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Abstract

Integer programming is a general optimization
framework with a wide variety of applications,
e.g., in scheduling, production planning, and
graph optimization. As Integer Programs (IPs)
model many provably hard to solve problems,
modern IP solvers rely on heuristics. These heuris-
tics are often human-designed, and tuned over
time using experience and data. The goal of this
work is to show that the performance of those
heuristics can be greatly enhanced using reinforce-
ment learning (RL). In particular, we investigate
a specific methodology for solving IPs, known
as the cutting plane method. This method is em-
ployed as a subroutine by all modern IP solvers.
We present a deep RL formulation, network archi-
tecture, and algorithms for intelligent adaptive se-
lection of cutting planes (aka cuts). Across a wide
range of IP tasks, we show that our trained RL
agent significantly outperforms human-designed
heuristics. Further, our experiments show that the
RL agent adds meaningful cuts (e.g. resembling
cover inequalities when applied to the knapsack
problem), and has generalization properties across
instance sizes and problem classes. The trained
agent is also demonstrated to benefit the popular
downstream application of cutting plane methods
in Branch-and-Cut algorithm, which is the back-
bone of state-of-the-art commercial IP solvers.

1. Introduction
Integer Programming is a very versatile modeling tool for
discrete and combinatorial optimization problems, with ap-
plications in scheduling and production planning, among
others. In its most general form, an Integer Program (IP)
minimizes a linear objective function over a set of integer
points that satisfy a finite family of linear constraints. Clas-
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sical results in polyhedral theory (see e.g. Conforti et al.
(2014)) imply that any combinatorial optimization problem
with finite feasible region can be formulated as an IP. Hence,
IP is a natural model for many graph optimization problems,
such as the celebrated Traveling Salesman Problem (TSP).

Due to the their generality, IPs can be very hard to solve in
theory (NP-hard) and in practice. There is no polynomial
time algorithm with guaranteed solutions for all IPs. It is
therefore crucial to develop efficient heuristics for solving
specific classes of IPs. Machine learning (ML) arises as a
natural tool for tuning those heuristics. Indeed, the appli-
cation of ML to discrete optimization has been a topic of
significant interest in recent years, with a range of different
approaches in the literature (Bengio et al., 2018)

One set of approaches focus on directly learning the map-
ping from an IP instance to an approximate optimal solu-
tion (Vinyals et al., 2015; Bello et al., 2017; Nowak et al.,
2017; Kool and Welling, 2018). These methods implicitly
learn a solution procedure for a problem instance as a func-
tion prediction. These approaches are attractive for their
blackbox nature and wide applicability. At the other end
of the spectrum are approaches which embed ML agents
as subroutines in a problem-specific, human-designed al-
gorithms (Dai et al., 2017; Li et al., 2018). ML is used
to improve some heuristic parts of that algorithm. These
approaches can benefit from algorithm design know-how
for many important and difficult classes of problems, but
their applicability is limited by the specific (e.g. greedy)
algorithmic techniques.

In this paper, we take an approach with the potential to
combine the benefits of both lines of research described
above. We design a reinforcement learning (RL) agent to be
used as a subroutine in a popular algorithmic framework for
IP called the cutting plane method, thus building upon and
benefiting from decades of research and understanding of
this fundamental approach for solving IPs. The specific cut-
ting plane algorithm that we focus on is Gomory’s method
(Gomory, 1960). Gomory’s cutting plane method is guaran-
teed to solve any IP in finite time, thus our approach enjoys
wide applicability. In fact, we demonstrate that our trained
RL agent can even be used, in an almost blackbox man-
ner, as a subroutine in another powerful IP method called
Branch-and-Cut (B&C), to obtain significant improvements.
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A recent line of work closely related to our approach in-
cludes (Khalil et al., 2016; 2017; Balcan et al., 2018), where
supervised learning is used to improve branching heuris-
tics in the Branch-and-Bound (B&B) framework for IP. To
the best of our knowledge, no work on focusing on pure
selection of (Gomory) cuts has appeared in the literature.

Cutting plane and B&C methods rely on the idea that every
IP can be relaxed to a Linear program (LP) by dropping the
integrality constraints, and efficient algorithms for solving
LPs are available. Cutting plane methods iteratively add
cuts to the LPs, which are linear constraints that can tighten
the LP relaxation by eliminating some part of the feasible
region, while preserving the IP optimal solution. B&C
methods are based on combining B&B with cutting plane
methods and other heuristics; see Section 2 for details.

