
Reinforcement Learning for Integer Programming: Learning to Cut

A. Experiment Details
A.1. Projection into the original variable space

In the following we look at only the first iteration of the cutting plane procedure, and we drop the iteration index t. Recall
the LP relaxation of the original IP problem (1), where A ∈ Qm×n, b ∈ Qm: min cTx

Ax ≤ b
x ≥ 0.

When a simplex algorithm solves the LP, the original LP is first converted to a standard form where all inequalities are
transformed into equalities by introducing slack variables. min cTx

Ax+ Is = b
x ≥ 0, s ≥ 0,

(6)

where I is an identity matrix and s is the set of slack variables. The simplex method carries out iteratively operations on
the tableau formed by [A, I], b and c. At convergence, the simplex method returns a final optimal tableau. We generate a
Gomory’s cut using the row of the tableau that corresponds to a fractional variable of the optimal solution x∗LP. This will in
general create a cutting plane of the following form

eTx+ rT s ≤ d (7)

where e, x ∈ Rn, r, s ∈ Rm and d ∈ R. Though this cutting plane involves slack variables, we can get rid of the slack
variables by multiplying both sides of the linear constraints in (6) by r

rTAx+ rT s = rT b (8)

and subtract the new cutting plane (7) by the above. This leads to an equivalent cutting plane

(eT − rTA)x ≤ d− rT b. (9)

Note that this cutting plane only contains variables in the original variable space. For a downstream neural network that
takes in the parameters of the cutting planes as inputs, we find it helpful to remove such slack variables. Slack variables do
not contribute to new information regarding the polytope and we can also parameterize a network with a smaller number of
parameters.

A.2. Integer programming formulations of benchmark problems

A wide range of benchmark instances can be cast into special cases of IP problems. We provide their specific formulations
below. For simplicity, we only provide their general IP formulations (with ≤,≥,= constraints). It is always possible
to convert original formulations into the standard formulation (1) with properly chosen A, b, c, x. Some problems are
formulated within a graph G = (V,E) with nodes v ∈ V and edges (v, u) ∈ E.

Their formulations are as follows:

Max Cut. We have one variable per edge yu,v, (u, v) ∈ E and one variable per node xu, u ∈ V . Let wu,v ≥ 0 be a set of
non-negative weights per edge. 

max
∑

(u,v)∈E wuvyuv
yuv ≤ xu + xv,∀(u, v) ∈ E
yuv ≤ 2− xu − xv,∀(u, v) ∈ E
0 ≤ x, y ≤ 1
xu, yuv ∈ Z ∀u ∈ V, (u, v) ∈ E.

(10)

In our experiments the graphs are randomly generated. To be specific, we specify a vertex size |V | and edge size |E|. We
then sample |E| edges from all the possible |V | · (|V | − 1)/2 edges to form the final graph. The weights wuv are uniformly
sampled as an integer from 0 to 10. When generating the instances, we sample graphs such that |V |, |E| are of a particular
size. For example, for middle size problem we set |V | = 7, |E| = 20.

Reinforcement Learning for Integer Programming: Learning to Cut

Packing. The packing problem takes the generic form of (1) while requiring that all the coefficients of A, b, c be non-
negative, in order to enforce proper resource constraints.

Here the constraint coefficients aij for the jth variable and ith constraint is sampled as an integer uniformly from 0 and 5.
Then the RHS coefficient bi is sampled from 9n to 10n uniformly as an integer where n is the number of variables. Each
component of cj is uniformly sampled as an integer from 1 to 10.

Binary Packing. Binary packing augments the original packing problem by a set of binary constraints on each variable
xi ≤ 1.

Here the constraint coefficients aij for the jth variable and ith constraint is sampled as an integer uniformly from 5 and 30.
Then the RHS coefficient bi is sampled from 10n to 20n uniformly as an integer where n is the number of variables. Each
component of cj is uniformly sampled as an integer from 1 to 10.

