
Buckley-Osthus & block preferential attachment models

A. Proof of Lemma 2.5
To simplify the notation, we omit the ‘BO’ in the superscript.
We begin with a few algebraic identities for pk. It is easy to
see from (2.18)-(2.19) that

pk =
k + a0 − 2

k + 2a0
pk−1 for k ≥ 2. (A.1)

Therefore,
∑k
j=2(j + 2a0)pj =

∑k
j=2(j + a0 − 2)pj−1

which implies that

p>k−1 =
k + 2a0
a0 + 1

pk for k ≥ 2. (A.2)

Further by summing both sides of (A.2), we get∑
k≥1 kpk = 2. Observe that

`′∞(a) =
∑
k≥0

p>k+1

a+ k
− 1

a+ 1

=
∑
k≥0

(k + 2 + 2a0)pk+2

(a0 + 1)(a+ k)

− 1

a+ 1

∑
k≥0

k + 2 + 2a0
k + a0

pk+2

=
a− a0

(a0 + 1)(a+ 1)

∑
k≥0

(k + 2 + 2a0)(k − 1)

(k + a0)(k + a)
pk+2

=
a− a0

(a0 + 1)(a+ 1)

∑
k≥0

k − 1

k + a
pk+1.

where the second equality is due to (A.2) and the last one
stems from (A.1). In addition,

∑
k≥0

k − 1

k + a
pk+1 ≤

1

1 + a

∑
k≥0

(k − 1)pk+1 = 0,

where the last equality is due to the fact that
∑
k≥1 kpk = 2.

Therefore, `′∞(·) has a unique zero at a0, and `′∞(a) < 0 if
a > a0 and `′∞(a) > 0 if a < a0. These imply that `∞(·)
has a unique maximum at a0.

Now we prove (2.21). We have

`′n(a)− `′∞(a) =
∑
k≥0

Zn>k+1/n− p>k+1

a+ k

+

(
1

n

n∑
k=1

1

a+ 1− k−1
− 1

a+ 1

)
. (A.3)

Standard analysis shows that the second term on the r.h.s.
of (A.3) goes to 0 as n → ∞. Note that (k + 2)Zn>k+1 =∑
j≥k+2(k + 2)Znj ≤

∑
j≥k+2 jZ

n
j ≤ 2n, which implies

Zn>k+1/n ≤ 2
k+2 . Consequently,

sup
a>ε

∣∣∣∣∣∣
∑
k≥0

Zn>k+1/n− p>k+1

a+ k

∣∣∣∣∣∣ ≤
K∑
k=0

|Zn>k+1/n− p>k+1|
ε+ k

+
∑
k>K

2

(2 + k)(a+ k)
+
∑
k>K

p>k+1

a+ k
. (A.4)

The first term on the r.h.s. of (A.4) converges to 0 a.s. by
Theorem 2.4, and the last two terms can be made arbitrar-
ily small for K sufficiently large. Combining the above
estimates yields the desired result.

B. Proof of Lemma 2.6
It follows easily from the definition that
(
∑n
k=1 fk(a0); n ≥ 1) is a martingale. To prove the

convergence (2.24), it suffices to use Theorem 3.2 in (Hall
& Heyde, 1980) with the following conditions:

• n−1/2 maxk |fk(a0)| → 0 in probability.

• E(n−1 maxk f
2
k (a0)) is bounded in n.

• n−1
∑n
k=1 f

2
k (a0)→ σ2 in probability.

The first two conditions are straightforward since |fk(a)| ≤
2/a. Now we check the last condition. Write

1

n

n∑
k=1

f2k (a0) =
1

n

n∑
k=1

1

(a0 + dk(v(k))− 1)2
+

1

n

n∑
k=1

1

(a0 + 1− k−1)2

− 2

n

n∑
k=1

1

(a0 + dk(v(k))− 1)(a0 + 1− k−1)

:= S1 + S2 − 2S3.

Note that

S1 =
∑
k≥0

Zn>k+1/n

(a0 + k)2
−→

∑
k≥0

p>k+1

(a0 + k)2
a.s.

which follows from Theorem 2.4. By standard analysis,
S2 −→ 1

(a0+1)2 . We decompose S3 into two terms:

S3 =
1

n

n∑
k=1

1

a0 + dk(v(k))− 1

(
1

a0 + 1− k−1
− 1

a0 + 1

)

+
1

(a0 + 1)n

n∑
k=1

1

a0 + dk(v(k))− 1
,

where the first term on the r.h.s. is bounded by
1
an

∑n
k=1

(
1

a0+1−k−1 − 1
a0+1

)
−→ 0, and the second term

converges almost surely to 1
a0+1

∑
k≥0

p>k+1

a0+k
. Combining

all the above estimates yields the desired result.
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C. Proof of Lemma 2.7
Write

1

n

n∑
k=1

f ′k(a?) =
1

n

n∑
k=1

f ′k(a0) +
1

n

n∑
k=1

(f ′k(a?)− f ′k(a0))

:= T1 + T2.

Observe that f ′k(a) = −f2k (a)− 2fk(a) 1
a+1−k−1 . We get

T1 = − 1

n

n∑
k=1

f2k (a0)− 2

n

n∑
k=1

fk(a0)
1

a0 + 1− k−1
.

