 
following equation: 

π(s) = {a : Qπ(s, a) ≥ (1 − ζ)V ∗ (s)}, (2) 

where Qπ(s, a) is the action-value function for policy π as 
computed via Definition 2. 

Depending on the dynamics of the MDP and the true optimal 
value function V ∗, it is possible that no solution exists for 
Eqn. (2) (see Appendix C for an example). Thus, for a gen-
eral MDP, directly applying this heuristic might not generate 
the desired near-optimal SVP. In Section 3.3, we discuss 
the sufficient conditions for the existence and uniqueness of 
SVPs constructed according to Eqn. (2). 

For the same optimality threshold ζ, compared to the con-
servative SVP, the near-greedy SVP is more likely to con-
tain more actions, due to its consideration of the policy-
dependent worst-case future V π(s0), rather than a loose 
lower bound (1 − ζ)V ∗(s0), when deciding whether an ac-
tion should be included. 

Algorithm 1 TD learning for near-greedy ζ-optimal SVP 

1: Input: step size αt ∈ (0, 1], 
optimal value function V ∗ where V ∗(s0) ≥ 0 ∀s ∈ S, 
sub-optimality margin ζ ∈ [0, 1]. 

2: Initialize Q(s, a) = 0 for all s ∈ S, a ∈ A 
3: for each episode do 
4: Initialize s 
5: for each step do 
6: Choose action a using an exploratory policy (e.g., �-greedy) 
7: Take action a, observe r, s0 

8: π(s0) = {a0 : Q(s0, a0) ≥ (1 − ζ)V ∗(s0)} 
9: if π(s0) = ∅ 

10: Q(s, a) ← Q(s, a) + αt[r + γ min Q(s0  , a0 )  Q(s, a)] 
a0∈π(s0) 

−
11: else 
12: Q(s, a) ← Q(s, a) + αt[r + γ max Q(s0  , a0 ) − Q(s, a)] 

a0∈A 

13: s ← s0 

14: end for 
15: end for 

3.2. Learning Near-Optimal SVPs 

As stated, a fixed-point solution to Eqn. (2) might not exist 
for a general MDP. However, the near-greedy construction 
can be used to devise a model-free learning algorithm in 
the TD-learning framework (Algorithm 1). Specifically, to 
compute the TD update target, we temporarily construct a 
candidate SVP π(s0) for the next state s0 using the current 
estimates of the Q-values (line 8). With V ∗(s0) ≥ 0, when 
we have a non-empty set of near-optimal actions π(s0), we 
compute the update target by using the worst near-greedy 
action (line 10). Otherwise, when π(s0) is empty, we use 
the standard greedy target (line 12). Finally, the algorithm 
outputs estimates of Qπ , as well as the SVP π constructed 
according to Eqn. (2). Note that the algorithm requires the 
optimal value function V ∗ as an input. In practice, one can 
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run a separate Q-learning procedure to learn a good estimate 
of Q∗ and thus of V ∗ , or learn estimates of Q∗ and Qπ 

simultaneously. 

3.3. Theoretical Analysis 

Here, we discuss the sufficient conditions for which the 
near-greedy SVP exists and is unique and for which the 
near-greedy TD algorithm converges under the same con-
ditions for Q-learning. For completeness, in Appendix D, 
we show that the conservative heuristic leads to a stochastic 
approximation algorithm that converges to a unique SVP 
solution for any MDP with non-negative rewards. 
Theorem 1. The near-greedy ζ-optimal SVP exists and is 
unique, if the MDP is a directed acyclic graph (DAG) with 
non-negative rewards. 

Proof. We show this by explicit construction of π. Note 
that the states in a DAG form a topological sort tree, where 
s precedes s0 if and only if there is a transition from s to s0 . 

Base case. Consider every terminal state s∞ ∈ S , for ∞
which there is no immediate reward and no future time 
step starting from this state, i.e., V π(s ) = 0. We set ∞
π(s ) = ∞ A trivially. 

