
Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Edric Tam 1 David Dunson 1

Abstract
We introduce a novel regularization approach for
deep learning that incorporates and respects the
underlying graphical structure of the neural net-
work. Existing regularization methods often focus
on penalizing weights in a global/uniform man-
ner that ignores the connectivity structure of the
neural network. We propose to use the Fiedler
value of the neural network’s underlying graph as
a tool for regularization. We provide theoretical
support for this approach via spectral graph theory.
We show several useful properties of the Fiedler
value that make it suitable for regularization. We
provide an approximate, variational approach for
faster computation during training. We provide an
alternative formulation of this framework in the
form of a structurally weighted L1 penalty, thus
linking our approach to sparsity induction. We
performed experiments on datasets that compare
Fiedler regularization with traditional regulariza-
tion methods such as Dropout and weight decay.
Results demonstrate the efficacy of Fiedler regu-
larization.

1. Introduction
Neural networks (NNs) are important tools with many ap-
plications in various machine learning domains such as
computer vision, natural language processing and reinforce-
ment learning. NNs have been very effective in settings
where large labeled datasets are available. Empirical and
theoretical evidence has pointed to the ever-increasing ca-
pacity of recent NN models, both in depth and width, as
an important contributor to their modeling flexibility and
success. However, even the largest datasets can still be po-
tentially overfitted by NNs with millions of parameters or
more. A wide range of techniques for regularizing NNs
have thus been developed. These techniques often regu-

1Department of Statistical Science, Duke Univer-
sity, Durham, NC, USA. Correspondence to: Edric Tam
<edric.tam@duke.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

larize the network from a global/uniform perspective, e.g.
weight decay (Krogh & Hertz, 1992), L1/L2 penalization
of weights, dropping nodes/weights in a Bernoulli manner
with uniform probability across units/layers (Hinton et al.,
2012; Srivastava et al., 2014; Wan et al., 2013), or stopping
training early. These commonly used approaches ignore
the NN’s underlying graphical structure, which can provide
valuable connectivity information for regularization.

One natural generalization of these existing approaches is to
take the graph structure of the NN into consideration during
regularization. Existing feedforward NN architectures, e.g.
multi-layer perceptrons, frequently employ fully connected
layers that lead to many redundant paths between nodes of
the network. These redundant connections can contribute
to over-fitting through the phenomenon of co-adaptation,
where weights become dependent on one another, leading
to highly correlated behavior amongst different hidden units
(Hinton et al., 2012). Empirical work has shown that drop-
ping weights and nodes randomly during training can signif-
icantly improve test performance by reducing co-adaptation
(Hinton et al., 2012; Srivastava et al., 2014; Wan et al.,
2013).

In this work, we would like to regularize the NN through
reducing co-adaptation and penalizing extraneous connec-
tions in a way that respects the NN’s graphical/connectivity
structure. We introduce Fiedler regularization, borrowing
from advances in spectral graph theory (Godsil & Royle,
2013; Chung, 1997; Spielman, 2019). The Fiedler value of
a connected graph, denoted λ2, also known as the algebraic
connectivity, is the second smallest eigenvalue of the graph’s
Laplacian matrix. Its magnitude characterizes how well con-
nected a graph is. By adding the Fiedler value as a penalty
term to the loss function during training, we can penalize the
connectedness of the NN and reduce co-adaptation while
taking into account the graph’s connectivity structure. We
also explore several useful characteristics of the Fiedler
value. We show that the Fiedler value is a concave function
on the sizes of the NN’s weights, implying that using it
as a penalty will not substantially worsen the optimization
landscape. We additionally show that the Fiedler value’s gra-
dient with respect to the network’s weights admits a closed
form expression, which allows for direct employment of
existing gradient-based stochastic optimization techniques
for Fiedler regularization.

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

In practice, for larger networks, to speed up computation, we
propose a variational approach, which replaces the original
Fiedler value penalty term by a quadratic form of the graph
Laplacian. When used together with the so called test vec-
tors, such a Laplacian quadratic form sharply upper bounds
the Fiedler value. This variational approximation allows
for substantial speedups during training. We give an alter-
nate but equivalent formulation of the variational penalty in
terms of a structurally weighted L1 penalization, where the
weights depend on the (approximate) second eigenvector of
the graph Laplacian. This L1 formulation allows us to link
Fiedler regularization to sparsity induction, similar to the
parallel literature in statistics (Tibshirani, 1996; Zou, 2006).

There has been prior work on using the Laplacian struc-
ture of the input data to regularize NNs (Kipf & Welling,
2016; Jiang & Lin, 2018; Zeng et al., 2019). There has also
been recent work on understanding regularization on NNs
in Bayesian (Vladimirova et al., 2018; Polson & Ročková,
2018) as well as other settings. These approaches do not
consider the graphical connectivity structure of the underly-
ing NN. The main contributions of the paper include: (1) to
the authors’ best knowledge, this is the first application of
spectral graph theory and Fiedler values in regularization of
NNs via their own underlying graphical/connectivity struc-
tures. (2) We give practical and fast approaches for Fiedler
regularization, along with strong theoretical guarantees and
experimental performances.