Production Planning. Consider a production planning problem (Pochet and Wolsey, 2006) with time horizon T . The
decision variables are production xi, 1 ≤ i ≤ T , along with by produce / not produce variables yi, 1 ≤ i ≤ T and storage
variables si, 0 ≤ i ≤ T . Costs p′i, h

′
i, qi and demands di are given as problem parameters. The LP formulation is as follows

min
∑T
i=1 p

′
ixi +

∑T
i=0 h

′
isi +

∑T
i=0 qiyi

si−1 + xi = di + si,∀1 ≤ i ≤ T
xi ≤Myi,∀1 ≤ i ≤ T
s ≥ 0, x ≥ 0, 0 ≤ y ≤ 1
s0 = s∗0, sT = s∗T
x, s, y ∈ ZT ,

(11)

where M is a positive large number and s∗0, s
∗
T are also given.

The instance parameters are the initial storage s∗0 = 0, final storage s∗T = 20 and big M = 100. The revenue parameter
p′i, h

′
i, qi are generated uniformly random as integers from 1 to 10.

Size of IP formulations. In our results, we describe the sizes of the IP instances as n ×m where n is the number of
columns and m is the number of rows of the constraint matrix A from the LR of (1). For a packing problem with n items
and m resource constraints, the IP formulation has n variables and m constraints; for planning with period K, n = 3K + 1,
m = 4K + 1; for binary packing, there are n extra binary constraints compared to the packing problem; for max-cut, the
problem is defined on a graph with a vertex set V and an edge set V , and its IP formulation consists of n = |V | + |E|
variables and m = 3|E|+ |V | constraints.

A.3. Criteria for selecting Gomory cuts

Recall that It is the number of candidate Gomory cuts available in round t, and it denotes the index of cut chosen by a given
baseline. The baseline heuristics we use are the following:

• Random. One cut it ∼ Uniform{1, 2...It} is chosen uniformly at random from all the candidate cuts.

• Max Violation (MV). Let x∗B(t) be the basic feasible solution of the curent LP relaxation. MV selects the cut that
corresponds to the most fractional component, i.e. it = argmax{|[x∗B(t)]i − round([x∗B(t)]i)|}.

• Max Normalized Violation (MNV). Recall that Ã denotes the optimal tableau obtained by the simplex algorithm upon
convergence. Let Ãi be the ith row of Ã. Then, MNV selects cut it = argmax{|[x∗B(t)]i − round([x∗B(t)]i)|/‖Ãi‖}.

• Lexicographic (LE): Add the cutting plane with the least index, i.e. it = argmin{i, [x∗B(t)]i is fractional}.

The first three rules are common in the IP literature, see e.g. (Wesselmann and Stuhl, 2012), while the fourth is the original
rule used by Gomory to prove the convergence of his method (Gomory, 1960).

Reinforcement Learning for Integer Programming: Learning to Cut

A.4. Hyper-parameters

Policy architecture. The policy network is implemented with Chainer (Tokui et al., 2015). The attention embedding Fθ
is a 2-layer neural network with 64 units per layer and tanh activation. The LSTM network encodes variable sized inputs
into hidden vector with dimension 10.

During a forward pass, a LSTM + Attention policy will take the instance, carry out embedding into a n-d vector and then
apply attention. Such architecture allows for generalization to variable sized instances (different number of variables). We
apply such architecture in the generalization part of the experiments.

On the other hand, a policy network can also consist of a single attention network. This policy can only process IP instances
of a fixed size (fixed number of varibles) and cannot generalize to other sizes. We apply such architecture in the IGC part of
the experiments.

ES optimization. Across all experiments, we apply Adam optimizer (Kingma and Ba, 2014) with learning rate α = 0.01
to optimize the policy network. The perturbation standard deviation σ is selected from {0.002, 0.02, 0.2}. By default, we
apply N = 10 perturbations to construct the policy gradient for each iteration, though we find that N = 1 could also work
as well. For all problem types except planning, we find that σ = 0.2 generally works properly except for planning, where
we apply σ = 0.02 and generate N = 5 trajectory per instance per iteration. Empirically, we observe that the training is
stable for both policy architectures and the training performance converges in ≤ 500 weight updates.

Distributed setup. For training, we use a Linux machine with 60 virtual CPUs. To fully utilize the compute power of the
machine, the trajectory collection is distributed across multiple workers, which run in parallel.