Cutting plane methods have had a tremendous impact on
the development of algorithms for IPs, e.g., these meth-
ods were employed to solve the first non-trivial instance of
TSP (Dantzig et al., 1954). The systematic use of cutting
planes has moreover been responsible for the huge speedups
of IP solvers in the 90s (Balas et al., 1993; Bixby, 2017).
Gomory cuts and other cutting plane methods are today
widely employed in modern solvers, most commonly as
a subroutine of the B&C methods that are the backbone
of state-of-the-art commercial IP solvers like Gurobi and
Cplex (Gurobi Optimization, 2015). However, despite the
amount of research on the subject, deciding which cutting
plane to add remains a non-trivial task. As reported in (Dey
and Molinaro, 2018), “several issues need to be considered
in the selection process [...] unfortunately the traditional
analyses of strength of cuts offer only limited help in under-
standing and addressing these issues”. We believe ML/RL
not only can be utilized to achieve improvements towards
solving IPs in real applications, but may also aid researchers
in understanding effective selection of cutting planes. While
modern solvers use broader classes of cuts than just Go-
mory’s, we decided to focus on Gomory’s approach because
it has the nice theoretical properties seen above, it requires
no further input (e.g. other human-designed cuts) and, as
we will see, it leads to a well-defined and compact action
space, and to clean evaluation criteria for the impact of RL.

Our contributions. We develop an RL based method for
intelligent adaptive selection of cutting planes, and use it
in conjunction with Branch-and-Cut methods for efficiently
solving IPs. Our main contributions are the following:

• Efficient MDP formulation. We introduce an efficient
Markov decision process (MDP) formulation for the prob-
lem of sequentially selecting cutting planes for an IP.
Several trade-offs between the size of state-space/action-
space vs. generality of the method were navigated in
order to arrive at the proposed formulation. For exam-

ple, directly formulating the B&C method as an MDP
would lead to a very large state space containing all open
branches. Another example is the use of Gomory’s cuts
(vs. other cutting plane methods), which helped limit the
number of actions (available cuts) in every round to the
number of variables. For some other classes of cuts, the
number of available choices can be exponentially large.

• Deep RL solution architecture design. We build upon
state-of-the-art deep learning techniques to design an ef-
ficient and scalable deep RL architecture for learning to
cut. Our design choices aim to address several unique
challenges in this problem. These include slow state-
transition machine (due to the complexity of solving LPs)
and the resulting need for an architecture that is easy to
generalize, order and size independent representation, re-
ward shaping to handle frequent cases where the optimal
solution is not reached, and handling numerical errors
arising from the inherent nature of cutting plane methods.

• Empirical evaluation. We evaluate our approach over a
range of classes of IP problems (namely, packing, binary
packing, planning, and maximum cut). Our experiments
demonstrate significant improvements in solution accu-
racy as compared to popular human designed heuristics
for adding Gomory’s cuts. Using our trained RL policy
for adding cuts in conjunction with B&C methods leads
to further significant improvements, thus illustrating the
promise of our approach for improving state-of-the-art IP
solvers. Further, we demonstrate the RL agent’s potential
to learn meaningful and effective cutting plane strategies
through experiments on the well-studied knapsack prob-
lem. In particular, we show that for this problem, the
RL agent adds many more cuts resembling lifted cover
inequalities when compared to other heuristics. Those
inequalities are well-studied in theory and known to work
well for packing problems in practice. Moreover, the
RL agent is also shown to have generalization properties
across instance sizes and problem classes, in the sense
that the RL agent trained on instances of one size or from
one problem class is shown to perform competitively for
instances of a different size and/or problem class.

2. Background on Integer Programming
Integer programming. It is well known that any Integer
Program (IP) can be written in the following canonical form

min{cTx : Ax ≤ b, x ≥ 0, x ∈ Zn} (1)

where x is the set of n decision variables, Ax ≤ b, x ≥ 0
with A ∈ Qm×n, b ∈ Qm formulates the set of constraints,
and the linear objective function is cTx for some c ∈ Qn.
x ∈ Zn implies we are only interested in integer solutions.
Let x∗IP denote the optimal solution to the IP in (1), and z∗IP
the corresponding objective value.
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The cutting plane method for integer programming.
The cutting plane method starts with solving the LP obtained
from (1) by dropping the integrality constraints x ∈ Zn.
This LP is called the Linear Relaxation (LR) of (1). Let
C(0) = {x|Ax ≤ b, x ≥ 0} be the feasible region of this
LP, x∗LP(0) its optimal solution, and z∗LP(0) its objective
value. Since C(0) contains the feasible region of (1), we
have z∗LP(0) ≤ z∗IP. Let us assume x∗LP(0) /∈ Zn. The cut-
ting plane method then finds an inequality aTx ≤ β (a cut)
that is satisfied by all integer feasible solutions of (1), but
not by x∗LP(0) (one can prove that such an inequality always
exists). The new constraint aTx ≤ β is added to C(0), to
obtain feasible region C(1) ⊆ C(0); and then the new LP is
solved, to obtain x∗LP(1). This procedure is iterated until
x∗LP(t) ∈ Zn. Since C(t) contains the feasible region of (1),
x∗LP(t) is an optimal solution to the integer program (1). In
fact, x∗LP(t) is the only feasible solution to (1) produced
throughout the algorithm.