2. Spectral Graph Theory
2.1. Setup and Background

Let W denote the set of weights of a feedforward NN f .
We denote f ’s underlying graph structure as G. We would
like to use structural information from G to regularize f
during training. Feedforward NNs do not allow for self-
loops or recurrent connections, hence it suffices that G be
a finite, connected, simple, weighted and undirected graph
in this setting. Such a graph G can be fully specified by a
triplet (V,E, |W |), where | · | denotes the absolute value
mapping. The vertex set V of G corresponds to all the units
(including units in the input and output layers) in the NN
f , while the edge set E of G corresponds to all the edges
in f . For our purposes of regularization, G is restricted to
have non-negative weights |W |, which are taken to be the
absolute value of the corresponding weights W in the NN f .
Throughout the paper we will use n to denote the number of
vertices in G. |W | and E can be jointly represented by an
n× n weighted adjacency matrix |W|, where |W|ij is the
weight on the edge (i, j) if vertices i and j are connected,
and 0 otherwise. The degree matrix D of the graph is a n×n
diagonal matrix, where Dii =

∑n
j=1 |W|ij . The Laplacian

matrix L, which is a central object of study in spectral
graph theory, is defined as the difference between the degree

and the adjacency matrix, i.e. L = D − |W|. In certain
contexts where we would like to emphasize the dependency
of L on the particular graph G or the weights |W|, we
will adopt the notation LG or L|W|. We use [M] to denote
the set {1, 2, · · · ,M} for positive integer M . Throughout
the paper, eigenvalues are real-valued since the matrices
under consideration are symmetric. We adopt the convention
where all eigenvectors are taken to be unit vectors. We order
the eigenvalues in ascending order, so λi ≤ λj for i < j.
When we want to emphasize λi as a function of the weights,
we use λi(|W|). We use vi to denote the corresponding
eigenvector for λi. We use n(S) to denote the cardinality of
a given set S.

2.2. Graph Laplacian

The Laplacian matrix encodes much information about the
structure of a graph. One particularly useful characterization
of the graph Laplacian is through the so called Laplacian
quadratic form (Batson et al., 2012; Spielman, 2019; Chung,
1997), defined below.

Definition 2.2.1 (Laplacian quadratic form) Given a
graph G = (V,E, |W |), define its Laplacian quadratic
form QG : R|V | → R+ as

QG(z) := zTLGz =
∑

(i,j)∈E

|W|ij(z(i)− z(j))2

where z(k) denotes the kth entry of the vector z ∈ R|V |.

The Laplacian quadratic form demonstrates how a graph’s
boundary information can be recovered from its Laplacian
matrix. One can think of z as a mapping that assigns to each
vertex a value. If we denote the characteristic vector of a
subset of vertices S ⊂ V as 1S , i.e. 1S(i) = 1 if i ∈ S and
1S(i) = 0 otherwise, and apply it to the Laplacian quadratic
form, we obtain 1TSLG1S =

∑
(i,j)∈E,i∈S,j 6∈S |W|ij . This

expression characterizes the size of the graph cut (S, V −S),
which is the sum of the weights of edges crossing the bound-
ary between S and V − S. The size of any graph cut can
therefore be obtained by application of the corresponding
characteristic vector on the Laplacian quadratic form.

2.3. Edge Expansion and Cheeger’s Inequality

The above discussion on the sizes of graph cuts is highly
related to our study of regularizing a NN. Reducing the sizes
of graph cuts in a NN would imply reducing the NN’s con-
nectivity and potentially co-adaptation. A related but more
convenient construct that captures this notion of boundary
sizes in a graph is the graph’s edge expansion (also known
as the Cheeger constant or the isoperimetric number), which
can be informally thought of as the smallest “surface-area-to-
volume ratio” achieved by a subset of vertices not exceeding
half of the graph.

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Definition 2.3.1 (Edge expansion of a graph) The edge
expansion φG of a graph G = (V,E, |W |) is defined as

φG = min
S⊂V,n(S)≤n(V)

2

∑
i∈S,j 6∈S |W|ij
n(S)

,

where n(S) denotes the number of vertices in S.

Observe that the term in the numerator characterizes the
size of the graph cut (S, V − S), while the denominator
normalizes the expression by the number of vertices in S.
The edge expansion is then taken to be the smallest such
ratio achieved by a set of vertices S that has cardinality at
most half that of V . One can think of the edge expansion
of a graph as characterizing the connectivity bottleneck of
a graph. It is highly related to how sparse the graph is and
whether there exist nice planar embeddings of the graph
(Hall, 1970).

We would like to control the edge expansion of the NN’s
underlying graph for regularization. Direct optimization
of edge expansion is a difficult problem due to the combi-
natorial structure. Instead, we control the edge expansion
indirectly through the Fiedler value λ2, the second smallest
eigenvalue of the graph’s Laplacian L. λ2 is related to the
edge expansion of the graph through Cheeger’s inequality
(Spielman, 2019; Chung, 1997; Godsil & Royle, 2013).

Proposition 2.3.2 (Cheeger’s inequality) Given a graph
G = (V,E, |W |), the edge expansion φG is upper and
lower bounded as follows:√

2dmax(G)λ2 ≥ φG ≥
λ2

2
,

where dmax(G) is the maximum (weighted) degree of ver-
tices in G and λ2, the Fiedler value, is the second smallest
eigenvalue of G’s Laplacian matrix.

