
DropNet: Reducing Neural Network Complexity via Iterative Pruning
(Supplementary Material)

1. Summary
In this supplementary material, we present the following:

1. Results using more variants of Model C (Figs. 2, 3, 4,
5, 6, 7) on the CIFAR-10 dataset

2. Results using ResNet18 (Figs. 8, 9) and VGG19 (Figs.
10, 11) on the CIFAR-10 dataset

3. Results of random initialization of ResNet18 (Figs. 12,
13) and VGG19 (Figs. 14, 15) on the CIFAR-10 dataset

4. Results using ResNet18 (Figs. 16, 17) and VGG19
(Figs. 18, 19) on the Tiny ImageNet dataset

5. Performance comparison to Average Percentage of Ze-
ros (APoZ) (Hu et al., 2016) for ResNet18 (Figs. 20,
21) and VGG19 (Figs. 22, 23) on the CIFAR-10 dataset

The results show that DropNet is robust for larger models,
and the final pruned model is able to achieve a similar per-
formance even after reinitialization. DropNet also has bet-
ter empirical performance than prior data-driven approach
APoZ and is able to achieve better test accuracy for the same
amount of pruning.

2. Methodology
The supplementary experiments performed use the same
methodology as the main paper. In addition, to show Drop-
Net’s scalability, we also perform experiments on the Tiny
ImageNet dataset. We demonstrate how effective pruning
using DropNet can be done on larger models like Model C
(Conv4), ResNet18 and VGG19. For ResNet18 and VGG19,
the model architecture follows closely from the original pa-
pers (Simonyan & Zisserman, 2014; He et al., 2016) and
are detailed in Fig. 1.

Algorithm 1, which is used throughout the supplementary
material, is detailed in the main paper.

3. Experiments
3.1. CNN - CIFAR-10: Model C (Conv4)

Q1. Can DropNet perform robustly well on larger CNNs
of various starting configurations?

To address this question, we conduct an experiment us-
ing Algorithm 1 for various configurations of Model C on
CIFAR-10, listed as follows:

1.1) Model C: Conv64 - Conv64 - Conv128 - Conv128.
The plot of training and test accuracy against fraction
of filters remaining for various metrics are shown in
Figs. 2 and 5 respectively.

1.2) Model C: Conv128 - Conv128 - Conv128 - Conv128.
The plot of training accuracy and test accuracy against
fraction of filters remaining for various metrics are
shown in Figs. 3 and 6 respectively.

1.3) Model C: Conv128 - Conv128 - Conv64 - Conv64.
The plot of training accuracy and test accuracy against
fraction of filters remaining for various metrics are
shown in Figs. 4 and 7 respectively.

For 1.1), it can be seen (Figs. 2 and 5) that
the minimum layer metric performs the best, fol-
lowed by minimum, random layer, random, and
maximum layer and lastly maximum metric. The
minimum and minimum layer perform equally well
when the fraction of filters remaining is 0.3 and above.
The maximum metric can be seen to be consistently poor
when the fraction of filters remaining is 0.5 and below.
The random metric is in between the performance of the
minimum and maximum metrics.

For 1.2), it can be seen (Figs. 3 and 6) that the
minimum layer metric performs the best, fol-
lowed by random layer, random, minimum,
maximum layer and lastly maximum metric. The
minimum and minimum layer perform equally well
when the fraction of filters remaining is 0.3 and above. The
maximum metric can be seen to be consistently poor when
the fraction of filters remaining is 0.6 and below.

For 1.3), it can be seen (Figs. 4 and 7) that
the minimum layer metric performs the best, fol-
lowed by minimum, random layer, random, and
maximum layer and lastly maximum metric. The
minimum and minimum layer perform equally well
when the fraction of filters remaining is 0.4 and above, with
the minimum metric performing significantly better when
the fraction of filters remaining is 0.6 and above, even out-
performing the original model accuracy at some instances.
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ResNet18 VGG19

Figure 1. Architecture of ResNet18 (He et al., 2016) and VGG19 (Simonyan & Zisserman, 2014) used in the experiments. The layers
where the masks are applied are written with a postfix ‘[Mask]’, and shown in orange. ResNet18 (Left): The network architecture closely
follows that of ResNet18. It consists of several skip-connection blocks which are shown in square brackets. The model consists of
repeated residual blocks comprising two 2D convolutional layers followed by a MaxPooling2D layer of stride 2. Each 2D convolutional
layer comprises either 64, 128, 256 or 512 filters, of size 3x3 with ’same’ padding. After the multiple residual blocks, the filters are
averaged using GlobalAveragePooling2D before passing into the final fully connected layer with 10 nodes. The mask is applied after the
convolutional layer and before the MaxPooling2D layer. Batch Normalization is not applied between layers as the model is found to work
well even without it. VGG19 (Right): This is a network with repeated blocks of 2/4 2D convolutional layers followed by a MaxPooling2D
layer. The 2D convolutional layer comprises either 64, 128, 256 or 512 filters, of size 3x3 with ’same’ padding. The mask is applied after
the convolutional layer and before the MaxPooling2D layer. Batch normalization is applied right before every MaxPooling2D layer.