Inductive step. Given a state s, consider its successor 
states s0 . Assuming we have every π(s0) and their associ-
ated value functions satisfying V π(s0) ≥ (1 − ζ)V ∗(s0), 
we calculate Qπ(s, a) for all a ∈ A: 
Qπ (s, a) = r(s, a) + γEs0|s,aV π (s0 ) 

≥ r(s, a) + γEs0|s,a(1 − ζ)V ∗ (s0 ) 

= ζr(s, a) + (1 − ζ)[r(s, a) + γEs0 |s,aV ∗ (s0 )] 

= ζr(s, a) + (1 − ζ)Q∗  (s, a) 

≥ (1 − ζ)Q∗  (s, a). 

Using Qπ(s, a), we construct π(s) according to Eqn. (2). 
Importantly, π(s) is non-empty because the optimal 
action a∗  is always included. Given π(s), V π(s) = 
mina∈π(s) Qπ(s, a) ≥ (1 − ζ)V ∗(s) satisfies the near-
optimality constraint by construction. 

Enumerating the states in reverse topological order starting 
from the terminal states, we follow this process until we 
have π(s) for all s ∈ S. Each step of the construction 
process is unique, hence overall the policy is unique. 

Since the proof relies on the topological ordering of states 
in a DAG MDP, it holds when we are only given V ∗ , as we 
can obtain V π from the base case for terminal states and 
from the inductive step for non-terminal states. The above 
theorem provides a sufficient condition for a near-greedy 
SVP to exist: the environment is a DAG with non-negative 
rewards. An MDP with cycles and/or negative rewards may 
still have a near-greedy ζ-optimal SVP, depending on the 
sub-optimality margin ζ and the MDP parameters. 

Similarly, we can show the following convergence result for 
Algorithm 1 (proof provided in Appendix E). 

Theorem 2. The near-greedy TD algorithm converges to 
the unique solution if the MDP is a DAG with non-negative 
rewards, under the same convergence conditions for regular 
TD learning: rewards have bounded variance, each (s, a) P P 
is updated infinitely many times, t αt = ∞, t α

2 
t < ∞. 

Remark. The near-greedy heuristic from Section 3.1 can be 
used as the policy improvement step (replacing the greedy 
action selection) in any value-based generalized policy it-
eration algorithm. For instance, when we are given the 
MDP model, one can derive a version of near-greedy value 
iteration with similar theoretical guarantees on DAG envi-
ronments. In that case, it is most efficient to learn the value 
functions in reverse topological order of the states (as per the 
proof). However, in the more general case (where the under-
lying MDP is unknown, or when we have a continuous state 
space), we require a different approach. In particular, here 
we present an algorithm based on TD learning. Though the 
theoretical analyses only hold for DAG environments, in our 
experiments we will demonstrate the algorithm’s behavior 
in the more general setting of non-DAG environments. 

4. Experiments 
We consider a set of experiments to i) demonstrate the ability 
of the proposed algorithm to learn SVPs for different values 
of ζ and ii) characterize the algorithm’s empirical conver-
gence behavior. Throughout, we compare to alternative 
approaches to learning SVPs (described in Section 4.2). 

(a) Chain-5 

(b) CyclicChain-5 (c) FrozenLake-4x4 

Figure 1. Synthetic environments include (a) a simple DAG, and 
(b)(c) two non-DAG environments. 

4.1. Environments 

We consider both synthetic and real environments. 

Chain-k (Figure 1a). First, as a sanity check, we consider 
a DAG with k sequentially connected states, with s1 the 
starting state and sk the terminal state. There are four ac-
tions at each state si that transition to si+1, and intermedi-
ate rewards r1, r2, r3, r4 ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05} 
that are predetermined, but randomly assigned. Transitions 
reaching the terminal state result in an additional reward of 
1. In this simple setting, we test the ability of the proposed 

algorithm to identify near-equivalent actions. 
+

s1 s2 s3 s4 s5

s1 s2 s3 s4 s5

S

G
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Next, we investigate the empirical performance of the al-
gorithm in two non-DAG settings: CyclicChain-k and 
FrozenLake. These represent more complex environments, 
testing the generalizability of the proposed algorithm. 