Cheeger’s inequality originally arose from the study of
Riemannian manifolds and was later extended to graphs.
There are many versions of Cheeger’s inequality depend-
ing on the types of graphs and normalizations used. The
proofs can be found in many references, including (Spiel-
man, 2019; Chung, 1997; Godsil & Royle, 2013). These
types of Cheeger’s inequalities are generally tight asymptot-
ically up to constant factors.

The Fiedler value is also known as the algebraic connec-
tivity because it encodes considerable information about
the connectedness of a graph. Cheeger’s inequality allows
sharp control over the edge expansion of G via the Fiedler
value. By making the Fiedler value small, we can force
the edge expansion of the graph to be small, thus reducing
the connectedness of the graph and potentially alleviating
co-adaptation in the NN setting. On the other hand, a large
Fiedler value necessarily implies a large edge expansion.
This shows that penalization of the Fiedler value during

NN training is a promising regularization strategy to reduce
connectivity and thus co-adaptation.

3. Fiedler Regularization
3.1. Supervised Classification Setup

We now consider the classical setup for classification. Given
training data {xi, yi}Ni=1, where i indexes the N data points,
x ∈ Rd denotes the independent d-dimensional feature
vectors, y ∈ [M] denotes the labels and M is the number
of categories, we aim to find a mapping f that predicts
y through f(x) so that some pre-specified loss L(f(x), y)
is minimized in the test data. Typical choices of the loss
function L(·, ·) include the cross-entropy loss, hinge loss
etc. It is assumed that new observations in the testing set
follow the same distribution as the training data. We will
denote the estimator of f as f̂ . When we want to emphasize
the estimator’s dependence on the weights, we will use f̂W .

For feedforward NNs, f̂ is characterized as a composi-
tion of non-linear functions {g(l)}Λl=1, i.e. f̂ = g(Λ) ◦
g(Λ−1) ◦ · · · ◦ g(1)(x), where Λ is the number of layers
in the network. The outputs of the lth layer have the form
h(l) := g(l)(h(l−1)) := σσσ(l)(W(l)h(l−1) + b(l)), where
σσσ(l), W(l) and b(l) are the activation function, weight ma-
trix and bias of the lth layer of the NN, respectively. In
essence, each hidden layer first performs an affine trans-
formation on the previous layer’s outputs, followed by an
element-wise activation that is generally nonlinear. For
more details on this setup, see the excellent review (Fan
et al., 2019).

3.2. Penalizing with Fiedler Value

Given the motivations from section 2, we would like to
penalize the connectivity of the NN during training. In the
Fiedler regularization approach, we add λ2 as a penalty term
to the objective.

Definition 3.2.1 (Fiedler regularization) During training
of the neural network, we optimize the following objective:

min
W
L(Y, f̂W(X)) + δλ2(|W|),

where λ2(|W|) is the Fiedler value of the NN’s underlying
graph, W is the weight matrix of the NN, δ is a tuning
parameter, and Y and X denote the training labels and
training features, respectively.

We remark that the actual NN f̂W will have weights that can
be negative, but the regularization term λ2(|W|) will only
depend on the sizes of such weights, which can be thought
of as edge capacities of the underlying graph G.

Note that one can generalize the penalty by applying a differ-
entiable function Q to λ2. For our discussion below, we will

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

focus on the case where no Q is applied in order to focus
the analysis on the Fiedler value. However, incorporating Q
is straightforward, and desirable properties such as having
a closed-form gradient can generally be retained. We also
note that, without loss of generality, one can consider the
biases of the units in the NN as additional weights with con-
stant inputs, so it is straightforward to include consideration
of both biases and weights in Fiedler regularization.

For our purposes, we consider the main parameters of inter-
est to be the weights of the NN. The choice of the activation
function(s), architecture, as well as the choice of hyperpa-
rameters such as the learning rate or the tuning factor etc.
are all considered to be pre-specified in our study. There is a
separate and rich literature devoted to methods for selecting
activation functions/architectures/hyperparameters that we
will not consider here.

3.3. Properties of the Fiedler Value

It is instructive to examine some properties of the Fiedler
value in order to understand why it is an appropriate tool for
regularization.

First, one concern is whether using the Fiedler value as
a penalty in the objective would complicate the optimiza-
tion process. The Fiedler value can be viewed as a root
of the Laplacian matrix’s characteristic polynomial, which
in higher dimensions has no closed-form solution and can
depend on the network’s weights in a convoluted manner.

To address this concern, the following proposition shows
that the Fiedler penalty is a concave function of the sizes of
the NN’s weights. This shows that when we add the Fiedler
penalty to deep learning objectives, which are typically
highly non-convex, we are not adding substantially to the
optimization problem’s difficulty.

Proposition 3.3.1 (Concavity of Fiedler Value) The func-
tion λ2(|W |) is a concave function of the sizes of the NN’s
weights |W |.

Proof: Since the Fiedler value λ2 is just the second smallest
eigenvalue of the Laplacian, and we know that the first eigen-
vector of the Laplacian must be constant, we can consider
λ2’s Rayleigh-Ritz variational characterization as follows:

λ2(|W|) = inf
||u||=1,uT 1=0

uTLu

= inf
||u||=1,uT 1=0

∑
(i,j)∈E

|W|ij(u(i)− u(j))2

Note that this is a pointwise infimum of a linear function of
|W|ij . Since linear functions are concave (and convex), and
the pointwise infimum preserves concavity, we have that λ2

is a concave function of the sizes of the weights. �

This is related to Laplacian eigenvalue optimization prob-

lems and we refer to (Boyd, 2006) and (Sun et al., 2006) for
a more general treatment.