B. Branch-and-Cut Details
As mentioned in the introduction, Branch-and-Cut (B&C) is an algorithmic procedure used for solving IP problems. The
choice of which variable to branch on, as well as which node of the branching tree to explore next, is the subject of much
research. In our experiments, we implemented a B&C with very simple rules, as explained below. This is motivated by the
fact that our goal is to evaluate the quality of the cutting planes added by the RL rather than obtaining a fast B&C method.
Hence, sophisticated and computationally expensive branching rules could have overshadowed the impact of cutting planes.
Instead, simple rules (applied both to the RL and to the other techniques) highlight the impact of cutting planes for this
important downstream application.

We list next several critical elements of our implementation of B&C.

Branching rule. At each node, we branch on the most fractional variable of the corresponding LP optimal solution (0.5
being the most fractional).

Priority queue. We adopt a FIFO queue (Breath first search). FIFO queue allows the B&C procedure to improve the
lower bound.

Termination condition. Let z0 = cTx∗LP(0) be the objective of the initial LP relaxation. As B&C proceeds, the procedure
finds an increasing set of feasible integer solutions XF , and an upper bound on the optimal objective z∗ = cTx∗IP is
zupper = minx∈XF

cTx. Hence, zupper monotonically decreases.

Along with B&C, cutting planes can iteratively improve the lower bound zlower of the optimal objective z∗. Let zi be the
objective of the LP solution at node i and denote N as the set of unpruned nodes with unexpanded child nodes. The lower
bound is computed as zlower = mini∈N zi and monotonically increases as the B&C procedure proceeds.

This produces a ratio statistic

r =
zupper − zlower

zupper − z∗LP
> 0

Note that since zlower ≥ z∗LP, zlower monotonically increases, and zupper monotonically decreases, r monotonically decreases.
The B&C terminates when r is below some threshold which we set to be 0.0001.

Reinforcement Learning for Integer Programming: Learning to Cut

C. Test Time Considerations
Stopping criterion. Though at training time we guide the agent to generate aggressive cuts that tighten the LP relaxation
as much as possible, the agent can exploit the defects in the simulation environment - numerical errors, and generate invalid
cuts which cut off the optimal solution.

This is undesirable in practice. In certain cases at test time, when we execute the trained policy, we adopt a stopping criterion
which automatically determines if the agent should stop adding cuts, in order to prevent from invalid cuts. In particular, at
each iteration let rt = |cTxLP∗(t) − cTxLP∗(t+1)| be the objective gap achieved by adding the most recent cut. We maintain
a cumulative ratio statistics such that

st =
rt∑
t′≤t rt

.

We terminate the cutting plane procedure once the average st over a fixed window of size H is lower than certain threshold
η. In practice, we set H = 5, η = 0.001 and find this work effectively for all problems, eliminating all the numerical errors
observed in reported tasks. Intuitively, this approach dictates that we terminate the cutting plane procedure once the newly
added cuts do not generate significant improvements for a period of H steps.

To analyze the effect of η and H , we note that when H is too small or η is too large, we have very conservative cutting plane
procedure. On the other hand when H is large while η is small, the cutting plane procedure becomes more aggressive.

Greedy action. The policy network defines a stochastic policy, i.e. a categorical distribution over candidate cuts. At test
time, we find taking the greedy action i∗ = argmax pi to be more effective in certain cases, where pi is the categorical
distribution over candidate cuts. The justification for this practice is that: the ES optimization procedure can be interpreted
as searching for a parameter θ such that the induced distribution over trajectories has large concentration on those high
return trajectories. Given a trained model, to decode the most likely trajectory of horizon T generated by the policy, we need
to run a full tree search of depth T , which is infeasible in practice. Taking the greedy action is equivalent to applying a
greedy strategy in decoding the most likely trajectory.

This approach is highly related to beam search in sequence modeling (Sutskever et al., 2014) where the goal is to decode the
prediction that the model assigns the most likelihood to. The greedy action selection above corresponds to a beam search
with 1-step lookahead.