A typical way to compare cutting plane methods is by the
number of cuts added throughout the algorithm: a better
method is the one that terminates after adding a smaller num-
ber of cuts. However, even for methods that are guaranteed
to terminate in theory, in practice often numerical errors
will prevent convergence to a feasible (optimal) solution.
In this case, a typical way to evaluate the performance is
the following. For an iteration t of the method, the value
gt := z∗IP − z∗LP(t) ≥ 0 is called the (additive) integrality
gap of C(t). Since C(t+1) ⊆ C(t), we have that gt ≥ gt+1.
Hence, the integrality gap decreases during the execution of
the cutting plane method. A common way to measure the
performance of a cutting plane method is therefore given
by computing the factor of integrality gap closed between
the first LR, and the iteration τ when we decide to halt the
method (possibly without reaching an integer optimal solu-
tion), see e.g. Wesselmann and Stuhl (2012). Specifically,
we define the Integrality Gap Closure (IGC) as the ratio

g0 − gτ

g0
∈ [0, 1]. (2)

In order to measure the IGC achieved by RL agent on test
instances, we need to know the optimal value z∗IP for those
instances, which we compute with a commercial IP solver.
Importantly, note that we do not use this measure, or the op-
timal objective value, for training, but only for evaluation.

Gomory’s Integer Cuts. Cutting plane algorithms differ in
how cutting planes are constructed at each iteration. Assume
that the LR of (1) with feasible region C(t) has been solved
via the simplex algorithm. At convergence, the simplex
algorithm returns a so-called tableau, which consists of a
constraint matrix Ã and a constraint vector b̃. Let It be the
set of components [x∗LP(t)]i that are fractional. For each

i ∈ It, we can generate a Gomory cut (Gomory, 1960)

(−Ã(i) + bÃ(i)c)Tx ≤ −b̃i + bb̃ic, (3)

where Ã(i) is the ith row of matrix Ã and b·c means
component-wise rounding down. Gomory cuts can therefore
be generated for any IP and, as required, are valid for all in-
teger points from (1) but not for x∗LP(t). Denote the set of all
candidate cuts in round t asD(t), so that It := |D(t)| = |It|.

It is shown in Gomory (1960) that a cutting plane method
which at each step adds an appropriate Gomory’s cut termi-
nates in a finite number of iteration. At each iteration t, we
have as many as It ∈ [n] cuts to choose from. As a result,
the efficiency and quality of the solutions depend highly on
the sequence of generated cutting planes, which are usually
chosen by heuristics (Wesselmann and Stuhl, 2012). We
aim to show that the choice of Gomory’s cuts, hence the
quality of the solution, can be significantly improved with
RL.

Branch and cut. In state-of-the-art solvers, the addition of
cutting planes is alternated with a branching phase, which
can be described as follows. Let x∗LP(t) be the solution to
the current LR of (1), and assume that some component
of x∗LP(t), say wlog the first, is not integer (else, x∗LP(t) is
the optimal solution to (1)). Then (1) can be split into two
subproblems, whose LRs are obtained from C(t) by adding
constraints x1 ≤ b[x∗LP(t)]1c and x1 ≥ d[x∗LP(t)]1e, respec-
tively. Note that the set of feasible integer points for (1) is
the union of the set of feasible integer points for the two new
subproblems. Hence, the integer solution with minimum
value (for a minimization IP) among those subproblems
gives the optimal solution to (1). Several heuristics are
used to select which subproblem to solve next, in attempt
to minimize the number of suproblems (also called child
nodes) created. An algorithm that alternates between the cut-
ting plane method and branching is called Branch-and-Cut
(B&C). When all the other parameters (e.g., the number of
cuts added to a subproblem) are kept constant, a typical way
to evaluate a B&C method is by the number of subproblems
explored before the optimal solution is found.

3. Deep RL Formulation and Solution
Architecture

Here we present our formulation of the cutting plane selec-
tion problem as an RL problem, and our deep RL based
solution architecture.