The maximum metric can be seen to be consistently poor
when the fraction of filters remaining is 0.8 and below.

Evaluation: The results show that minimum and
minimum layer are both competitive when less
than of half of the filters are dropped. Thereafter,
minimum layer performs significantly better. Using
DropNet, we can reduce the number of filters by 50% or
more without significantly affecting model accuracy, high-
lighting its effectiveness in reducing network complexity.

The results indicate that, for larger convolutional models
like Model C, global pruning methods like the minimum
metric are only good at the early stages of pruning. In fact,
for models with non-symmetric layers (see Figs. 4 and
7), minimum works the best when the fraction of filters
remaining is 0.5 and above, and may even outperform the
original model’s accuracy. We posit that this is due to the
flexibility of global pruning methods to avoid pruning small
layers which pose a bottleneck as compared to layer-wise
pruning methods. That said, not all global pruning methods
can do that - maximum and random do not display such a
trend of avoiding bottlenecks.

One further observation is that the train and test data show
similar accuracy trends (the same applies for validation
accuracy, although not shown here). This shows that the
train-test-validation split is done well and the general dis-
tribution of the train dataset is similar to that of the test
dataset. Hence, a metric to prune based on the node’s post-
activation value such as DropNet works well using just the
post-activation values from the training data only.

3.2. CNN - CIFAR-10: ResNet18/VGG19

Q2. Can DropNet perform robustly well on even larger
models such as ResNet18 and VGG19?

To address this question, we conduct an experiment using
Algorithm 1 for ResNet18 and VGG19 on CIFAR-10:

2.1) ResNet18. The plot of training and test accuracy
against fraction of filters remaining for various metrics
is shown in Figs. 8 and 9 respectively.

2.2) VGG19. The plot of training and test accuracy against
fraction of filters remaining for various metrics is
shown in Figs. 10 and 11 respectively.

For ResNet18, it can be seen (Figs. 8 and 9) that
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Figure 2. Plot of training accuracy against
fraction of filters remaining for various
metrics in Model C: Conv64 - Conv64 -
Conv128 - Conv128 on CIFAR-10

Figure 3. Plot of training accuracy against
fraction of filters remaining for various
metrics in Model C: Conv128 - Conv128
- Conv128 - Conv128 on CIFAR-10

Figure 4. Plot of training accuracy against
fraction of filters remaining for various
metrics in Model C: Conv128 - Conv128
- Conv64 - Conv64 on CIFAR-10

Figure 5. Plot of test accuracy against
fraction of filters remaining for various
metrics in Model C: Conv64 - Conv64 -
Conv128 - Conv128 on CIFAR-10

Figure 6. Plot of test accuracy against
fraction of filters remaining for various
metrics in Model C: Conv128 - Conv128
- Conv128 - Conv128 on CIFAR-10

Figure 7. Plot of test accuracy against
fraction of filters remaining for various
metrics in Model C: Conv128 - Conv128
- Conv64 - Conv64 on CIFAR-10

the minimum layer metric performs the best, fol-
lowed by minimum, then random layer, random,
maximum layer and and lastly maximum metric. The
minimum layer and minimum are both competitive.

For VGG19, it can be seen (Figs. 10 and 11) that the
minimum layer metric performs the best, followed by
random layer, random, max layer, minimum, and
and lastly maximum metric. The minimum layer metric
is the most competitive.

For both ResNet18 and VGG19, maximum can be seen to
be consistently poor when the fraction of filters remaining
is 0.5 and below, while maximum layer is consistently
poor when the fraction of filters remaining is 0.2 and below.

Evaluation: The results show that for larger mod-
els, minimum layer is the most competitive. It can
also be seen that with the exception of minimum and
maximum layer, the layer-wise metrics outperform the
global metrics for larger models. This shows that there
may be significant statistical differences between layers for
larger models such that comparing magnitudes across layers
may not be a good way to prune nodes/filters. That said,
the minimum layer can be seen to perform very well
and consistently performs better than random, which shows
promise that it is a good metric.

