
Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

A. Near-Optimal SVP With Additive Near-Optimality
We can quantify the near-optimality of any given SVP π by using a version of the performance difference lemma (Kakade &
Langford, 2002).

Theorem 3. For any SVP π, if for every state s ∈ S:

max
a∈π(s)

(
Q∗(s, a∗)−Q∗(s, a)

)
≤ ε ,

then

V ∗(s)− V π(s) ≤ ε

1− γ .

Proof. Note that V ∗(s) ≤ V π(s) for any SVP π (equality holds when the SVP π corresponds to an optimal policy).
Denoting a∗ = π∗(s), and ā = arg mina∈π(s)Q

π(s, a). We can evaluate the difference between V ∗ and V π for a particular
state s:

V ∗(s)− V π(s) =
[
r(s, a∗) + γEs′|s,a∗V ∗(s′)

]
−
[
r(s, ā) + γEs′|s,āV π(s′)

]
=
[
r(s, a∗) + γEs′|s,a∗V ∗(s′)

]
−
[
r(s, ā) + γEs′|s,āV ∗(s′)

]
+
[
r(s, ā) + γEs′|s,āV ∗(s′)

]
−
[
r(s, ā) + γEs′|s,āV π(s′)

]
(adding and subtracting the expressions in blue)

= [Q∗(s, a∗)−Q∗(s, ā)] + γ
[
Es′|s,ā (V ∗(s′)− V π(s′))

]
.

Suppose we are guaranteed that for every state s, we have the following bound on the action-value gap of actions in π(s):

max
a∈π(s)

(
Q∗(s, a∗)−Q∗(s, a)

)
≤ ε ,

or equivalently,

∀a ∈ π(s) : Q∗(s, a∗)−Q∗(s, a) ≤ ε ,

we can further simplify:

V ∗(s)− V π(s) ≤ ε+ γ
[
Es′|s,ā (V ∗(s′)− V π(s′))

]
.

Unrolling the recursive expression:

V ∗(s)− V π(s) ≤ ε+ γε+ γ2
[
Es′′|s,ā,s′,ā′ (V ∗(s′′)− V π(s′′))

]
≤ ε+ γε+ γ2ε+ · · ·
=

ε

1− γ .

If we want the worst-case values of π to be within a margin defined as some fraction ζ of the maximum magnitude optimal
value, e.g.,

max
s

(V ∗(s)− V π(s)) ≤ ζ‖V ∗‖∞ ,

then we can set
ε

1− γ = ζ‖V ∗‖∞ ,

which implies that the action-value gap should be upper bounded by ε = (1− γ)ζ‖V ∗‖∞. In practice, once we learn Q∗

and V ∗, we can construct the SVP as

π(s) = {a : Q∗(s, a) ≥ V ∗(s)− ε}.

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

B. Learning SVPs via an Exponential Action Space – And Why It Does Not Work
Alternatively, one might reformulate the task of learning SVPs by considering an exponentially large action space, Ã =
2A \ {∅}. By applying standard approaches to an MDP with this new action space, one can learn a policy π that maps each
state to an element of Ã, such that π(s) = ã. Under this formulation, Q-values are defined over S × Ã, which we denote
Qπ(s, ã). Consider the worst-case Q-values defined analogously to Definition 2:

Qπ(s, ã) = min
a∈ã

Qπ(s, a).

Then, for any ã ∈ Ã, we have
Qπ(s, ã) = min

a∈ã
Qπ(s, a) ≤ max

a∈ã
Qπ(s, a),

and since Qπ(s, a) = Qπ(s, {a}), there exists an ã∗ such that

Qπ(s, ã) ≤ Qπ(s, ã∗) where ã∗ =

{
arg max
a∈ã

Qπ(s, a)

}
.

Intuitively, selecting the best action in ã is always no worse than selecting the worst action in ã. This suggests that for any
non-singleton set action ã, we can always find a singleton set action ã∗ that is better. Thus, this formulation results in trivial
SVPs and does not discover near-equivalent actions. To yield meaningful solutions, one would require additional constraints.

C. Example: Non-Existence of Near-Greedy SVP Fixed-Point
Recall the near-greedy fixed-point equation:

π(s) = {a : Qπ(s, a) ≥ (1− ζ)V ∗(s)} where Qπ(s, a) = r(s, a) + γEs′|s,a
[

min
a′∈π(s′)

{Qπ(s′, a′)}
]

Consider the MDP in Figure 8 with two non-terminal states {s1, s2} and two actions {L,R}. Let γ = 0.9, ζ = 0.2. Here,
V ∗ = [0.9, 1]. There are two candidate SVPs, both of which fail to satisfy the near-greedy fixed-point equation.