3.1. Formulating Cutting Plane selection as RL

The standard RL formulation starts with an MDP: at time
step t ≥ 0, an agent is in a state st ∈ S, takes an action
at ∈ A, receives an instant reward rt ∈ R and transitions to
the next state st+1 ∼ p(·|st, at). A policy π : S 7→ P(A)
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gives a mapping from any state to a distribution over actions
π(·|st). The objective of RL is to search for a policy that
maximizes the expected cumulative rewards over a horizon
T , i.e., maxπ J(π) := Eπ[

∑T−1
t=0 γtrt], where γ ∈ (0, 1]

is a discount factor and the expectation is w.r.t. randomness
in the policy π as well as the environment (e.g. the transi-
tion dynamics p(·|st, at)). In practice, we consider param-
eterized policies πθ and aim to find θ∗ = argmaxθ J(πθ).
Next, we formulate the procedure of selecting cutting planes
into an MDP. We specify state space S , action space A, re-
ward rt and the transition st+1 ∼ p(·|st, at).

State Space S. At iteration t, the new LP is defined by
the feasible region C(t) = {aTi x ≤ bi}Nt

i=1 where Nt is
the total number of constraints including the original linear
constraints (other than non-negativity) in the IP and the cuts
added so far. Solving the resulting LP produces an optimal
solution x∗LP(t) along with the set of candidate Gomory’s
cuts D(t). We set the numerical representation of the state
to be st = {C(t), c, x∗LP(t),D(t)}. When all components of
x∗LP(t) are integer-valued, st is a terminal state and D(t) is
an empty set.

Action Space A. At iteration t, the available actions are
given by D(t), consisting of all possible Gomory’s cutting
planes that can be added to the LP in the next iteration.
The action space is discrete because each action is a dis-
crete choice of the cutting plane. However, each action is
represented as an inequality eTi x ≤ di, and therefore is
parameterized by ei ∈ Rn, di ∈ R. This is different from
conventional discrete action space which can be an arbitrary
unrelated set of actions.

Reward rt. To encourage adding cutting plane aggressively,
we set the instant reward in iteration t to be the gap between
objective values of consecutive LP solutions, that is, rt =
cTx∗LP(t+1)−cTx∗LP(t) ≥ 0. With a discount factor γ < 1,
this encourages the agent to reduce the integrality gap and
approach the integer optimal solution as fast as possible.

Transition. Given state st = {C(t), c, x∗LP(t),D(t)}, on
taking action at (i.e., on adding a chosen cutting plane
eTi x ≤ di), the new state st+1 is determined as follows.
Consider the new constraint set C(t+1) = C(t)∪{eTi x ≤ di}.
The augmented set of constraints C(t+1) form a new LP,
which can be efficiently solved using the simplex method
to get x∗LP(t+ 1). The new set of Gomory’s cutting planes
D(t+1) can then be computed from the simplex tableau.
Then, the new state st+1 = {C(t+1), c, x∗LP(t+ 1),D(t+1)}.

3.2. Policy Network Architecture

We now describe the policy network architecture for
πθ(at|st). Recall from the last section we have in the state
st a set of inequalities C(t) = {aTi x ≤ bi}

Nt
i=1, and as avail-

able actions, another set D(t) = {eTi x ≤ di}Iti=1. Given

state st, a policy πθ specifies a distribution over D(t), via
the following architecture.

Attention network for order-agnostic cut selection.
Given current LP constraints in C(t), when computing dis-
tributions over the It candidate constraints in D(t), it is
desirable that the architecture is agnostic to the ordering
among the constraints (both in C(t) and D(t)), because
the ordering does not reflect the geometry of the feasi-
ble set. To achieve this, we adopt ideas from the atten-
tion network (Vaswani et al., 2017). We use a parametric
function Fθ : Rn+1 7→ Rk for some given k (encoded
by a network with parameter θ). This function is used
to compute projections hi = Fθ([ai, bi]), i ∈ [Nt] and
gj = Fθ([ej , dj ]), j ∈ [It] for each inequality in C(t) and
D(t), respectively. Here [·, ·] denotes concatenation. The
score Sj for every candidate cut j ∈ [It] is computed as

Sj =
1
Nt

∑Nt

i=1 g
T
j hi (4)

Intuitively, when assigning these scores to the candidate
cuts, (4) accounts for each candidate’s interaction with all
the constraints already in the LP through the inner products
gTj hi. We then define probabilities p1, . . . , pIt by a softmax
function softmax(S1, . . . , SIt). The resulting It-way cate-
gorical distribution is the distribution over actions given by
policy πθ(·|st) in the current state st.