CyclicChain-k (Figure 1b): An extension of RandomWalk 
(Sutton & Barto, 2018), similar to Chain-k, except that of 
the four actions from si, two lead to si−1 and two lead to 
si+1. We set γ < 1 to encourage the agent to reach the 
terminal state quickly and avoid cycling. 

FrozenLake (Figure 1c). This is a standard discrete space 
path-finding problem from OpenAI Gym (Brockman et al., 
2016). The agent controls the movement of a character 
in a grid world. Some tiles of the grid lead the agent to 
fall into the water. The agent is rewarded +1 for finding a 
path to a goal tile. We used the standard 4 × 4 and 8 × 8 
maps. Multiple paths exist from the starting tile to the goal 
tile; these paths take the same number of steps and are thus 
equivalent. To introduce near-equivalent actions, we added 
a small reward to all actions from every non-terminal state 
so that the four actions vary slightly in value. For the 4 × 4 
map, we added ri ∈ {0.01, 0.02, 0.03, 0.04}, while for the 
8 × 8 map, we added ri ∈ {0.001, 0.002, 0.003, 0.004}. 
Finally, we explore a challenging clinical task using obser-
vational patient data. In contrast to the environments above, 
in this setting, i) we do not have access to the underlying 
MDP, ii) transitions are stochastic, and iii) the reward signal 
is sparse. 

MIMIC-sepsis. This is a previously studied RL task in the 
healthcare domain, in which the goal is to learn optimal 
treatment strategies for patients with sepsis in the ICU. Sep-
sis is defined as severe infection leading to life-threatening 
organ dysfunction and is one of the leading causes of mor-
tality in hospitals (Gotts & Matthay, 2016; Liu et al., 2014). 
While a lot of work has focused on sepsis prediction (Henry 
et al., 2015; Reyna et al., 2019; Bedoya et al., 2020), the 
management of intravenous (IV) fluids and vasopressors 
in sepsis treatment still represents a key clinical challenge 
(Byrne & Van Haren, 2017). We based our analysis, in part, 
on the setup described in Komorowski et al. (2018), and 
used the same data and preprocessing steps, outlined below. 
Patient data are 48-dimensional time series (Appendix H) 
collected at 4h intervals, consisting of measurements from 
24h preceding until 48h following the time of sepsis onset. 
Similar to in Komorowski et al. (2018), we consider 750 dis-
crete health states obtained from clustering the training set 
using k-means. Additionally, 2 terminal states are added to 
represent death and discharge. Actions pertain to treatment 
decisions in each 4h interval, representing total volume of 
IV fluids and amount of vasopressors administered. Though 
we consider the same number of discrete actions (25), the 
corresponding IV fluid doses differ substantially from those 
considered by Komorowski et al. (2018). Specifically, we 

updated the five levels of IV fluids to use the following 
bins [0, <500mL, 500mL−1L, 1−2L, >2L] to represent 
more clinically relevant fluid boluses. We made this mod-
ification based on feedback from a critical care physician. 
Furthermore, the actions available at each state, A(s), are 
restricted to those observed ≥ 5 times (in training data; the 
most frequent action is used if no action occurs ≥ 5 times). 
Rewards are sparse and only assigned at the end of each 
trajectory: +100 for survival (and discharge), −100 for in-
hospital death; all intermediate rewards are 0. In applying 
Algorithm 1, when V ∗(s) < 0 (due to negative rewards), 
we fall back to the greedy update target in line 12. γ is set 
to 0.99 to place nearly as much importance on late deaths 
as early deaths. Applying the specified inclusion and exclu-
sion criteria (Komorowski et al., 2018) to the MIMIC-III 
database (Johnson et al., 2016), we identified a cohort of 
20,940 patients with sepsis (Table 1). The cohort was split 
into 70% training, 10% validation and 20% test. 

Table 1. Cohort statistics of MIMIC-sepsis patients. 