• Suppose π(s1) = {R}, π(s2) = {R}. Then Qπ(s2, L) = 0.81 > (1 − ζ)V ∗(s2), meaning that L is a near-optimal
action at s2 but not included in π(s2).

• Suppose π(s1) = {R}, π(s2) = {L,R}. Then the worst-case Qπ(s2, L) = 0 because the agent falls into a cycle in
the worst case, and thus L is not a near-optimal action but is included in π(s2).

S1 S2 Send
R, +1

R, +0

L, +0

Figure 8. A three-state MDP with no near-greedy fixed-point solution when γ = 0.9 and ζ = 0.2.

D. More on the Conservative Heuristic
Theorem 4. The conservative ζ-optimal SVP exists and is unique for any MDP with non-negative rewards.

Proof. In the conservative heuristic, there is no recursive relationship between policy π and its value function V π or Qπ.
The policy construction depends on the lower-bound action-value function Q̌∗, which computes an expectation over V ∗ and
immediate rewards r, and is thus unique, and so is π.

To show that π is a valid SVP, we will show that the optimal action at every state is always included in π(s) such that
∀s ∈ S, π(s) 6= ∅. Consider the optimal action at state s, a∗ = arg maxa∈AQ

∗(s, a) where V ∗(s) = Q∗(s, a∗), we have:

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

Q̌∗ζ(s, a
∗) = r(s, a∗) + γEs′|s,a∗(1− ζ)V ∗(s′)

= ζr(s, a∗) + (1− ζ)[r(s, a∗) + γEs′|s,a∗V ∗(s′)]
= ζr(s, a∗) + (1− ζ)Q∗(s, a∗)

≥ (1− ζ)Q∗(s, a∗)

= (1− ζ)V ∗(s).

Since the conservative heuristic calculates an expectation over V ∗ and r(s, a) and does not involve any recursive relationship,
after learning Q∗ (and thus V ∗), we can apply a standard stochastic approximation algorithm with provable convergence
guarantees (Robbins & Monro, 1951). While the conservative heuristic has good theoretical properties, in Section 5.1 we
observe that it does not discover as many near-optimal actions compared to near-greedy (due to it being conservative).

E. Convergence Analysis for the Near-Greedy TD Algorithm (Algorithm 1)
E.1. Contraction

For the case of a general MDP (possibly non-DAG), we refer to the convergence proofs of TD methods such as Q-learning
and expected SARSA, which have been extensively studied in the tabular setting for problems with discrete state and action
spaces (Watkins & Dayan, 1992; Melo, 2001; Van Seijen et al., 2009). For Q-learning, given bounded rewards, Q converges
to the optimal value function Q∗, i.e., Q(s, a) ' Q∗(s, a) for all s ∈ S , a ∈ A with probability 1, under regular conditions
for stochastic approximation: each (s, a) is updated infinitely many times,

∑
t αt =∞, and

∑
t α

2
t <∞. One of the key

steps in the proof involves showing that the update operator H is a contraction with respect to sup-norm (Melo, 2001):

Update operator:
(HQ)(s, a) = r(s, a) + γEs′|s,a max

a′∈A
Q(s′, a′)

based on the Bellman optimality equation, and
‖HQ1 − HQ2‖∞ ≤ γ‖Q1 −Q2‖∞.

Since the proposed algorithms have the same structure as TD learning, ideally we would have the same convergence
guarantees. Consider the following update operator for the near-optimal TD algorithm:

(HQ)(s, a) = r(s, a) + γEs′|s,a min
a′∈π(s′)

Q(s′, a′)

where π(s′) = {a′ : Qπ(s′, a′) ≥ (1− ζ)V ∗(s′)}.