D. Details on the Interpretation of Cutts
One interesting aspect of studying the RL approach to generating cuts, is to investigate if we can interpret cuts generated by
RL. For a particular class of IP problems, certain cuts might be considered as generally ’better’ than other cuts. For example,
these cuts might be more effective in terms of closing the objective gap, according to domain knowledge studied in prior
literature. Ideally, we would like to find out what RL has learned, whether it has learned to select these more ’effective’ cuts
with features identified by prior works. Here, we focus on Knapsack problems.

Problem instances. Consider the knapsack problems max
∑n
i cixi∑n

i=1 aixi ≤ β :=
∑n
i=1 ai/2

xi ∈ {0, 1},
(12)

where ai are generated independently and uniformly in [1, 30] as integers, and the ci are generated independently and
uniformly in [1, 10]. We consider n = 10 in our experiments. Knapsack problems are fundamental in IP, see e.g. (Kellerer
et al., 2003). The intuition of the problem is that we attempt to pack as many items as possible into the knapsack, as to
maximize the profit of the selected items. Polytopes as (12) are also used to prove strong (i.e., quadratic) lower bounds on
the Chvátal-Gomory rank of polytopes with 0/1 vertices (Rothvoß and Sanità, 2017).

Evaluation scores. For knapsack problems, one effective class of cuts is given by cover inequalities, and their strengthen-
ing through lifting (Conforti et al., 2014; Kellerer et al., 2003). The cover inequality associated to a set S ⊆ {1, . . . , n} with∑
i∈S ai > β and |S| = k is given by ∑

i∈S
xi ≤ k − 1.

Reinforcement Learning for Integer Programming: Learning to Cut

Note that cover inequalities are valid for (12). The inequality can be strengthened (while maintaining validity) by replacing
the 0 coefficients of variables xi for i ∈ {1, . . . , n} \ S with appropriate positive coefficients, leading to the lifted cover
inequality below: ∑

i∈S
xi +

∑
/∈S

αixi ≤ k − 1. (13)

with all αi ≥ 0. There are in general exponentially many ways to generate lifted cover inequalities from a single cover
inequality. In practice, further strengthenings are possible, for instance, by perturbing the right-hand side or the coefficients
of xi for i ∈ S. We provide three criteria for identifying (strengthening of) lifted cover inequalities, each capturing certain
features of the inequalities (below, RHS denotes the right-hand side of a given inequality).

1. There exists an integer p such that (1) the RHS is an integer multiple of p and (2) p times (number of variable with
coefficient exactly p) > RHS.

Criterion 1 is satisfied by all lifted cover inequalities as in (13). The scaling by p is due to the fact that an inequality may be
scaled by a positive factor, without changing the set of points satisfying it.

2. There exists an integer p such that (1) holds and (2’) p times (number of variables with coefficients between p and
p+ 2) > RHS.

3. There exists an integer p such that (1) holds and (2”) p times (number of variables with coefficients at least p) > RHS.

A lifted cover inequality can often by strengthened by increasing the coefficients of variables in S, after the lifting has been
performed. We capture this by criteria 2 and 3 above, where 2 is a stricter criterion, as we only allow those variables to have
their coefficients increased by a small amount.

For each cut cj generated by the baseline (e.g. RL), we evaluate if this cut satisfies the aforementioned conditions. For one
particular condition, if satisfied, the cut is given a score s(cj) = 1 or else s(cj) = 0. On any particular instance, the overall
score is computed as an average across the m cuts that are generated to solve the problem with the cutting plane method:

1

m

m∑
j=1

s(cj) ∈ [0, 1].

Evaluation setup. We train a RL agent on 100 knapsack instances and evaluate the scores on another independently
generated set of 20 instances. Please see the main text for the evaluation results.

E. Additional results on Large-scale Instances
We provide additional results on large-scale instances in Figure 7, in the context of B&C. Experimental setups and details
are similar to those of the main text: we set the threshold limit to be 1000 nodes for all problem classes. The results show
the percentile plots of the number of nodes required to achieve a certain level of IGC during the B&C with the use of cutting
plane heuristics, where the percentile is calculated across instances. Baseline results for each baseline are shown via curves
in different colors. When certain curves do not show up in the plot, this implies that these heuristics do not achieve the
specified level of IGC within the node budgets. The IGC level is set to be 95% as in the main text, except for the random
packing problem where it is set to be 25%.