LSTM network for variable sized inputs. We want our
RL agent to be able to handle IP instances of different sizes
(number of decision variables and constraints). Note that
the number of constraints can vary over different iterations
of a cutting plane method even for a fixed IP instance. But
this variation is not a concern since the attention network
described above handles that variability in a natural way. To
be able to use the same policy network for instances with
different number of variables , we embed each constraint us-
ing a LSTM network LSTMθ (Hochreiter and Schmidhuber,
1997) with hidden state of size n+1 for a fixed n. In partic-
ular, for a general constraint ãTi x̃ ≤ b̃i with ãi ∈ Rñ with
ñ 6= n, we carry out the embedding h̃i = LSTMθ([ãi, b̃i])
where h̃i ∈ Rn+1 is the last hidden state of the LSTM net-
work. This hidden state h̃i can be used in place of [ãi, b̃i] in
the attention network. The idea is that the hidden state h̃i
can properly encode all information in the original inequali-
ties [ãi, b̃i] if the LSTM network is powerful enough.

Policy rollout. To put everything together, in Algorithm 1,
we lay out the steps involved in rolling out a policy, i.e.,
executing a policy on a given IP instance.

3.3. Training: Evolutionary Strategies

We train the RL agent using evolution strategies (ES) (Sal-
imans et al., 2017). The core idea is to flatten the RL
problem into a blackbox optimization problem where the
input is a policy parameter θ and the output is a noisy esti-
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Algorithm 1 Rollout of the Policy
1: Input: policy network parameter θ, IP instance parame-

terized by c, A, b, number of iterations T .
2: Initialize iteration counter t = 0.
3: Initialize minimization LP with constraints C(0) =
{Ax ≤ b} and cost vector c. Solve to obtain x∗LP(0).
Generate set of candidate cuts D(0).

4: while x∗LP(t) not all integer-valued and t ≤ T do
5: Construct state st = {C(t), c, x∗LP(t),D(t)}.
6: Sample an action using the distribution over candi-

date cuts given by policy πθ, as at ∼ πθ(·|st). Here
the action at corresponds to a cut {eTx ≤ d} ∈ D(t).

7: Append the cut to the constraint set, C(t+1) = C(t) ∪
{eTx ≤ d}. Solve for x∗LP(t+ 1). Generate D(t+1).

8: Compute reward rt.
9: t← t+ 1.

10: end while

mate of the agent’s performance under the corresponding
policy. ES apply random sensing to approximate the policy
gradient ĝθ ≈ ∇θJ(πθ) and then carry out the iteratively
update θ ← θ + ĝθ for some α > 0. The gradient estimator
takes the following form

ĝθ =
1
N

∑N
i=1 J(πθ′i)

εi
σ , (5)

where εi ∼ N (0, I) is a sample from a multivariate Gaus-
sian, θ′i = θ + σεi and σ > 0 is a fixed constant. Here the
return J(πθ′) can be estimated as

∑T−1
t=0 rtγ

t using a single
trajectory (or average over multiple trajectories) generated
on executing the policy πθ′ , as in Algorithm 1. To train the
policy on M distinct IP instances, we average the ES gra-
dient estimators over all instances. Optimizing the policy
with ES comes with several advantages, e.g., simplicity of
communication protocol between workers when compared
to some other actor-learner based distributed algorithms (Es-
peholt et al., 2018; Kapturowski et al., 2018), and simple
parameter updates. Further discussions are in the appendix.

3.4. Testing

We test the performance of a trained policy πθ by rolling out
(as in Algorithm 1) on a set of test instances, and measuring
the IGC. One important design consideration is that a cut-
ting plane method can potentially cut off the optimal integer
solution due to the LP solver’s numerical errors. Invalid cut-
ting planes generated by numerical errors is a well-known
phenomenon in integer programming (Cornuéjols et al.,
2013). Further, learning can amplify this problem. This
is because an RL policy trained to decrease the cost of the
LP solution might learn to aggressively add cuts in order
to tighten the LP constraints. When no countermeasures
were taken, we observed that the RL agent could cut the
optimal solution in as many as 20% of the instances for

some problems! To remedy this, we have added a simple
stopping criterion at test time. The idea is to maintain a
running statistics that measures the relative progress made
by newly added cuts during execution. When a certain num-
ber of consecutive cuts have little effect on the LP objective
value, we simply terminate the episode. This prevents the
agent from adding cuts that are likely to induce numerical
errors. Indeed, our experiments show this modification
is enough to completely remove the generation of invalid
cutting planes. We postpone the details to the appendix.