3.4. Closed-form Expression of Gradient

In all except the most simple of cases, optimizing the
loss function minWL(Y, fW(X)) is a non-convex problem.
There are a variety of scalable, stochastic algorithms for
practical optimization on such objectives. Virtually all of
the widely used methods, such as stochastic gradient de-
scent (SGD) (Ruder, 2016), Adam (Kingma & Ba, 2014),
Adagrad (Duchi et al., 2011), RMSProp (Graves, 2013) etc,
require computation of the gradient of the objective with
respect to the parameters. We provide a closed-form ana-
lytical expression of the gradients of a general Laplacian
eigenvalue with respect to the entries of the Laplacian ma-
trix. From that, as a straightforward corollary, a closed-form
analytical expression of the Fiedler value’s gradient is ob-
tained.

Proposition 3.4.1 (Gradient of Laplacian Eigenvalue)
Assuming that the eigenvalues of the Laplacian L are not
repeated, the gradient of the kth smallest eigenvalue λk with
respect to L’s (ij)th entry Lij can be analytically expressed
as

dλk
dLij

= vk(i)× vk(j),

where vk(i) denotes the ith entry of the kth eigenvector of
the Laplacian. We adopt the convention in which all eigen-
vectors under consideration are unit vectors.

Proof: To compute dλk

dLij
, note that since the Laplacian ma-

trix is symmetric, all eigenvalues are real. By assumption,
the eigenvalues are not repeated. Under this situation, there
is an existing closed-form formulae (see (Petersen et al.,
2008)): vTk (∂L)vk = dλk. Specializing to individual en-
tries, we get dλk

dLij
= vk(i)× vk(j). �

Corollary 3.4.2 (Gradient of Fiedler value with respect
to weights) As an immediate special case of Proposition
3.4.1, the gradient of the Fiedler value λ2 can be expressed
as:

dλ2

dLij
= v2(i)× v2(j)

Since Lij = −|W|ij for i 6= j, this yields the following
gradient for non-zero weights:

dλ2

d|W|ij
= −v2(i)× v2(j)

One can remove the absolute value mapping in the gradient
by a simple application of the chain rule. Using the above
gradient expression, we can perform weight updates in exist-
ing deep learning libraries using a wide variety of stochastic
optimization methods.

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Our assumption that the eigenvalues are not repeated gen-
erally holds in the context of NNs. The weights in a NN
are usually initialized as independent draws from certain
continuous distributions, such as the uniform or the Gaus-
sian. Repeated Laplacian eigenvalues often occur when
there are strong symmetries in the graph. Such symmetries
are typically broken in the context of NNs since the proba-
bility of different weights taking the same non-zero value at
initialization or during training is negligible.

4. Variational, Approximate Approach for
Computational Speedup

We have given theoretical motivation and outlined the use
of the Fiedler value as a tool for NN regularization. How-
ever, typical matrix computations for eigenvalues and eigen-
vectors are of order O(n3), where n = |V |. This can be
computationally prohibitive for moderate to large networks.
Even though there exist theoretically much more efficient al-
gorithms to approximate eigenvalues/eigenvectors of graph-
related matrices, in practice computing the Fiedler value in
every iteration of training can prove costly. To circumvent
this issue, we propose an approximate, variational approach
to speed up the computation to O(|E|), where |E| is the
number of edges in the graph. This proposed approach can
be readily implemented in popular deep learning packages
such as Tensorflow and PyTorch.

We make the following observations. First, for the purpose
of regularizing a NN, we do not need the exact Fiedler value
of the Laplacian matrix. A good approximation suffices.
Second, there is no need to update our approximate λ2 at
every iteration during training. We can set a schedule to
update our λ2 approximation periodically, say once every
100 iterations. The frequency of updates can be treated as a
new hyperparameter. Both of these observations allow for
substantial speedups in practice. An outline of the pseudo-
code for this approximate, variational approach is provided
in Algorithm 1 below.

To obtain an approximate Fiedler value, we use a special
type of Laplacian quadratic form involving the so called
test vectors. We additionally provide a perturbation bound
that gives justification for periodically updating the Fiedler
value.

4.1. Rayleigh Quotient Characterization of Eigenvalues

We can closely upper-bound the Fiedler value via the notion
of test vectors (Spielman, 2019), which depends crucially
upon the Rayleigh quotient characterization of eigenvalues.

Proposition 4.1.1 (Test Vector Bound) For any unit vector
u that is perpendicular to the constant vector 1, we have:

λ2 ≤ uTLu

Any such unit vector is called a test vector. Equality is
achieved when u = v2.