In an attempt to show that the update operator is a contraction, we can manipulate ‖HQ1 − HQ2‖∞ in a similar way:

‖HQ1 − HQ2‖∞ = max
s,a

∣∣∣∣(r(s, a) + γEs′|s,a min
a′1∈π1(s′)

Q1(s′, a′1)

)
−
(
r(s, a) + γEs′|s,a min

a′2∈π2(s′)
Q2(s′, a′2)

)∣∣∣∣
= max

s,a

∣∣∣∣γEs′|s,a [min
a′1∈π1(s′)

Q1(s′, a′1)− min
a′2∈π2(s′)

Q2(s′, a′2)

]∣∣∣∣
≤ max

s,a
γEs′|s,a

∣∣∣∣ min
a′1∈π1(s′)

Q1(s′, a′1)− min
a′2∈π2(s′)

Q2(s′, a′2)

∣∣∣∣
≤ γmax

s′

∣∣∣∣ min
a′1∈π1(s′)

Q1(s′, a′1)− min
a′2∈π2(s′)

Q2(s′, a′2)

∣∣∣∣
≤ γmax

s′
|V ∗(s′)− (1− ζ)V ∗(s′)|

= γζ max
s′

V ∗(s′) = γζ‖V ∗‖∞.

With this loose upper bound, the update operator is not necessarily a contraction, suggesting that the algorithm might not
converge for a general MDP.

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

E.2. Convergence Proof for DAG MDPs

We first state a key result from martingale theory that we will use:
Theorem 5 (Martingale Convergence Theorem (Williams, 1991)). Consider {Mn}n∈N as martingale in Rd with∑

n≥0

E
[
‖Mn+1 −Mn‖2|Fn

]
<∞

then there exists a random variable M∞ ∈ R such that ‖M∞‖ <∞ almost surely and Mn →n→∞ M∞ almost surely.

Using this standard result, we can show the following convergence result:
Theorem 2 (restated). The near-greedy TD algorithm (Algorithm 1) converges to the unique solution if the MDP is a DAG
with non-negative rewards, under the same conditions for regular TD learning: rewards have bounded variance, each (s, a)
is updated infinitely many times,

∑
t αt =∞, and

∑
t α

2
t <∞ for each (s, a) (Watkins & Dayan, 1992; Melo, 2001).

Proof. Given the DAG MDP, we use H to denote the maximum number of steps (depth of the topological sort tree) and
(sh, ah) to denote a state-action pair for a particular state sh at step h. We use Qt(sh, ah) to denote the Q-value estimate
after episode t in Algorithm 1. In addition, we overload the notation Q(h) to refer to the vector containing Q-values of all
state-action pairs S(h)×A(h) at step h.

From Theorem 1 we know that for a DAG MDP, the equation π(s) = {a : Qπ(s, a) ≥ (1− ζ)V ∗(s)} has a unique fixed
point solution, which we denote πζ and its worst-case value function as Qζ . Furthermore, we define the following:

a(sh) = arg min
a∈πζ(sh)

Qζ(sh, a)

a(sh) = arg max
a/∈πζ(sh)

Qζ(sh, a)

Note that Qζ(s, a(s)) ≥ (1− ζ)V ∗(s) ≥ Qζ(s, a(s)). Intuitively, a gives us the worst-case action whose value will be used
in the update / backup, whereas a is the best action outside the near-optimal action set for the given ζ.

We will prove the convergence of the near-greedy TD algorithm for DAG MDPs via backward induction over the episode
steps H,H − 1, . . . , 1.

Base step. For every terminal state sH , the estimates are correct by initialization as Qζ(s, a) = 0 and πζ(s) = A trivially.
Therefore, for all (sH , aH) and ε ≥ 0, there exists tε ≥ 0, such that, for all t ≥ tε, ‖Qt(H) − Qζ(H)‖∞ ≤ ε where
Q(H) is the vector containing Q-values of state-action pairs at step H .

Inductive step. Assume that Qt for all state-action pairs in levels {h+ 1, . . . ,H} converge to the true Qζ almost surely.
In other words, other than sequences of measure 0, under all possible updates, we have Qt(sj , aj) → Qζ(sj , aj) for
all j ≥ h + 1. This guarantees that for all (sh+1, ah+1), for every ε > 0, there exists tε > 0 such that, for all t ≥ tε,
‖Qt(h+ 1)−Qζ(h+ 1)‖∞ ≤ ε. For notational convenience in the inductive step, we use (s, a) to denote state-action
pairs at step h and (s′, a′) to denote state-action pairs at step h+ 1.

Let ∆1(s′) = Qζ(s′, a(s′))−Qζ(s′, a(s′)) and ∆2(s′) = maxa∈πζ(s′)Q
ζ(s′, a)−Qζ(s′, a(s′)). Note that, if we pick

ε < 1
2 mins′(∆1(s′),∆2(s′)), then convergence implies that, for each state s′, after some episode t0, a constant action

a(s′) is used in the near-greedy update of Q-values at step h.