4. Experiments
We evaluate our approach with a variety of experiments, de-
signed to examine the quality of the cutting planes selected
by RL. Specifically, we conduct five sets of experiments to
evaluate our approach from the different aspects:

1. Efficiency of cuts. Can the RL agent solve an IP prob-
lem using fewer number of Gomory cuts?

2. Integrality gap closed. In cases where cutting planes
alone are unlikely to solve the problem to optimality, can
the RL agent close the integrality gap effectively?

3. Generalization properties.

• (size) Can an RL agent trained on smaller instances
be applied to 10X larger instances to yield perfor-
mance comparable to an agent trained on the larger
instances?

• (structure) Can an RL agent trained on instances
from one class of IPs be applied to a very different
class of IPs to yield performance comparable to an
agent trained on the latter class?

4. Impact on the efficiency of B&C. Will the RL agent
trained as a cutting plane method be effective as a sub-
routine within a B&C method?

5. Interpretability of cuts: the knapsack problem. Does
RL have the potential to provide insights into effective
and meaningful cutting plane strategies for specific prob-
lems? Specifically, for the knapsack problem, do the cuts
learned by RL resemble lifted cover inequalities?

IP instances used for training and testing. We consider
four classes of IPs: Packing, Production Planning, Binary
Packing and Max-Cut. These represent a wide collection of
well-studied IPs ranging from resource allocation to graph
optimization. The IP formulations of these problems are
provided in the appendix. Let n,m denote the number of
variables and constraints (other than nonnegativity) in the
IP formulation, so that n × m denotes the size of the IP
instances (see tables below). The mapping from specific
problem parameters (like number of nodes and edges in
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Table 1: Number of cuts it takes to reach optimality. We show
mean ± std across all test instances.

Tasks Packing Planning Binary Max Cut

Size 10 × 5 13 × 20 10 × 20 10 × 22

RANDOM 48 ± 36 44 ± 37 81 ± 32 69 ± 34
MV 62 ± 40 48 ± 29 87 ± 27 64 ± 36

MNV 53 ± 39 60 ± 34 85 ± 29 47 ± 34
LE 34 ± 17 310± 60 89 ± 26 59 ± 35
RL 14± 11 10± 12 22± 27 13± 4

maximum-cut) to n,m depends on the IP formulation used
for each problem. We use randomly generated problem
instances for training and testing the RL agent for each IP
problem class. For the small (n×m ≈ 200) and medium
(n × m ≈ 1000) sized problems we used 30 training in-
stances and 20 test instances. These numbers were doubled
for larger problems (n×m ≈ 5000). Importantly, note that
we do not need “solved" (aka labeled) instances for training.
RL only requires repeated rollouts on training instances.

Baselines. We compare the performance of the RL agent
with the following commonly used human-designed heuris-
tics for choosing (Gomory) cuts (Wesselmann and Stuhl,
2012): Random, Max Violation (MV), Max Normalized
Violation (MNV) and Lexicographical Rule (LE), with LE
being the original rule used in Gomory’s method, for which
a theoretical convergence in finite time is guaranteed. Pre-
cise descriptions of these heuristics are in the appendix.

Implementation details. We implement the MDP simula-
tion environment for RL using Gurobi (Gurobi Optimization,
2015) as the LP solver. The C interface of Gurobi entails
efficient addition of new constraints (i.e., the cut chosen
by RL agent) to the current LP and solve the modified LP.
The number of cuts added (i.e., the horizon T in rollout of
a policy) depend on the problem size. We sample actions
from the categorical distribution {pi} during training; but
during testing, we take actions greedily as i∗ = argmaxi pi.
Further implementation details, along with hyper-parameter
settings for the RL method are provided in the appendix.

Experiment #1: Efficiency of cuts (small-sized in-
stances). For small-sized IP instances, cutting planes
alone can potentially solve an IP problem to optimality. For
such instances, we compare different cutting plane methods
on the total number of cuts it takes to find an optimal integer
solution. Table 1 shows that the RL agent achieves close
to several factors of improvement in the number of cuts
required, when compared to the baselines. Here, for each
class of IP problems, the second row of the table gives the
size of the IP formulation of the instances used for training
and testing.

Table 2: IGC for test instances of size roughly 1000. We show
mean ± std of IGC achieved on adding T = 50 cuts.