Proof: The Laplacian matrix of a non-negatively weighted
graph is symmetric and positive semidefinite. Thus all eigen-
values are real and non-negative. In particular, the smallest
eigenvalue of the Laplacian is 0, with the constant vector be-
ing the first eigenvector. For a connected graph, the second
smallest eigenvalue, which is the Fiedler value, can thus be
variationally characterized by λ2 = min||u||=1,uT 1=0 uTLu.
This gives us the desired upper bound. �

The above description implies that by appropriately choos-
ing test vectors, we can effectively upper bound the Fiedler
value. This in turn implies that during training, instead of
penalizing by the exact Fiedler value, we can penalize by
the quadratic form upper bound instead. In other words, we
would perform the following optimization,

min
W
L(Y, f̂W(X)) + δuTLu

For a given u, this speeds up computation of the
penalty term considerably to O(|E|) since uTLu =∑

(i,j)∈E |W|ij(u(i)− u(j))2. The core question now be-
comes how to choose appropriate test vectors u that are
close to v2.

We propose to initialize training with the exact v2 and re-
compute/update v2 only periodically during training. For an
iteration in between two exact v2 updates, the v2 from the
previous update carries over and serves as the test vector for
the current iteration. By proposition 4.1.1, this will always
upper-bound the true λ2.

During training, weights of the NN are updated at each
iteration. This is equivalent to adding a symmetric matrix H
to the Laplacian matrix L, which is also symmetric, at every
iteration. We can bound the effect of such a perturbation
on the eigenvalues via Weyl’s inequality (Horn & Johnson,
2012; Horn et al., 1998).

Proposition 4.1.2 (Weyl’s Inequality) Given a symmetric
matrix L and a symmetric perturbation matrix H, both with
dimension n× n, for any 1 ≤ i ≤ n, we have:

|λi(L + H)− λi(L)| ≤ ||H||op

where || · ||op denotes the operator norm.

Weyl’s inequality is a classic result in matrix analysis, and
its proof can be found in the excellent reference (Horn &
Johnson, 2012) as a straightforward result of linearity and
the Courant-Fischer theorem. As an immediate special case,
|λ2(L + H)− λ2(L)| ≤ ||H||op. Proposition 4.1.2 tells us
that as long as the perturbation H is small, the change in
Fiedler value caused by the perturbation will also be small.
In fact, this shows that the map L→ λ2(L) is Lipschitz con-
tinuous on the space of symmetric matrices. In the context

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Algorithm 1 Variational Fiedler Regularization with SGD
Input: Training data {xi, yi}Ni=1

Hyperparameters: Learning rate η, batch size m,
penalty parameter δ, updating period T
Algorithm:
Initialize parameters W of the NN
Compute the Laplacian L|W| of the NN
Compute the Fiedler vector v2 of the Laplacian L|W|
Set u← v2

Initialize counter c = 0
while Stopping criterion not met do

Sample minibatch {x(i), y(i)}mi=1 from training set
Set gradient γγγ = 0
for i = 1 to m do

Compute gradient γγγ ← γγγ+∇WL(f̂W(x(i)), y(i))+
δ∇WuTL|W|u

end for
Apply gradient update W←W − ηγγγ
Update Laplacian matrix L|W|
Update counter c← c+ 1
if c mod T = 0 then

Recompute v2 from L|W|
Set u← v2

end if
end while

of training NNs, H represents the updates to the weights of
the network during training. This justifies updating λ2 only
periodically for the purposes of regularization. It suggests
that with a smaller learning rate, H would be smaller, and
therefore the change to λ2 would also be smaller, and up-
dates of the test vectors can be more spaced apart. On the
other hand, for larger learning rates we recommend using up-
dating test vectors more frequently. Alternatively, a similar
bound on eigenvector perturbation could be established via
the Davis-Kahan Sin-Θ inequality, but is omitted here since
the eigenvalue bound suffices for Fiedler regularization.

5. Weighted-L1 formulation and Sparsity
We now expand on an equivalent formulation of the varia-
tional Fiedler penalty as a weighted L1 penalty. We note
that the Laplacian quadratic form in the variational Fiedler
penalty can be written as uTLu =

∑
(i,j)∈E |W|ij(u(i)−

u(j))2. This yields the variational objective:

min
W
L(Y, f̂W(X)) + δ

∑
(i,j)∈E

|W|ij(u(i)− u(j))2

We note that both |W|ij and (u(i)−u(j))2 are non-negative.
This is equivalent to performing L1 penalization on Wij

with weights (u(i)− u(j))2.

There is an immense literature on modified L1 penalties in

shallow models (Zou, 2006; Candes et al., 2008). It is well
known that optimizing an objective under (weighted) L1

constraints often yields sparse solutions. This thus connects
our Fiedler regularization approach with sparsity induction
on the weights of the NN.

In Fiedler regularization, the weights |W|ij are scaled by a
factor of (u(i)−u(j))2, where u is a test vector that approx-
imates v2. From the spectral clustering literature (Hagen
& Kahng, 1992; Donath & Hoffman, 1972), we understand
that v2 is very useful for approximating the minimum con-
ductance cut of a graph. The usual heuristic is that one
sorts entries of v2 in ascending order, sets a threshold t, and
groups all vertices i having v2 > t into one cluster and the
rest into another cluster. If the threshold t is chosen opti-
mally, this clustering will be a good approximation to the
minimum conductance cut of a graph. As such, the farther
apart v2(i) and v2(j) are, (1) the edge between nodes i and
j (if it exists) is likely “less important” for the connectivity
structure of the graph (2) the more likely that nodes i and j
belong to different clusters.