(C.1)
The first term on the r.h.s. of (C.1) converges to −σ2 as
proved in Proposition 2.6. Recall the definition of S2, S3. It
is easy to see that

1

n

n∑
k=1

fk(a0)
1

a0 + 1− k−1
= S3 − S2

−→ 1

a+ 1

∑
k≥0

p>k+1

a0 + k
− 1

(a0 + 1)2
.

Therefore, T1 −→ −β in probability. By standard analysis,
|T2| ≤ C|a? − a0| for some C > 0. Note that a? ∈
(a0, â

BO
n ). By Theorem 2.1, |a? − a0| −→ 0 which implies

T2 −→ 0. The above estimates lead to the desired result.

D. Proof of Lemma 2.9
As discussed in Section 2.3, the consistency of π̂ππ follows
from standard exponential family theory. It suffices to prove
that γ̂γγ → γγγ0 almost surely.

Let us go back to the limit log-likelihood (2.30). Observe
that `BPA∞ is homogeneous of order 1, i.e. `BPA∞ (aγγγ) =
`BPA∞ (γγγ) for each a > 0. By taking the partial derivatives
of (2.30) and equating to 0, we get

∂

∂γij
`BPA∞ (γγγ)

=


θ0ij
γij
− π0

i p
0
j∑K

k=1 γikp
0
k

− π0
jp

0
i∑K

k=1 γjkp
0
k

for i 6= j,

θ0ii
γii
− π0

i p
0
i∑K

k=1 γikp
0
k

for i = j.

(D.1)

By (2.27), we have ∇`BPA∞ (γγγ0) = 000, i.e. γγγ0 is a stationary
point of `BPA∞ . Now it suffices to prove Lemma 2.9 to
conclude.

Note that `BPA∞ (γγγ) → −∞ as γγγ ∈ ∂D. It suffices to
prove that ∇`BPA∞ (γγγ) = 000 has a unique solution. First
∂`BPA∞ /∂γii = 0 gives

K∑
k=1

γikp
0
k =

π0
i p

0
i

θ0ii
γii. (D.2)

By injecting (D.2) into the equation ∂`BPA∞ /∂γij = 0, we
get

θ0ij
γij

=
θ0iip

0
j

p0i

1

γii
+
θ0jjp

0
i

p0j

1

γjj
. (D.3)

Consequently, the values of (γij ; i 6= j) is uniquely deter-
mined by those of (γii; 1 ≤ i ≤ K). By injecting (D.3) into
(D.2), we get a system of equations on (γii; 1 ≤ i ≤ K):

K∑
k=1

θ0ik

(
θ0iip

0
j

p0i

1

γii
+
θ0kkp

0
i

p0k

1

γkk

)−1
p0k =

π0
i p

0
i

θ0ii
γii

(D.4)
For K = 2, it is easy to solve the equations together with
the constraints γ11 = 1. For K ≥ 3, the explicit solution is
not available but we prove that the equations have a unique
solution. To illustrate, we consider the generic case K = 3.
All other cases can be proceeded in a similar way.

Let x1 :=
θ011p

0
2

p01
γ22

(
θ011p

0
2

p01
γ22 +

θ022p
0
1

p02
γ11

)−1
,

x2 :=
θ011p

0
3

p01
γ33

(
θ011p

0
3

p01
γ33 +

θ033p
0
1

p03
γ11

)−1
, and

x3 :=
θ033p

0
2

p03
γ22

(
θ033p

0
2

p03
γ22 +

θ022p
0
3

p02
γ33

)−1
. The equa-

tions (D.4) give
θ012x1 + θ013x2 = π0

1 − θ011,

θ021(1− x1) + θ023(1− x3) = π0
2 − θ022,

θ031(1− x2) + θ032x3 = π0
3 − θ033.

(D.5)

It suffices to prove that the equations (D.5) have a unique
solution. Observe that the system (D.5) has a solution
(x01, x

0
2, x

0
3) by taking γii = γ0ii. Algebraic manipulation

shows that the set of solutions to (D.5) has dimension 1,
with form

(x1, x2, x3) = (x01, x
0
2, x

0
3) + λ(1,−θ012/θ013,−θ021/θ023).

Consequently,

γ11
γ22

=
θ011(p02)2

θ022(p01)2
1− x0 − λ
x0 + λ

,
γ11
γ13

=
θ011(p03)2

θ033(p01)2
1− y0 + λθ012θ

0
13

y0 − λθ012θ013

γ33
γ22

=
θ033(p02)2

θ022(p03)2
1− z0 + λθ021/θ

0
23

z0 − λθ021/θ023
,

which implies that

1− x0 − λ
x0 + λ

=
(1− y0 + λθ012θ

0
13)(1− z0 + λθ021/θ

0
23)

(y0 − λθ012θ013)(z0 − λθ021/θ023)
.

(D.6)
Note that the l.h.s. of (D.6) is decreasing in λ while the r.h.s.
is increasing in λ. Thus, λ = 0 is the only solution which
proves the uniqueness.