Tasks Packing Planning Binary Max Cut

Size 30 × 30 61 × 84 33 × 66 27 × 67

RAND 0.18±0.17 0.56±0.16 0.39±0.21 0.56±0.09
MV 0.14±0.08 0.18±0.08 0.32±0.18 0.55±0.10
MNV 0.19±0.23 0.31±0.09 0.32±0.24 0.62±0.12
LE 0.20±0.22 0.01±0.01 0.41±0.27 0.54±0.15
RL 0.55± 0.32 0.88± 0.12 0.95± 0.14 0.86± 0.14

(a) Packing (b) Planning

(c) Binary Packing (d) Max Cut

Figure 2: Percentile plots of IGC for test instances of size roughly
1000. X-axis shows the percentile of instances and y-axis shows
the IGC achieved on adding T = 50 cuts. Across all test instances,
RL achieves significantly higher IGC than the baselines.

Experiment #2: Integrality gap closure for large-sized
instances. Next, we train and test the RL agent on signif-
icantly larger problem instances compared to the previous
experiment. In the first set of experiments (Table 2 and Fig-
ure 2), we consider instances of size (n×m) close to 1000.
In Table 3 and Figure 3, we report results for even larger
scale problems, with instances of size close to 5000. We
add T = 50 cuts for the first set of instances, and T = 250
cuts for the second set of instances. However, for these
instances, the cutting plane methods is unable to reach op-
timality. Therefore, we compare different cutting plane
methods on integrality gap closed using the IGC metric de-
fined in (2), Section 2. Table 2, 3 show that on average RL
agent was able to close a significantly higher fraction of gap
compared to the other methods. Figure 2, 3 provide a more
detailed comparison, by showing a percentile plot – here the
instances are sorted in the ascending order of IGC and then
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Table 3: IGC for test instances of size roughly 5000. We show
mean ± std of IGC achieved on adding T = 250 cuts.

Tasks Packing Planning Binary Max Cut

Size 60 × 60 121× 168 66 × 132 54 × 134

RANDOM 0.05±0.03 0.38±0.08 0.17±0.12 0.50±0.10
MV 0.04±0.02 0.07±0.03 0.19±0.18 0.50±0.06

MNV 0.05±0.03 0.17±0.10 0.19±0.18 0.56±0.11
LE 0.04±0.02 0.01±0.01 0.23±0.20 0.45±0.08
RL 0.11± 0.05 0.68± 0.10 0.61± 0.35 0.57± 0.10

(a) Packing (b) Planning

(c) Binary Packing (d) Max Cut

Figure 3: Percentile plots of IGC for test instances of size roughly
5000, T = 250 cuts. Same set up as Figure 2 but on even larger-
size instances.

plotted in order; the y-axis shows the IGC and the x-axis
shows the percentile of instances achieving that IGC. The
blue curve with square markers shows the performance of
our RL agent. In Figure 2, very close to the blue curve is the
yellow curve (also with square marker). This yellow curve
is for RL/10X, which is an RL agent trained on 10X smaller
instances in order to evaluate generalization properties, as
we describe next.

Experiment #3: Generalization. In Figure 2, we also
demonstrate the ability of the RL agent to generalize across
different sizes of the IP instances. This is illustrated through
the extremely competitive performance of the RL/10X agent,
which is trained on 10X smaller size instances than the test
instances. (Exact sizes used in the training of RL/10X agent
were were 10× 10, 32× 22, 10× 20, 20× 10, respectively,
for the four types of IP problems.) Furthermore, we test
generalizability across IP classes by training an RL agent on

Figure 4: Percentile plots of Integrality Gap Closure. ‘RL/10X
packing’ trained on instances of a completely different IP problem
(packing) performs competitively on the maximum-cut instances.

Table 4: IGC in B&C. We show mean ± std across test instances.

Tasks Packing Planning Binary Max Cut

Size 30 × 30 61 × 84 33 × 66 27 × 67

NO
CUT

0.57±0.34 0.35±0.08 0.60±0.24 1.0 ± 0.0

RANDOM 0.79±0.25 0.88±0.16 0.97±0.09 1.0 ± 0.0
MV 0.67±0.38 0.64±0.27 0.97±0.09 0.97±0.18

MNV 0.83±0.23 0.74±0.22 1.0 ± 0.0 1.0 ± 0.0
LE 0.80±0.26 0.35±0.08 0.97±0.08 1.0 ± 0.0
RL 0.88± 0.23 1.0± 0.0 1.0 ± 0.0 1.0 ± 0.0

(a) Packing (1000 nodes) (b) Planning (200 node)

(c) Binary (200 nodes) (d) Max Cut (200 nodes)

Figure 5: Percentile plots of number of B&C nodes expanded. X-
axis shows the percentile of instances and y-axis shows the number
of expanded nodes to close 95% of the integrality gap.