This is also connected to spectral drawing of graphs (Spiel-
man, 2019; Hall, 1970), where it can be shown that “nice”
planar embeddings/drawings of the graph do not exist if λ2

is large. In this sense, Fiedler regularization is forcing the
NN to be “more planar” while respecting its connectivity
structure.

Hence, with Fiedler regularization, the penalization on
|W|ij is the strongest when this edge is “less important”
for the graph’s connectivity structure. This would in the-
ory lead to greater sparsity in edges that have low weights
and connect distant vertices belonging to different clusters.
Thus, Fiedler regularization sparsifies the NN in a way that
respects its connectivity structure.

To this end, an alternative guarantee is the ordering prop-
erty of Laplacian eigenvalues with respect to a sequence of
graphs (Godsil & Royle, 2013).

Proposition 5.1 (Laplacian Eigenvalue Ordering) Given
the graph G with non-negative weights, if we remove an
edge (a, b) to obtain G \ (a, b), we have that

λ2(G \ (a, b)) ≤ λ2(G)

Proof: The proof is a simple generalization of (Godsil &
Royle, 2013). Pick q2 and r2 to be second eigenvectors of
G and G \ (a, b) respectively. By the Laplacian quadratic
form characterization of eigenvalues, we have

λ2(G) = qT2 LGq2 =
∑

(c,d)∈E

|W|cd(q2(c)− q2(d))2

≥ [
∑

(c,d)∈E

|W|cd(q2(c)−q2(d))2]−|W|ab(q2(a)−q2(b))2

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

= qT2 LG\(a,b)q2 ≥ rT2 LG\(a,b)r2 = λ2(G \ (a, b))

where the first inequality follows from the non-negativity of
the weights under consideration and the second inequality
follows from the Rayleigh-Ritz variational characterization
of eigenvalues. �

Hence, by sparsifying edges and reducing edge weights,
we are in effect reducing the Fiedler value of the NN. The
above ordering property is a special case of the more general
Laplacian eigenvalue interlacing property, where λ2(G \
(a, b)) also admits a corresponding lower bound. For a
general treatment, see (Godsil & Royle, 2013).

We remark that since Fiedler regularization encourages spar-
sity, during the training process the NN might become dis-
connected, rendering λ2 to become 0. This issue could be
easily avoided in practice by dropping one of the discon-
nected components (e.g. the smaller one) from the Laplacian
matrix during training, i.e. remove the Laplacian matrix’s
rows and columns that correspond to the vertices in the
dropped component.

6. Experiments and Results
Deep/multilayer feedforward NNs are useful in many classi-
fication problems, ranging from popular image recognition
tasks to scientific and biomedical problems such as clas-
sifying diseases. We examine the performance of Fiedler
regularization on the standard benchmark image classifica-
tion datasets MNIST and CIFAR10. We also tested Fiedler
regularization on the TCGA RNA-Seq PANCAN tumor clas-
sification dataset (Weinstein et al., 2013) from the UCI Ma-
chine Learning Repository. We compare the performance of
several standard regularization approaches for NNs on these
datasets, including Dropout, L1 regularization and weight
decay. Extension of such experiments to other classification
tasks is straightforward.

The purpose of the experiments below is not to use the
deepest NNs, the latest architectures or the most optimized
hyperparameters. Nor is the purpose to show the supremacy
of NNs versus other classification methods like random
forests or logistic regression. Rather, we attempt to com-
pare the efficacy of Fiedler regularization against other NN
regularization techniques as a proof of concept. Extensions
to more complicated and general network architectures are
explored in the discussion section.

For all our experiments, we consider 5-layer feedforward
NNs with ReLU activations and fully connected layers. We
used PyTorch 1.4 and Python 3.6 for all experiments. For
optimization, we adopted stochastic gradient descent with
a momentum of 0.9 for optimization and a learning rate of
0.001. To select the dropping probability for Dropout, as
well as the regularization hyperparameter for L1, Fiedler
regularization and weight decay, we performed a very rough

Table 1. Classification accuracies for MNIST under various regu-
larization schemes (units in percentages)

REGULARIZATION TRAINING TESTING

L1 90.32 ± 0.17 90.25± 0.35
WEIGHT DECAY 95.12± 0.06 94.98± 0.07
DROPOUT 94.52± 0.07 94.5± 0.18
FIEDLER 96.54± 0.08 96.1± 0.12

grid search on a small validation dataset. The Dropout
probability is selected to be 0.5 for all layers, and the reg-
ularization hyperparameters for L1, Fiedler regularization
and weight decay are 0.001, 0.01 and 0.01 respectively. All
models in the experiments were trained under the cross-
entropy loss. Each experiment was run 5 times, with the
median and the standard deviation of the performances re-
ported. All experiments were run on a Unix machine with
an Intel Core i7 processor. The code used for the experi-
ments could be found at the first author’s Github repository
(https://github.com/edrictam/FiedlerRegularization).

6.1. MNIST

Dataset and setup MNIST is a standard handwriting recog-
nition dataset that consists of 60,000 28×28 training images
of individual hand-written digits and 10, 000 testing images.
We picked the hidden layers of our NN to be 500 units wide.
We used a batch size of 100 and the networks were trained
with 10 epochs.