Consider the sequence of Q-values {Qt(h)}t∈N. Let Fth denote the history of the algorithm till step h of episode t. In our
proof, we consider the updates made to Q(h) after t0 with Qt0(h) as its initialization for our analysis. This reduces the
proof structure to a simple stochastic approximation based argument where the constant near-greedy action is used while
bootstrapping for any state s′. At any such episode t > t0, the algorithm makes an update of the following form to Qt(h):

Qt+1(s, a) =

{
Qt(s, a) if (s, a)th 6= (s, a)
(1− αth)Qt(s, a) + αth[rth + γQt(s

′
t, a(s′t))] if (s, a)th = (s, a)

We can rewrite the bootstrapping update as:

Qt+1(s, a) = (1− αth)Qt(s, a) + αthEr,s′ [r + γQt(s
′, a(s′))]︸ ︷︷ ︸

Bellman update

+αthwth︸ ︷︷ ︸
noise term

(3)

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

where wth = [rth + γQt(s
′
t, a(s′t))]− Er,s′ [r + γQt(s

′, a(s′))]. We now analyze these two components of the update
separately.

Bellman update. First note that Er,s′ [(r+γQt(s
′, a(s′)))2] <∞ by using the assumption E[r2] <∞ and the inductive

assumption on Qt. In the near-greedy TD algorithm, for each (s, a), the updates are made using step size αt such that∑
t αt =∞, and

∑
t α

2
t <∞. Using Q̄(s, a) to denote the noise-free update term in Eqn. (3), for the Bellman update

sequence, we have:

Q̄t+1(s, a)−Qζ(s, a) = (1− αth)(Qt(s, a)−Qζ(s, a)) + αthγEs′ [Qt(s′, a(s′))−Qζ(s′, a(s′))]

≤ (1− αth)(Qt(s, a)−Qζ(s, a)) + αthγε

where the last step follows from the inductive assumption. Using the standard results from stochastic approximation
(Robbins & Monro, 1951), we can conclude that the deterministic error Πt>t0(1 − αth)2(Qt0(s, a) − Qζ(s, a))2

converges to 0 implying lim supt→∞(Q̄t(s, a)−Qζ(s, a))2 ≤ Cε for some constant C. As the chosen ε is arbitrary,
by the sandwich theorem for limits, the error incurred via the Bellman update sequence converges to 0 almost surely.

Noise term. We will now argue that the noise sequence
∑
t>t0

αthwth also converges to 0. Note that, Zt =∑
t>t0

αthwth ∈ RS(h)×A(h) is a martingale sequence as E[wth(s, a)|Fth] = 0. Further, again by the bounded
variance assumption over rewards and the inductive assumption over Q(h+ 1), we have∑

t>t0

E
[
‖Zt+1 − Zt‖2|Fth

]
=
∑
t>t0

α2
thE

[
‖wth‖2|Fth

]
≤ c ·

∑
t>t0

α2
th ≤ ∞

Now using Theorem 5 and the definition Zt0 = 0, we can conclude that the martingale converges to 0 almost surely.

We know that for two sequences of random variables Xn and Yn, if Xn → X and Yn → Y almost surely, then
Xn + Yn → X + Y almost surely. Combining the two parts, we get ‖Q(h) − Qζ(h)‖∞ → 0 almost surely. This
completes the inductive step.

By induction, this proves the desired convergence result.

F. Comparisons to the Mixed-Integer Programming (MIP) Baseline
Fard & Pineau (2011) proposed a mixed-integer programming formulation for solving the maximal-size SVP in a finite-
horizon tabular planning problem. The optimization problem jointly solves for the worst-case values V and a binary
representation of SVP π, where Π(s, a) = Ja ∈ π(s)K is 1 if a is an element of π(s), and 0 otherwise. There are a total
of |S|(|A|+ 1) decision variables and |S|(|A|+ 2) constraints. The formulation is reproduced below; see Fard & Pineau
(2011) for more details.

max
V,Π

[
µᵀV+(Vmax − Vmin)eᵀsπea

]
subject to

V (s) ≥ (1− ζ)V ∗(s) ∀s ∈ S∑
a∈AΠ(s, a) > 0 ∀s ∈ S

V (s) ≤ r(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′) + Vmax(1−Π(s, a)) ∀s ∈ S,∀a ∈ A