N % Female Mean Age 
Mean Hours 

in ICU 

Survivors 18,057 44.3% 64 56.6 
Non-survivors 2,883 42.7% 69 60.9 

In an effort to explore the stability of training with function 
approximation, instead of the tabular lookup algorithm, we 
implemented a linear approximator for the Q-function with 
a one-hot state feature encoding (based on the clustering 
results), where we aimed to minimize the mean squared 
TD error (Sutton & Barto, 2018). This setup allows the 
implementation to be readily extended to any linear (or 
possibly non-linear) approximation of the Q-function. 

4.2. Baselines 

We compare our proposed SVP learning algorithm based 
on a near-greedy heuristic to one based on a conservative 
heuristic. In addition, we compare to three other baselines: 

• Q∗-based (Section 2.3). This approach assumes that 
the future follows an optimal policy, which can result 
in π(s) including arbitrarily bad actions, especially in 
complex environments with long horizons. 

• Q-based. In Algorithm 1, replace the policy construc-
tion step (line 8) of update rule with: 

π(s) = {a : Q(s, a) ≥ (1 − ζ)V (s)}, 

where V (s) = maxa∈A Q(s, a) replaces V ∗(s). This 
is similar to the near-greedy algorithm, except that it 
uses V , the worst-case value of the SVP as the baseline 
for near-optimality, instead of V ∗ in the definition of 
ζ-optimal, so the optimality constraint may be violated. 
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• Additive. After learning Q∗, we construct π following 
the additive constraint definition in Appendix A: 

π(s) = {a : Qπ(s, a) ≥ V ∗ (s) − �}, 

where � = ζ(1 − γ)kV ∗k . Using this selection cri-∞
teria, we can guarantee that ∀s : V π (s) ≥ V ∗(s) − 
ζkV ∗k . ∞

In addition to comparing to these model-free alternatives, we 
compare to the MIP approach proposed by Fard & Pineau 
(2011) in Appendix F (their method requires knowledge of 
the MDP model). Another alternative involves first learn-
ing a (parameterized) probabilistic policy πθ(a|s) and then 
converting it to an SVP by thresholding based on the action 
probabilities, π(s) = {a : πθ(a|s) ≥ τ }. Relevant methods 
to learn probabilistic policies include: diversity-inducing 
policy gradient (Masood & Doshi-Velez, 2019) and maxi-
mum entropy approaches (e.g., soft actor-critic (Haarnoja 
et al., 2018)). However, such approaches rely on probabilis-
tic assumptions when computing Q-values and require one 
to choose a probability threshold τ , which does not align 
with our definition of near-optimality. 

4.3. Evaluation 

We perform qualitative evaluations by inspecting the learned 
sets of near-equivalent actions. In particular, we visualize 
the different routes induced by learned SVPs in the Frozen-
Lake environment, as well as near-equivalent treatment 
actions in MIMIC-sepsis. 

To evaluate the quality of learned policies, we use standard 
Q-learning to establish the optimal Q-function Q∗ as the 
baseline for deciding near-optimality. For synthetic environ-
ments, we characterize SVPs in terms of: 

• Average policy size: the expected number of actions 
to which the SVP maps a state, 1 P 

 |π(s)|. A larger |S|
s∈S

average policy size means more actions are considered 
near-equivalent within the sub-optimality margin ζ. 

• Worst-case near-optimality: we consider the largest de-
 

viation from V ∗ among all states, 1 − V π(s)
min 
s∈S V ∗(s) . This

represents to what extent, in the worst-case, optimal-
ity is sacrificed in exchange for more choice. The 
value of each state is found by running a modified ver-
sion of policy evaluation for the returned SVP (see 
Appendix G for pseudo-code and convergence result). 

