Buckley-Osthus & block preferential attachment models

A. Proof of Lemma 2.5

To simplify the notation, we omit the ‘BO’ in the superscript.
We begin with a few algebraic identities for pg. It is easy to
see from (2.18)-(2.19) that
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Further by summing both sides of (A.2),
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where the second equality is due to (A.2) and the last one
stems from (A.1). In addition,
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where the last equality is due to the fact that ), -, kpi = 2.

Therefore, ¢/ (-) has a unique zero at ag, and £._(a) < 0 if
a > ag and ¢_(a) > 0if a < ag. These imply that £, ()
has a unique maximum at ag.

Now we prove (2.21). We have
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Standard analysis shows that the second term on the r.h.s.

of (A.3) goes to 0 as n — oo. Note that (k +2)Z%, ., =
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The first term on the r.h.s. of (A.4) converges to 0 a.s. by
Theorem 2.4, and the last two terms can be made arbitrar-
ily small for K sufficiently large. Combining the above
estimates yields the desired result.

B. Proof of Lemma 2.6

It follows easily from the definition that
(>p—q fu(ag); n > 1) is a martingale. To prove the
convergence (2.24), it suffices to use Theorem 3.2 in (Hall
& Heyde, 1980) with the following conditions:
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e E(n~!maxy f7(ao)) is bounded in n.

n~t Y, fi(ag) — o? in probability.

The first two conditions are straightforward since | fi(a)| <
2/a. Now we check the last condition. Write
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which follows from Theorem 2.4. By standard analysis,
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where the first term on the rh.s. is bounded by
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converges almost surely to +1 Zk>0 j’jkl Combining

all the above estimates yields the desired result.
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C. Proof of Lemma 2.7
Write
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The first term on the r.h.s. of (C.1) converges to —c? as
proved in Proposition 2.6. Recall the definition of Sa, S3. It

is easy to see that
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Therefore, Ty — —/3 in probability. By standard analysis,

|75 < C|a — ag| for some ¢ > 0. Note that a* €
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T5 — 0. The above estlmates lead to the desired result.

D. Proof of Lemma 2.9

As discussed in Section 2.3, the consistency of 7 follows
from standard exponential family theory. It suffices to prove
that ¥ — 4° almost surely.

Let us go back to the limit log-likelihood (2.30). Observe
that /274 is homogeneous of order 1, i.e. /ZF4(ay) =
¢BPA(«y) for each a > 0. By taking the partial derivatives

of (2.30) and equating to 0, we get
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By (2.27), we have V/BFPA(y) = 0, i.e. 7, is a stationary
point of /2P4. Now it suffices to prove Lemma 2.9 to
conclude.

Note that (2PA(y) — —oo asy € 9D. It suffices to

prove that V/ZF4(y) = 0 has a unique solution. First
OLBPA 19y, = 0 gives
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By injecting (D.2) into the equation O¢ZF4 /9~,;; = 0, we
get
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Consequently, the values of (vy;;; ¢ # j) is uniquely deter-
mined by those of (7y;;; 1 < ¢ < K). By injecting (D.3) into
(D.2), we get a system of equations on (7y;; 1 < i < K):
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For K = 2, it is easy to solve the equations together with
the constraints 11 = 1. For K > 3, the explicit solution is
not available but we prove that the equations have a unique
solution. To illustrate, we consider the generic case K = 3.
All other cases can be proceeded in a similar way.
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It suffices to prove that the equations (D.5) have a unique
solution. Observe that the system (D.5) has a solution
(29,29, 29) by taking v;; = 7%;. Algebraic manipulation
shows that the set of solutions to (D.5) has dimension 1,
with form
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Consequently,
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Note that the Lh.s. of (D.6) is decreasing in A while the r.h.s.
is increasing in A. Thus, A = 0 is the only solution which
proves the uniqueness.