The minimum metric proves to be almost as competitive as
minimum layer for ResNet18, but performs worse than
random for VGG19. This shows that the skip connections in
ResNet18 does help to alleviate some of the pitfalls of global
metrics. Interestingly, the minimum metric tends to prune
out some skip connections completely, which shows that
certain skip connections are unnecessary. This means that
DropNet using the minimum metric is able to automatically
identify these redundant connections on its own.

In comparison, it can be seen that the maximum metric
performs the worse in all cases, and shows that filters with
high expected absolute post-activate values are generally
important in classification and should not be removed.

The maximum layer metric on the other hand, performs
poorly in ResNet18, but has comparable performance to the
layer-wise metrics in VGG19. This may be due to the fact
that VGG19 in the experiments use a Batch Normalization
after every change of Conv2D filter size, which helps to
normalize the post-activation values and hence, the layer-
wise pruning metrics do not differ much in performance.

Using DropNet, we can reduce the number of filters by
80% or more without significantly affecting model accuracy,
highlighting its effectiveness in reducing network complex-
ity.



DropNet: Reducing Neural Network Complexity via Iterative Pruning (Supplementary Material)

Figure 8. Plot of training accuracy against fraction of filters
remaining for various metrics in ResNet18 on CIFAR-10

Figure 9. Plot of test accuracy against fraction of filters re-
maining for various metrics in ResNet18 on CIFAR-10

Figure 10. Plot of training accuracy against fraction of filters
remaining for various metrics in VGG19 on CIFAR-10

Figure 11. Plot of test accuracy against fraction of filters re-
maining for various metrics in VGG19 on CIFAR-10

3.3. CNN - CIFAR-10: ResNet18/VGG19 (Random
Initialization)

Q3. Is the starting initialization of weights and biases im-
portant for larger models such as ResNet18 and VGG19?

We compare the performance of a network retaining
its initial weights and biases θ0 when performing itera-
tive node/filter pruning, as compared to a network with
the pruned architecture but with a random initialization
(randominit). In our experiments, we focus on the
pruned architecture produced by DropNet metrics, namely
minimum and minimum layer. The experiments are
conducted on CIFAR-10, and are detailed as follows:

3.1) ResNet18. The plot of test accuracy against fraction
of nodes remaining for original and random initializa-
tion using pruned model from minimum metric and
minimum layer metric respectively are shown in
Figs. 12 and 13.

3.2) VGG19. The plot of test accuracy against fraction
of nodes remaining for original and random initializa-
tion using pruned model from minimum metric and

minimum layer metric respectively are shown in
Figs. 14 and 15.

It can be seen (Figs. 12, 13, 14, 15) that unlike the Lot-
tery Ticket Hypothesis (see Figure 4 in (Frankle & Carbin,
2018)), DropNet does not suffer from loss of performance
when randomly initialized.

Evaluation: This means that for DropNet, only the final
pruned network architecture is important, and not the initial
weights and biases of the network. This is a pleasant finding
as it shows that DropNet can prune a model down to an ideal
structure, from which it can be readily deployed on modern
machine learning libraries.

3.4. CNN - Tiny ImageNet: ResNet18/VGG19

Q4. Can DropNet perform well for even larger datasets
such as Tiny ImageNet?

In order to show the generalizability of the DropNet al-
gorithm on larger datasets, we utilize the Tiny ImageNet
dataset, which is a smaller-resolution parallel of the larger
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Figure 12. Plot of test accuracy against fraction of filters re-
maining for original initialization and random initialization
in ResNet18 using pruned model from minimum metric on
CIFAR-10

Figure 13. Plot of test accuracy against fraction of filters re-
maining for original initialization and random initialization in
ResNet18 using pruned model from mininum layermetric
on CIFAR-10

Figure 14. Plot of test accuracy against fraction of filters re-
maining for original initialization and random initialization
in VGG19 using pruned model from minimum metric on
CIFAR-10

Figure 15. Plot of test accuracy against fraction of filters re-
maining for original initialization and random initialization in
VGG19 using pruned model from minimum layer metric
on CIFAR-10

ImageNet dataset. This dataset was taken from https:
//tiny-imagenet.herokuapp.com/.

Dataset Details: Tiny Imagenet has 200 classes. Each class
has 500 training images, 50 validation images, and 50 test
images. Each image has a resolution of 64 pixels by 64
pixels by 3 channels.