Evaluating the learned policies on the real data task MIMIC-
sepsis presents significant challenges due to the present 
limitations of off-policy evaluation methods (Imbens & Ru-
bin, 2015; Thomas & Brunskill, 2016; Gottesman et al., 
2018). However, our main focus is on testing whether or 
not we can learn reasonable near-equivalent actions, rather 
than on learning the best policy for sepsis treatment. Still, 

for completeness, we evaluated the quality of the learned 
policies using multiple off-policy evaluation estimators and 
considered a non-deterministic variation of the learned poli-
cies (Gottesman et al., 2018). For both the estimated optimal 
policy and the learned SVPs, we follow Komorowski et al. 
(2018) and evaluate softened policies: 99% probability is 
distributed among actions in the recommended set; the re-
maining 1% is distributed to non-suggested actions. This 
allows us to use nearly all sample trajectories in the test 
set, maintaining a large effective sample size. We applied 
two off-policy evaluation methods, doubly-robust estimator 
(DR) (Jiang & Li, 2016) and weighted doubly robust esti-
mator (WDR) (Thomas & Brunskill, 2016), to evaluate the 
softened policies derived from the learned policies, comput-
ing empirical error bars based on 1,000 bootstraps of the 
test set. 

5. Results 
Across environments, our proposed approach is able to learn 
SVPs and discover near-equivalent actions. Empirically, 
we observe good convergence with near-optimal behavior 
under reasonable settings of γ and ζ even within non-DAG 
environments. The near-greedy algorithm outperforms the 
baselines, while the learned SVPs induce diverse behavior 
and meaningful alternative treatment recommendations. 

ζ Conservative Near-greedy 

0 s1 s2 s3 s4 s5 (100.0%) s1 s2 s3 s4 s5 (100.0%)

0.01 s1 s2 s3 s4 s5 ( 99.0%) s1 s2 s3 s4 s5 ( 99.0%)

0.02 s1 s2 s3 s4 s5 ( 99.0%) s1 s2 s3 s4 s5 ( 98.1%)

0.05 s1 s2 s3 s4 s5 ( 97.1%) s1 s2 s3 s4 s5 ( 95.2%)

0.1 s1 s2 s3 s4 s5 ( 97.1%) s1 s2 s3 s4 s5 ( 90.2%)

0.2 s1 s2 s3 s4 s5 ( 97.1%) s1 s2 s3 s4 s5 ( 90.2%)

1 s1 s2 s3 s4 s5 ( 90.2%) s1 s2 s3 s4 s5 ( 90.2%)

Figure 2. SVPs learned by the near-greedy and conservative al-
gorithms on Chain-5 at different ζs. Parenthesized percentages 
denote the worst-case near-optimality. 

5.1. Applied to Synthetic Data 

In the simple DAG environment, Chain-5 with γ = 0.9, we 
recover near-equivalent actions. When ζ = 0.01 is small, 
π(s1) and π(s4) for both the near-greedy and conservative 
heuristics include two actions (Figure 2). As ζ increases, so 
does the number of actions, resulting in diversity and choice 
among near-equivalent actions. As expected, for the same ζ , 
the conservative approach contains fewer actions compared 
to the near-greedy SVP. Moreover, for a wide range of 
ζ ≥ 0.05, the conservative approach underestimates the 
near-optimality, failing to produce a diversity of choice. 
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S

G
ζ = 0.00 Avg. policy size: 1.00
worst-case near-optimality: 100.0%

S

G
ζ = 0.01 Avg. policy size: 1.25
worst-case near-optimality: 99.1%

S

G
ζ = 0.02 Avg. policy size: 1.36
worst-case near-optimality: 98.0%

S

G
ζ = 0.03 Avg. policy size: 1.42
worst-case near-optimality: 97.8%

Figure 3. On the FrozenLake-8x8 environment, at different levels 
of near-optimality, ζ, the near-greedy algorithm learns different but 
near-equivalent routes to the goal, G. The learned SVPs conform 
to the near-optimality margin in the worst-case for the range of ζ 
values shown. 

On FrozenLake-8x8 with γ = 0.9, our proposed near-
greedy algorithm discovers different routes to the goal tile 
(Figure 3). Due to subtle differences in instantaneous re-
wards (see Section 4.1), these routes are not exactly the 
same, but are near-equivalent. 