Results The results for MNIST are displayed in Table 1.
For the MNIST dataset, we obtained very good accuracies
for all the methods, with Fiedler regularization standing out,
followed by weight decay and Dropout. The high accuracies
obtained for the MNIST dataset with feedforward NNs are
consistent with results from previous studies (Srivastava
et al., 2014). Fiedler regularization showed gains over its
competitors.

6.2. CIFAR10

Dataset and setup CIFAR10 is a benchmark object recog-
nition dataset that consists of 32 × 32 × 3 down-sampled
RGB color images of 10 different object classes. There are
50,000 training images and 10,000 test images in the dataset.
We picked the hidden layers of our NN to be 500 units wide.
We used a batch size of 100 and the networks were trained
with 10 epochs.

Results The results for CIFAR10 are displayed in Table 2.
While this is a more difficult image classification task than
MNIST, the ordering of performances among the regular-
ization methods is similar. Fiedler regularization performed
the best, followed by Dropout, weight decay and L1 regu-
larization.

https://github.com/edrictam/FiedlerRegularization

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Table 2. Classification accuracies for CIFAR10 under various reg-
ularization schemes (units in percentages)

REGULARIZATION TRAINING TESTING

L1 28.52± 0.9 28.88± 1.11
WEIGHT DECAY 52.93 ± 0.17 50.55± 0.39
DROPOUT 46.61± 0.35 44.63± 0.39
FIEDLER 57.99 ± 0.13 52.26± 0.27

Table 3. Classification accuracies for TCGA under various regular-
ization schemes (units in percentages)

REGULARIZATION TRAINING TESTING

L1 91.5 ± 13.73 94.53± 12.46
WEIGHT DECAY 57± 22.42 60.2± 20.94
DROPOUT 25.33± 5.9 23.88± 7.36
FIEDLER 93.33± 20.31 90.55± 20.73

6.3. TCGA Cancer Classification

Dataset and setup The TCGA Pan-Cancer tumor classifi-
cation dataset consists of RNA-sequencing as well as cancer
classification results for 800 subjects. The input features
are 20531-dimensional vectors of gene expression levels,
whereas the outputs are tumor classification labels (there
are 5 different tumor types under consideration). We used
600 subjects for training and 200 for testing. Due to the
highly over-parametrized nature of this classification task,
We picked the width of the hidden layers to be narrower, at
50 units. We used a batch size of 10 and the networks were
trained with 5 epochs.

Results The results for the TCGA tumor classification ex-
periment are displayed in Table 3. Fiedler Regularization
and L1 had similarly high performances, followed by weight
decay. It is interesting that Dropout achieved a relatively
low accuracy, slightly better than chance. Note that since
this dataset is relatively small (the testing set has only 200
data points and training set 600), the standard deviation of
the accuracies are higher. Notice here that L1 and Fiedler
regularization, which explicitly induce sparsity, performed
the best.

6.4. Analysis of Results

We note that both MNIST and CIFAR10 have more training
samples than the dimension of their features. The results
from MNIST and CIFAR10 largely agree with each other
and confirm the efficacy of Fiedler regularization. Under
this setting, other regularization methods like Dropout and
weight decay also exhibited decent performance.

On the other hand, in the TCGA dataset, where the dimen-
sion of the input features (20531) is much higher than the

number of training samples (600), L1 and Fiedler regular-
ization, which explicitly induce sparsity, performed substan-
tially better than Dropout and weight decay. An inspection
of the TCGA dataset suggests that many of the gene ex-
pression levels in the input features are 0 (suggesting non-
expression of genes), which likely implies that many of the
weights in the network, particularly at the input layer, are
not essential. It is thus not surprising that regularization
methods that explicitly induce sparsity performs better in
these “large p, small n” scenarios, often found in biomedical
applications.

We remark that Fiedler regularization enjoys practical run-
ning speeds that are fast, generally comparable to (but
slightly slower than) that of most commonly used regu-
larization schemes such as L1 and Dropout. The running
time of Fiedler regularization could likely be improved with
certain implementation-level optimizations to speed up the
software. Performances would also likely improve if more
refined grid searches or more sophisticated hyperparameter
selection methods like Bayesian optimization are adopted.

7. Discussion
The above experiments demonstrated several points of in-
terest. The poorer performance of L1 regularization in
MNIST and CIFAR10 stands in sharp contrast to the much
higher performance of Fiedler regularization, a weighted L1
penalty. It is generally acknowledged that L1 regularization
does not enjoy good empirical performance in deep learning
models. The precise reason why this happens not exactly
known. Previous studies have adopted a group-lasso for-
mulation for regularization of deep NNs and have obtained
good performance (Scardapane et al., 2017). These results
suggest that modifications of L1 through weighting or other
similar schemes can often drastically improve empirical
performance.

We have tracked the algebraic connectivity of the NNs dur-
ing the training process in our experiments. In general,
without any regularization, the NNs tend to become more
connected during training, i.e. their Fiedler value increases.
In the Fiedler regularization case, the connectivity is pe-
nalized and therefore decreases during training in a very
gradual manner. Interestingly, in the L1 case, the algebraic
connectivity of the NN can decrease very quickly during
training, often leading to disconnection of the network very
early in the training process. This is likely related to L1
regularization’s uniform penalization of all weights. It is
therefore difficult to choose the regularization hyperparame-
ter for L1: if it is too small, sparsity induction might occur
too slowly and we would under-regularize; if it is too big,
we risk over-penalizing certain weights and lowering the
model’s accuracy. One advantage of a weighted scheme
such as Fiedler penalization thus lies in its ability to adap-

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

tively penalize different weights during training.