Changes to model parameters: We utilize a similar model
for ResNet18 and VGG19 as in the earlier experiment with
CIFAR-10. We only modify the models slightly in order to
cater for the 200 output classes of Tiny ImageNet, which
is an increase from the 10 output classes in CIFAR-10. As
such, the last linear layer for ResNet18 has 200 nodes (in-
stead of 10 nodes for CIFAR-10), while the last two linear
layers for VGG19 has 1024 nodes and 200 nodes respec-
tively (instead of 256 nodes and 10 nodes respectively for
CIFAR-10).

Table 1. Image Augmentation Parameters

METRIC VALUE

ROTATION 40 DEGREE
WIDTH SHIFT RANGE 0.2
HEIGHT SHIFT RANGE 0.2

ZOOM RANGE 0.2
SHEAR RANGE 0.2

FLIPPING HORIZONTAL

Due to the complexity of this dataset, in order to attain better
train/test accuracies, we apply image augmentation to each
data sample per epoch. The image augmentation parameters
applied are shown in Table 1.

In order to give the model more time to converge for this
larger dataset, we also increase the number of epochs before
early stopping to 10 (instead of 5 in earlier experiments).

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/
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Figure 16. Plot of training accuracy against fraction of filters
remaining for various metrics in ResNet18 on TinyImageNet

Figure 17. Plot of test accuracy against fraction of filters re-
maining for various metrics in ResNet18 on TinyImageNet

Figure 18. Plot of training accuracy against fraction of filters
remaining for various metrics in VGG19 on TinyImageNet

Figure 19. Plot of test accuracy against fraction of filters re-
maining for various metrics in VGG19 on TinyImageNet

Also, in order to reduce experimental running time for Tiny
ImageNet, we drop at each pruning cycle a fraction 0.5 of
the filters (instead of 0.2 for CIFAR-10).

Experiments: We conduct an experiment using Algorithm
1 for ResNet18 and VGG19 on Tiny ImageNet:

4.1) ResNet18. The plot of training and test accuracy
against fraction of filters remaining for various metrics
is shown in Figs. 16 and 17 respectively.

4.2) VGG19. The plot of training and test accuracy against
fraction of filters remaining for various metrics is
shown in Figs. 18 and 19 respectively.

For ResNet18, it can be seen (Figs. 16 and 17)
that minimum metric and minimum layer metrics
have the most competitive performance, followed by
random layer, random, maximum layer and and
lastly maximum metric. The minimum metric is the most
competitive.

For VGG19, it can be seen (Figs. 18 and 19) that the
minimum layer metric performs the best, followed by

random, random layer, max layer, aximum, and
and lastly minimum metric. The minimum layer metric
is the most competitive.

For both ResNet18 and VGG19, maximum can be seen to
be consistently poor when the fraction of filters remaining
is 0.3 and below. Surprisingly, minimum has the poorest
performance for VGG19.

Evaluation: The results show that for ResNet18, minimum
performs the best. This is similar to the results obtained on
the CIFAR-10 dataset (Refer to Figs. 8 and 9). This could
be the fact that the skip connections in ResNet18 allow the
pruned model to perform well even if majority of the layer
is removed, and gives greater redundancy for pruning. With
such redundancy, some of the pitfalls of global pruning
methods can be alleviated.

For VGG19, minimum layer performs the best, while
minimum performs the worst. This could again be because
there is no redundancy in the layers for VGG19 and if one
layer gets pruned aggressively by a global metric, it might
affect performance negatively. The drop in performance of
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minimum is worse in the Tiny ImageNet dataset as com-
pared to the CIFAR-10 dataset (Refer to Figs. 10 and 11)
likely because the proportion of filters dropped per pruning
cycle is larger at 0.5 as compared to 0.2, hence there is a
greater chance of a layer getting pruned aggressively.

Similar to the CIFAR-10 experiments, the experiments
on the larger Tiny ImageNet dataset also suggest that
the minimum and minimum layer are both compet-
itive in ResNet18. For most models, the layer-wise
minimum layer metric is a general all-round metric to
be used.

Using DropNet, we can reduce the number of filters by
50% or more without significantly affecting model accuracy,
highlighting its effectiveness in reducing network complex-
ity.

4. Benchmarking against APoZ
Q5. Does DropNet perform better than prior data-driven
pruning methods?

While we utilize an oracle for smaller model sizes such as
Model A and B, in order to evaluate the effectiveness of
DropNet for larger models, we compare its performance to
a similar data-driven metric known as Average Percentage
of Zeros (APoZ) (Hu et al., 2016).