How does the algorithm perform empirically on non-
DAGs? Here, we investigate the empirical performance 
of the near-greedy algorithm in non-DAG environments, 
namely, CyclicChain-5 and FrozenLake-4x4. We substi-
tuted the near-greedy heuristic as the policy improvement 
step in the value iteration algorithm and monitor whether 
the SVP (derived from the learned value estimate V ) sta-
blizes towards the end of training. For small γ and small ζ, 
the near-greedy algorithm demonstrates good convergence 
(Figure 4). Under settings with large γ or large ζ (close 
to 1), the algorithm displays instability. For large γ, the 
effective horizon is longer and the worst-case value func-
tion must account for a longer future. When ζ is large, we 
permit more sub-optimal actions, and the local effect of 
adding an action to π(s) could be so large that the action 
is no longer near-optimal, resulting in oscillating behavior 
and non-convergence. Notably, for the region of parameter 
values where the algorithm converges, the learned SVPs are 
non-trivial solutions (they include more than one action for 
certain states), as indicated by lighter colors in Figure 4. 
Empirically, for many operating regimes with reasonable 
settings of γ and ζ (e.g., small ζ for near-optimality), the 
near-greedy algorithm exhibits good convergence behavior. 
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(a) CyclicChain-5 (b) FrozenLake-4x4 

Figure 4. Empirical behavior of the near-greedy value iteration 
algorithm, visualized as a heatmap of policy size at the end of 
training. White ×’s indicate non-convergence (i.e., the SVP de-
rived from the learned V does not stablize towards the end of 
training). In regions of the parameter space where the algorithm 
converges, we are able to discover non-trivial solutions (learned 
policies include more than one action for some states). 
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Figure 5. Comparison of average policy size and worst-case near-
optimality of SVPs for different values of ζ on FrozenLake-8x8. 

How does the proposed algorithm compare to the alter-
natives? Using the FrozenLake-8x8 environment with 
γ = 0.9, we compare the proposed approach to the three 
baselines in terms of average policy size (Figure 5a) and 
worst-case near-optimality (Figure 5b). We focused on small 
values of ζ, given the goal is to learn near-optimal behavior. 
For this particular environment, the conservative algorithm 
completely fails to discover near-equivalent actions. As ζ 
increases, the near-greedy finds solutions of comparable pol-
icy size to the baselines. However, holistically, near-greedy 
performs best because it respects the predefined optimality 
threshold (lies to the upper right of the shaded region) while 
maximizing the policy size. For 0 < ζ < 0.04, both Q∗ -
based and Q-based baselines violate the predefined near-
optimality threshold while only yielding marginally larger 
policy sizes. For ζ ≥ 0.9, the Q∗-based approach finds an 
arbitrarily bad solution with a worst-case near-optimality of 
< 10%. This simple environment illustrates the importance 
of considering a worst-case future during learning and ac-
counting for the inter-dependence of including/excluding 
actions at different states. On this environment, we used 
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kV ∗k∞ to define the margin � for additive, and the solu-
tion includes fewer actions and does not make good use of 
the allowable sub-optimality compared to near-greedy for 
ζ ≤ 0.04 (for other values of ζ it leads to the same behavior 
as near-greedy). 

5.2. Applied to Real Clinical Data 

For the MIMIC-sepsis task, we apply our proposed ap-
proach with a linear function approximator by first running 
Q-learning to estimate Q∗, and then running the near-greedy 
algorithm with various values of ζ. During training, each 
episode is generated by randomly sampling a patient trajec-
tory from the training set (with replacement). Given the com-
plexity of this environment, to improve convergence, we ex-
ponentially decay the step size α every 1, 000 episodes. We 
train the RL agent for 1, 000, 000 episodes, after which TD 
errors stabilize and the estimated Q-values reach plateaus. 
We consider ζ values from 0.0 to 0.1 to obtain SVPs that 
are near-optimal. 

For illustrative purposes, we focus on an intermediate value 
of ζ = 0.05, where 50% of the states are mapped to more 
than one near-optimal action. On the test set, the estimated 
value of the softened policy derived from π is within ap-
proximately 5–8% of the estimated optimal value (Table 2), 
which closely matches with the optimality margin ζ = 0.05, 
given the complexity of this task and the noise in the data. 