small sized instances of the packing problem, and applying
it to add cuts to 10X larger instances of the maximum-cut
problem. The latter, being a graph optimization problem,
has intuitively a very different structure from the former.
Figure 4 shows that the RL/10X agent trained on packing
(yellow curve) achieve a performance on larger maximum-
cut instances that is comparable to the performance of agent
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(a) Criterion 1 (b) Criterion 2 (c) Criterion 3 (d) Number of cuts

Figure 6: Percentage of cuts meeting the designed criteria and number of cuts on Knapsack problems. We train the RL agent on 80
instances. All baselines are tested on 20 instances. As seen above, RL produces consistently more ’high-quality’ cuts.

trained on the latter class (blue curve).

Experiment #4: Impact on the efficiency of B&C. In
practice, cutting planes alone are not sufficient to solve large
problems. In state-of-the-art solvers, the iterative addition
of cutting planes is alternated with a branching procedure,
leading to Branch-and-Cut (B&C). To demonstrate the full
potential of RL, we implement a comprehensive B&C pro-
cedure but without all the additional heuristics that appear
in the standard solvers. Our B&C procedure has two hyper-
parameters: number of child nodes (suproblems) to expand
Nexp and number of cutting planes added to each node Ncuts.
In addition, B&C is determined by the implementation of
the Branching Rule, Priority Queue and Termination Condi-
tion. Further details are in the appendix.

Figure 5 gives percentile plots for the number of child
nodes (suproblems) Nexp until termination of B&C. Here,
Ncuts = 10 cuts were added to each node, using either RL or
one of the baseline heuristics. We also include as a compara-
tor, the B&C method without any cuts, i.e., the branch and
bound method. The trained RL agent and the test instances
used here are same as those in Table 2 and Figure 2. Perhaps
surprisingly, the RL agent, though not designed to be used
in combination with branching, shows substantial improve-
ments in the efficiency of B&C. In the appendix, we have
also included experimental results showing improvements
for the instances used in Table 3 and Figure 3.

Experiment #5: Interpretability of cuts. A knapsack
problem is a binary packing problem with only one con-
straint. Although simple to state, these problems are NP-
Hard, and have been a testbed for many algorithmic tech-
niques, see e.g. the books (Kellerer et al., 2003; Martello and
Toth, 1990). A prominent class of valid inequalities for knap-
sack is that of cover inequalities, that can be strengthened
through the classical lifting operation (see the appendix for
definitions). Those inequalities are well-studied in theory
and also known to be effective in practice, see e.g. (Crow-
der et al., 1983; Conforti et al., 2014; Kellerer et al., 2003).

Our last set of experiments gives a “reinforcement learning
validation” of those cuts. We show in fact that RL, with the
same reward scheme as in Experiment #2, produces many
more cuts that “almost look like” lifted cover inequalities
than the baselines. More precisely, we define three increas-
ingly looser criteria for deciding when a cut is “close” to
a lifted cover inequality (the plurality of criteria is due to
the fact that lifted cover inequalities can be strengthened
in many ways). We then check which percentage of the
inequalities produced by the RL (resp. the other baselines)
satisfy each of these criteria. This is reported in the first
three figures in Figure 6, together with the number of cuts
added before the optimal solution is reached (rightmost fig-
ure in Figure 6). More details on the experiments and a
description of the three criteria are reported in the appendix.
These experiments suggest that our approach could be use-
ful to aid researchers in the discovery of strong family of
cuts for IPs, and provide yet another empirical evaluation of
known ones.

Runtime. A legitimate question is whether the improve-
ment provided by the RL agent in terms of solution accuracy
comes at the cost of a large runtime. The training time for
RL can indeed be significant, especially when trained on
large instances. However, there is no way to compare that
with the human-designed heuristics. In testing, we observe
no significant differences in time required by an RL policy
to choose a cut vs. time taken to execute a heuristic rule. We
detail the runtime comparison in the appendix.

5. Conclusions
We presented a deep RL approach to automatically learn an
effective cutting plane strategy for solving IP instances. The
RL algorithm learns by trying to solve a pool of (randomly
generated) training instances again and again, without hav-
ing access to any solved instances. The variety of tasks
across which the RL agent is demonstrated to generalize
without being trained for, provides evidence that it is able
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to learn an intelligent algorithm for selecting cutting planes.
We believe our empirical results are a convincing step for-
ward towards the integration of ML techniques in IP solvers.
This may lead to a functional answer to the “Hamletic ques-
tion Branch-and-cut designers often have to face: to cut or
not to cut?” (Dey and Molinaro, 2018).
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