The IGC of the random packing is set at a relatively low level because random packing problems are significantly more
difficult to solve when instances are large-scaled. This is consistent with the observations in the main text.

Overall, we find that the performance of RL agent significantly exceeds that of the other baseline heuristics. For example,
on the planning problem, other heuristics barely achieve the IGC within the node budgets. There are also cases where RL
does similarly to certain heuristics, such as to MNV on the Max Cut problems.

F. Comparison of Distributed Agent Interface
To scale RL training to powerful computational architecture, it is imperative that the agent becomes distributed. Indeed,
recent years have witnessed an increasing attention on the design and implementation of distributed algorithms (Mnih et al.,

Reinforcement Learning for Integer Programming: Learning to Cut

(a) Packing (25% IGC, 1000 nodes) (b) Planning (95% IGC, 1000 nodes)

(c) Binary Packing (95% IGC, 1000 nodes) (d) Max Cut (95% IGC, 1000 nodes)

Figure 7: Percentile plots of number of B&C nodes expanded for large-scale instances. The same setup as Figure 5 but for even larger
instances.

2016; Salimans et al., 2017; Espeholt et al., 2018; Kapturowski et al., 2018).

General distributed algorithms adopt a learner-actor architecture, i.e. one central learner and multiple distributed actors.
Actors collect data and send partial trajectories to the learner. The learner takes data from all actors and generates updates to
the central parameter. The general interface requires a function πθ(a|s) parameterized by θ, which takes a state s and outputs
an action a (or a distribution over actions). In a gradient-based algorithm (e.g. (Espeholt et al., 2018)), the actor executes
such an interface with the forward mode and generates trajectory tuple (s, a); the learner executes the interface with the
backward mode to compute gradients and update θ. Below we list several practical considerations why ES is a potentially
better distributed alternative to such gradient-based distributed algorithms in this specific context, where state/action spaces
are irregular.

• Communication. The data communication between learner-actor is more complex for general gradient-based algo-
rithms. Indeed, actors need to send partial trajectories {(si, ai, ri)}τi=1 to the learner, which requires careful adaptations
to cases where the state/action space are irregular. On the other hand, ES only require sending returns over trajectories∑T
i=0 ri, which greatly simplifies the interface from an engineering perspective.

• Updates. Gradient-based updates require both forward/backward mode of the agent interface. Further, the backward
mode function needs to be updated such that batched processing is efficient to allow for fast updates. For irregular
state/action space, this requires heavier engineering because of e.g. arrays of variable sizes are not straightforward to be

Reinforcement Learning for Integer Programming: Learning to Cut

Table 5: IGC in B&C with large-scale instances. We adopt the same setup as Table 2

Tasks Packing Planning Binary Max Cut

Size 60 × 60 122 × 168 66 × 132 54 × 134

NO CUT 0.26 ± 0.09 0.25 ± 0.04 0.74 ± 0.24 0.95 ± 0.09
RANDOM 0.31 ± 0.08 0.65 ± 0.10 0.94 ± 0.10 0.99 ± 0.04

MV 0.23 ± 0.08 0.27 ± 0.07 0.92 ± 0.12 0.98 ± 0.06
MNV 0.27 ± 0.08 0.33 ± 0.15 0.93 ± 0.10 1.0 ± 0.0

LE 0.28 ± 0.08 0.25 ± 0.04 0.95 ± 0.08 0.95 ± 0.09
RL 0.36± 0.10 0.99± 0.02 0.96± 0.08 1.0 ± 0.0

batched. On the other hand, ES only requires forward mode computations required by CPU actors.

G. Considerations on CPU Runtime
In practice, instead of the number of cuts, a more meaningful budget constraint on solvers is the CPU runtime, i.e.
practitioners typically set a runtime constraint on the solver and expect the solver to return the best possible solution within
this constraint. Below, we report runtime results for training/test time. We will show that even under runtime constraints, the
RL policy achieves significant performance gains.