Since the MIP approach requires knowledge of the MDP model, we implemented a dynamic programming based approach
with the near-greedy heuristic, namely near-greedy value iteration (VI). We applied these two algorithms on simple
environments where the MIP solution is tractable. On Chain-5 with γ = 0.9, where the underlying MDP is a DAG
(Figure 9), near-greedy VI converged for all values of ζ. The SVPs learned by both approaches satisfy near-optimality with
respect to the given ζ, as shown by the worst-case near-optimality percentages. For ζ ≥ 0.1, the SVP included all actions
at every state. Even though near-greedy VI is not explicitly maximizing the policy size (unlike the MIP approach, which
includes policy size as part of its objective function), for many of the cases it still finds an SVP solution with maximal size, or
close to the maximal-size solution as found by MIP (when ζ = 0.03 and 0.04 on this problem). On a non-DAG environment,
CyclicChain-5 with γ = 0.9 (Figure 10), near-greedy VI did not converge for 0.2 ≤ ζ < 1 (when a near-optimal SVP
should only include the two ‘right’ actions but no ‘left’ actions). This is consistent with what we observed in Figure 4a.
On this problem, when near-greedy VI does converge (ζ ≤ 0.1, which is a suitable range of values if one aims to learn
close-to-optimal behavior), it consistently finds the same maximal-size SVP as MIP. Compared to a model-based approach
based on exhaustive search, our proposed near-greedy heuristic identifies SVP solutions that achieve good worst-case
near-optimality and similar average policy sizes, despite the fact that we do not explicitly optimize for the size of the SVP.

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

Near-greedy VI MIP

ζ policy profile
average

policy size
policy profile

0 s1 s2 s3 s4 s5 (100.0%) 1 1 (100.0%) s1 s2 s3 s4 s5

0.01 s1 s2 s3 s4 s5 (99.0%) 1.5 1.5 (99.0%) s1 s2 s3 s4 s5

0.02 s1 s2 s3 s4 s5 (98.1%) 1.75 1.75 (98.0%) s1 s2 s3 s4 s5

0.03 s1 s2 s3 s4 s5 (97.1%) 2 2.25 (97.0%) s1 s2 s3 s4 s5

0.04 s1 s2 s3 s4 s5 (96.2%) 2.25 2.5 (96.1%) s1 s2 s3 s4 s5

0.05 s1 s2 s3 s4 s5 (95.2%) 2.75 2.75 (95.2%) s1 s2 s3 s4 s5

0.1 s1 s2 s3 s4 s5 (90.2%) 4 4 (90.2%) s1 s2 s3 s4 s5

0.2 s1 s2 s3 s4 s5 (90.2%) 4 4 (90.2%) s1 s2 s3 s4 s5

1 s1 s2 s3 s4 s5 (90.2%) 4 4 (90.2%) s1 s2 s3 s4 s5

Figure 9. SVPs learned by the near-greedy and MIP algorithms on Chain-5 at different ζs. Parenthesized percentages denote the
worst-case near-optimality.

Near-greedy VI MIP

ζ policy profile
average

policy size
policy profile

0 s1 s2 s3 s4 s5 (100.0%) 1 1 (100.0%) s1 s2 s3 s4 s5

0.01 s1 s2 s3 s4 s5 (100.0%) 1.5 1.5 (100.0%) s1 s2 s3 s4 s5

0.02 s1 s2 s3 s4 s5 (98.1%) 1.75 1.75 (98.9%) s1 s2 s3 s4 s5

0.03 s1 s2 s3 s4 s5 (97.9%) 1.75 1.75 (98.9%) s1 s2 s3 s4 s5

0.04 s1 s2 s3 s4 s5 (96.8%) 2 2 (96.8%) s1 s2 s3 s4 s5

0.05 s1 s2 s3 s4 s5 (96.8%) 2 2 (96.8%) s1 s2 s3 s4 s5

0.1 s1 s2 s3 s4 s5 (96.8%) 2 2 (96.8%) s1 s2 s3 s4 s5

0.2 (did not converge) - 2 (96.8%) s1 s2 s3 s4 s5

1 s1 s2 s3 s4 s5 (16.1%) 4 4 (16.1%) s1 s2 s3 s4 s5

Figure 10. SVPs learned by the near-greedy and MIP algorithms on CyclicChain-5 at different ζs. Parenthesized percentages denote the
worst-case near-optimality.

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

G. Policy Evaluation for SVPs
For completeness, we describe the policy evaluation algorithm for an SVP and show that the update is a contraction, thereby,
guaranteeing convergence.