APoZ measures the percentage of zero activations of a neu-
ron after a ReLU activation function. The neuron/filter with
the highest percentage of zero activations is considered least
important and is pruned first.

In their original paper (Hu et al., 2016), APoZ used a variant
of layer-wise pruning, where they first prune “a few layers
with high mean APoZ, and then progressively trim its neigh-
boring layers”. In order to keep the methodology consistent
to that of DropNet, we adapt the same APoZ metric of per-
centage of zero activations of a neuron/filter after a ReLU
activation, but use DropNet’s layer-wise and global-wise
iterative pruning approaches as depicted in Algorithm 1.
APoZ using layer-wise pruning is termed apoz layer,
while APoZ using global pruning is termed apoz. We
compare its performance to DropNet’s layer-wise pruning
minimum layer and global pruning minimum.

We conduct an experiment to compare DropNet and APoZ
using Algorithm 1 for ResNet18 and VGG19 on CIFAR-10:

5.1) ResNet18. The plot of training and test accuracy
against fraction of filters remaining for DropNet and
APoZ is shown in Figs. 20 and 21 respectively.

5.2) VGG19. The plot of training and test accuracy against
fraction of filters remaining for DropNet and APoZ is
shown in Figs. 22 and 23 respectively.

For ResNet18, it can be seen (Figs. 20 and 21) that the

minimum layer and apoz layer both perform the
best, followed closely by minimum, then the apoz. After
a fraction of 0.7 or more filters are pruned, the apoz metric
suffers a huge performance drop.

For VGG19, it can be seen (Figs. 22 and 23) that
the minimum layer performs the best, followed by
apoz layer, then minimum and finally apoz. After a
fraction of 0.3 or more filters are pruned, the global metrics
apoz and minimum suffer a huge performance drop.

Evaluation: The results show that DropNet in general
outperforms APoZ, both layer-wise and globally. In
general, for the same amount of filters pruned, Drop-
Net achieves higher test accuracy than APoZ. The
minimum layer metric is consistently the best perform-
ing metric across both ResNet18 and VGG19 models,
outperforming apoz layer. For global metrics, the
minimum metric also consistently outperforms apoz. No-
tably, while the minimum metric has good performance for
ResNet18, the same performance is not seen in apoz.

This shows that DropNet has merit as a data-driven prun-
ing approach, as it captures more information about the
importance of a particular node/filter through the use of
the expected absolute value. This is an improvement from
APoZ, as it also takes into account the magnitudes of the
post-activation values, rather than just only relying on the
percentage of zero activations of a node/filter.

5. Concluding Remarks
The results show that DropNet shows significantly better
performance than random pruning, even for larger models
such as ResNet18 and VGG19. DropNet also manages
to achieve higher test accuracy for the same amount of
pruning as compared to prior work APoZ, highlighting its
competency. DropNet is a highly-effective general-purpose
pruning algorithm able to work on datasets of varying sizes
such as MNIST, CIFAR-10 and Tiny ImageNet. Overall,
DropNet is able to prune up to 90% or more of nodes/filters
without significant loss of accuracy.

Global or layer-wise pruning: As shown in the main pa-
per, if we are pruning small models such as Model A or
Model B, minimum works well. Furthermore, we show
here that in large models such as Model C, minimum shows
promise in avoiding pruning bottlenecks as compared to its
layer-wise counterpart minimum layer, and gives signif-
icantly better performance if we are just pruning a small
fraction of the original model. However, when pruning even
larger models such as ResNet18 and VGG19, we show that
it is better to use minimum layer instead. One reason
for this may be that the statistical properties of the post-
activation values of each layer may differ significantly as
the model grows large, and a global metric for all the layers
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Figure 20. Plot of training accuracy against fraction of filters
remaining for DropNet and APoZ in ResNet18 on CIFAR-10

Figure 21. Plot of test accuracy against fraction of filters re-
maining for DropNet and APoZ in ResNet18 on CIFAR-10

Figure 22. Plot of training accuracy against fraction of filters
remaining for DropNet and APoZ in VGG19 on CIFAR-10

Figure 23. Plot of test accuracy against fraction of filters re-
maining for DropNet and APoZ in VGG19 on CIFAR-10

may not work as well. That said, the empirical results of
ResNet18 show that minimum can be competitive as well
for these larger models, which suggests that skip connec-
tions may be able to alleviate the pitfalls of global metrics.
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