To better understand the near-equivalence relationships 
among actions, for each ‘optimal’ action, we count the num-
ber of times every other action is suggested by the learned 
SVP. These counts are aggregated over all states in the test 
set and normalized by the maximum count (red numbers 
next to each cell), visualized as a heatmap in Figure 6. In 
interpreting these results, we worked closely with our co-
author, MWS, a critical care physician who frequently treats 
patients with sepsis. 

By far, the most common actions correspond to IV fluids 
alone (region A), i.e., no vasopressors are used. We observe 
that actions with similar amounts of IV fluids are often 
considered near-equivalent. Since the differences in fluid 
volumes across these actions (adjacent cells) are non-trivial, 
we hypothesize that grouping those actions together makes 
sense for some (but not all) patient states. Similarly, in re-
gion B where actions correspond to a low dose of IV fluids 
with various amounts of vasopressors, actions with similar 
vasopressor doses are often considered near-equivalent. We 
observe that the near-equivalent action sets are not always 
contiguous across IV/vasopressor doses. This is due, in 
part, to the fact that we restricted the action space A(s) for 
each state to only those that were taken frequently. Inter-
estingly, in region C, actions with very high vasopressor 
and IV fluid doses are considered near-equivalent to the null 
action (i.e., do nothing). Typically, only the sickest patients 

Table 2. Value estimates of the learned SVPs on MIMIC-sepsis, 
with standard errors from 1,000 bootstraps of the test set. Effective 
sample size (measured as: usable trajectories / total number of 
trajectories, of the test set): 2,801/4,189. 

observed returns of test set 
clinician 73.1 ± .97 

ζ DR WDR 

0, π∗ 91.6 ± .31 92.2 ± .23 
0.05 84.3 ± .63 89.7 ± .32 
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Figure 6. Near-equivalent relationships among actions in SVPs on 
the MIMIC-sepsis task with ζ = 0.05. Both the outer grid and 
the inner grid contain the 25 actions, corresponding to 5 doses of 
vasopressor and 5 doses of IV fluids. Red numbers indicate the 
frequency that each action is recommended as optimal. 

are prescribed the highest doses. The near-equivalence of 
this action with the null action may be due to the fact that 
these patients are so critically ill that doing ‘everything’ or 
‘nothing’ leads to a similar outcome. 

In Figure 6, we computed the ‘average’ near-equivalencies 
across all states. However, different sets of actions could 
be considered near-equivalent for different states. To bet-
ter understand how action near-equivalencies might differ 
for different group of patients, we grouped the states into 
quartiles based on the V ∗ values and calculated the average 
policy size (Figure 7). Compared to ‘sicker’ states (with a 
lower value), the ‘healthier’ states (with a higher value) had 
on average more near-equivalencies. We hypothesize that 
when a patient is stable, the choice of action has less impact 
on the final outcome compared to less stable states. 
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Figure 7. Average size of π(s) at ζ = 0.05 for states with different 
V ∗ (s) values (grouped into quartiles) on MIMIC-sepsis. 

6. Conclusion 
In the context of learning SVPs for MDPs, we propose a 
model-free algorithm that is a variant of TD learning. On 
both synthetic and real RL tasks, our algorithm discovers 
meaningful action near-equivalencies, while maintaining 
overall near-optimality across states. Though the theoreti-
cal guarantees only hold for DAG settings, the near-greedy 
action selection heuristic can be easily extended to more 
complex settings involving non-DAGs and function approx-
imation. In practice, to improve convergence and near-
optimality guarantees, one could encode temporal informa-
tion into the states for a discrete state space, converting a sin-
gle ground state with different histories (e.g., visit number) 
into different states, effectively making the MDP a DAG. 
Despite current limitations, our proposed framework repre-
sents an important step toward clinician/human-in-the-loop 
decision making. Such a framework, in which both opti-
mality guarantees and action choices are provided, allows 
clinicians (and patients) to incorporate additional informa-
tion when making treatment decisions. Though motivated in 
a healthcare setting, our approach could apply more broadly 
to other application domains involving humans-in-the-loop, 
such as intelligent tutoring systems or self-driving cars. 
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