Given an SVP π, the value functions are defined as:

V π(s) = min
a∈π(s)

Qπ(s, a)

Qπ(s, a) = Er,s′ [r + γV π(s′)]

The value function for any given policy π can be evaluated easily via a simple modification of iterative policy evaluation
algorithm for deterministic/stochastic policies (Sutton & Barto, 2018):

Algorithm 2 Iterative policy evaluation for set-valued policies

1: Input: SVP π
2: Initialize Q(s, a) = 0 for all s ∈ S, a ∈ A
3: repeat
4: ∆← 0
5: for each s, a ∈ S ×A do
6: Q′(s, a) = Er,s′

[
r + γmina′∈π(s′)Q(s′, a′)

]
7: ∆← max(∆, |Q′(s, a)−Q(s, a)|)
8: end for
9: Q← Q′

10: until ∆ < θ
11: return Q

We now show that the update in Algorithm 2 is a contraction:

Lemma 1. For any pair of action-value functions Q1 and Q2, and a given policy π, we have:

‖T Q1 − T Q2‖∞ ≤ γ‖Q1 −Q2‖∞
Proof. For any s, a ∈ S ×A, we have:

|(T Q1)(s, a)− (T Q2)(s, a)| = |Er,s′ [r + γV π1 (s′)]− Er,s′ [r + γV π2 (s′)]|

= γ

∣∣∣∣Es′ [min
a1∈π(s′)

Q1(s′, a1)− min
a2∈π(s′)

Q2(s′, a2)

]∣∣∣∣
≤ γmax

s∈S

∣∣∣∣[min
a1∈π(s)

Q1(s, a1)− min
a2∈π(s)

Q2(s, a2)

]∣∣∣∣
≤ γ‖Q1 −Q2‖∞.

The contraction lemma further implies that Algorithm 2 converges to the unique fixed point of the value function of the
policy π. As the update is a straightforward modification of the usual Bellman operator, we can implement/analyze a fitted
policy evaluation algorithm for SVPs as well.

Clinician-in-the-Loop Decision Making: RL with Near-Optimal Set-Valued Policies — Supplementary Materials

H. Clinical Task Details
Following Komorowski et al. (2018), we extracted 48 physiological features (Table 3) to represent each patient.

Table 3. The 48 physiological features
Demographics/Static
Source tables: PATIENTS, ADMISSIONS,
ICUSTAYS, CHARTEVENTS, elixhauser quan
• Shock Index
• Elixhauser
• SIRS
• Gender
• Re-admission
• GCS - Glasgow Coma Scale
• SOFA - Sequential Organ Failure Assessment
• Age

Lab Values
Source tables: CHARTEVENTS, LABEVENTS
• Albumin
• Arterial pH
• Calcium
• Glucose
• Hemoglobin
• Magnesium
• PTT - Partial Thromboplastin Time
• Potassium
• SGPT - Serum Glutamic-Pyruvic Transaminase
• Arterial Blood Gas
• BUN - Blood Urea Nitrogen
• Chloride
• Bicarbonate
• INR - International Normalized Ratio
• Sodium
• Arterial Lactate
• CO2
• Creatinine
• Ionised Calcium
• PT - Prothrombin Time
• Platelets Count
• SGOT - Serum Glutamic-Oxaloacetic Transaminase
• Total bilirubin
• White Blood Cell Count

Vital Signs
Source tables: CHARTEVENTS
• Diastolic Blood Pressure
• Systolic Blood Pressure
• Mean Blood Pressure
• PaCO2
• PaO2
• FiO2
• PaO/FiO2 ratio
• Respiratory Rate
• Temperature (Celsius)
• Weight (kg)
• Heart Rate
• SpO2

Intake and Output Events
Source tables: INPUTEVENTS CV, INPUTEVENTS MV,
OUTPUTEVENTS
• Fluid Output - 4 hourly period
• Total Fluid Output
• Mechanical Ventilation

• Timestep

	A. Near-Optimal SVP With Additive Near-Optimality
	B. Learning SVPs via an Exponential Action Space – And Why It Does Not Work
	C. Example: Non-Existence of Near-Greedy SVP Fixed-Point
	D. More on the Conservative Heuristic
	E. Convergence Analysis for the Near-Greedy TD Algorithm
	E.1 Contraction
	E.2 Convergence Proof for DAG MDPs

	F. Comparisons to the Mixed-Integer Programming (MIP) Baseline
	G. Policy Evaluation for SVPs
	H. Clinical Task Details