Training time. During training time, it is not straightforward to explicitly maintain a constraint on the runtime, because it
is very sensitive to hardware conditions (e.g. number of available processors). Indeed, prior works (Khalil et al., 2016; Dai
et al., 2017) do not apply runtime constraint during training time, though runtime constraint is an important measure at test
time.

The absolute training time depends on specific hardware architecture. In our experiments we train with a single server with
64 virtual CPUs. Recall that each update consists in collecting trajectories across training instances and generating one
single gradient update. We observe that typically the convergence takes place in ≤ 500 weight updates (iterations).

Test time. To account for the practical effect of runtime, we need to account for the following trade-off: though RL based
policy produces higher-quality cutting planes in general, running the policy at test time could be costly. To characterize the
trade-offs, we address the following question: (1) When adding a fixed number of cuts, does RL lead to higher runtime? (2)
When solving a particular problem, does RL lead to performance gains in terms of runtime?

To address (1), we reuse the experiments in Experiment #2, i.e. adding a fixed number of cuts T = 50 on middle sized
problems. The runtime results are presented in Table 6, where we show that RL cutting plane selection does not increase the
runtime significantly compared to other ’fast’ heuristics. Indeed, RL increases the average runtime in some cases while
decreases in others. Intuitively, we expect the runtime gains to come from the fact that RL requires a smaller number of
cuts - leading to fewer iterations of the algorithm. However, this is rare in Experiment #2, where for most instances optimal
solution is not reached in maximum number of cuts, so all heuristics and RL add same number of cuts (T = 50). We expect
such advantages to become more significant with the increase of the size of the problem, as the computational gain of adding
good cuts becomes more relevant. We confirm such intuitions from the following.

To address (2), we reuse the results from Experiment #4, where we solve more difficult instances with B&C, we report
the runtime results in Table 7. In these cases, the benefits of high-quality cuts are magnified by a decreased number of
iterations (i.e. expanded nodes) - indeed, for RL policy, the advantages resulting from decreased iterations significantly
overweight the potentially slight drawbacks of per-iteration runtime. In Table 7, we see that RL generally requires much
smaller runtime than other heuristics, mainly due to a much smaller number of B&C iterations. Note that these results are
consistent with Figure 5. Again, for large-scale problems, this is an important advantage in terms of usage of memory and
overall performance of the system.

Reinforcement Learning for Integer Programming: Learning to Cut

Table 6: CPU runtime for adding cutting planes (units are seconds). Here we present the results from Experiment #2 from
the main text, where we fix the number of added cuts T = 50. Note that though RL might increase runtime in certain cases,
it achieves much larger IGC within the cut budgets. Note that these results are consistent with Table 2.

Tasks Packing Planning Binary Max Cut

Size 30 × 30 61 × 84 33 × 66 27 × 67

RANDOM 0.06 ± 0.01 0.09 ± 0.01 0.088 ± 0.003 0.08 ± 0.01
MV 0.9 ± 0.01 0.100 ± 0.004 0.10 ± 0.01 0.11 ± 0.01

MNV 0.10 ± 0.02 0.100 ± 0.004 0.12 ± 0.02 0.12 ± 0.01%
RL 0.10 ± 0.02 0.14 ± 0.03 0.07 ± 0.04 0.08 ± 0.02

Table 7: CPU runtime in B&C with large-scale instances. The measures are normalized with respect to RL so that the RL
runtime is always measured as 100%. Here, we measure the runtime as the time it takes to reach a certain level of IGC. We
only measure the runtime on test instances where the IGC level is reached within the node budgets. When the IGC is not
reached for most test instances (as in the case of the planning problem for most baselines), the runtime measure is ’N/A’.
Note that the results here are consistent with Table 3 and Figure 7.

Tasks Packing Planning Binary Max Cut

Size 60 × 60 122 × 168 66 × 132 54 × 134

RANDOM 146% N/A 190% 250%
MV 256% N/A 340% 210%

MNV 238% N/A 370% 95%
LE 120% N/A 370% 120%
RL 100% 100% 100% 100%