While we only considered relatively simple feedforward,
fully connected neural architectures, potential extensions
to more sophisticated structures are straightforward. Many
convolutional NNs contain fully connected layers after the
initial convolutional layers. One could easily extend Fiedler
regularization to this case. In the context of ResNets, where
there are skip connections, the spectral graph properties we
have utilized still hold, and hence Fiedler regularization
could be directly applied. The spectral graph theory setup
adopted in this paper generally holds for any undirected
graph. An open direction is to establish appropriate spectral
graph theory for regularization of directed graphs, which
would be useful in training recurrent NNs.

While Fiedler regularization leads to sparsely connected
NNs in theory, in practice it often takes a higher penalty
value or longer training time to achieve sparsity with Fiedler
regularization. This might in part be due to the optimiza-
tion method chosen. It is known that generally SGD does
not efficiently induce sparsity in L1 penalized models, and
certain truncated gradient methods (Langford et al., 2009)
might prove more effective in this setting.

We remark that while Fiedler regularization emphasizes reg-
ularizing based on graphical/connectivity structure, global
penalization approaches such as Dropout, L2 etc could still
prove useful. One could combine the two regularization
methodologies to achieve simultaneous regularization.

Lastly, we have adopted a version of spectral graph theory
that considers the un-normalized (combinatorial) Laplacian
L = D− |W| as well as the edge expansion of the graph.
A similar theory for regularization could be developed for
the normalized Laplacian L′ = I−D−

1
2 |W|D− 1

2 and the
conductance of the graph, after appropriately accounting for
the total scale of the NN. While the combinatorial Laplacian
that we considered is related to the notion of RatioCuts,
the normalized Laplacian is associated with the notion of
NCuts. Both notions could in theory be used for reducing
connectivity/co-adaptation of the NN.

Acknowledgements
We would like to thank Julyan Arbel for pointing out a
mistake in the initial draft of this paper, now corrected.

References
Batson, J., Spielman, D. A., and Srivastava, N. Twice-

ramanujan sparsifiers. SIAM Journal on Computing, 41
(6):1704–1721, 2012.

Boyd, S. Convex optimization of graph laplacian eigen-
values. In Proceedings of the International Congress of

Mathematicians, volume 3, pp. 1311–1319, 2006.

Candes, E. J., Wakin, M. B., and Boyd, S. P. Enhancing spar-
sity by reweighted `1 minimization. Journal of Fourier
analysis and applications, 14(5-6):877–905, 2008.

Chung, F. R. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

Donath, W. E. and Hoffman, A. J. Algorithms for partition-
ing of graphs and computer logic based on eigenvectors of
connection matrices. IBM Technical Disclosure Bulletin,
15(3):938–944, 1972.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(Jul):2121–
2159, 2011.

Fan, J., Ma, C., and Zhong, Y. A selective overview of deep
learning. arXiv preprint arXiv:1904.05526, 2019.

Godsil, C. and Royle, G. F. Algebraic graph theory, volume
207. Springer Science & Business Media, 2013.

Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Hagen, L. and Kahng, A. B. New spectral methods for ratio
cut partitioning and clustering. IEEE transactions on
computer-aided design of integrated circuits and systems,
11(9):1074–1085, 1992.

Hall, K. M. An r-dimensional quadratic placement algo-
rithm. Management science, 17(3):219–229, 1970.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Horn, R. A., Rhee, N. H., and Wasin, S. Eigenvalue inequal-
ities and equalities. Linear Algebra and its Applications,
270(1-3):29–44, 1998.

Jiang, B. and Lin, D. Graph laplacian regularized graph con-
volutional networks for semi-supervised learning. arXiv
preprint arXiv:1809.09839, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Fiedler Regularization: Learning Neural Networks with Graph Sparsity

Krogh, A. and Hertz, J. A. A simple weight decay can im-
prove generalization. In Advances in neural information
processing systems, pp. 950–957, 1992.

Langford, J., Li, L., and Zhang, T. Sparse online learning
via truncated gradient. In Advances in neural information
processing systems, pp. 905–912, 2009.

Petersen, K. B., Pedersen, M. S., et al. The matrix cookbook.
Technical University of Denmark, 7(15):510, 2008.

Polson, N. G. and Ročková, V. Posterior concentration for
sparse deep learning. In Advances in Neural Information
Processing Systems, pp. 930–941, 2018.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Scardapane, S., Comminiello, D., Hussain, A., and Uncini,
A. Group sparse regularization for deep neural networks.
Neurocomputing, 241:81–89, 2017.

Spielman, D. Spectral and algebraic graph theory. 2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Sun, J., Boyd, S., Xiao, L., and Diaconis, P. The fastest
mixing markov process on a graph and a connection to a
maximum variance unfolding problem. SIAM review, 48
(4):681–699, 2006.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996.

Vladimirova, M., Verbeek, J., Mesejo, P., and Arbel, J.
Understanding priors in bayesian neural networks at the
unit level. arXiv preprint arXiv:1810.05193, 2018.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
International conference on machine learning, pp. 1058–
1066, 2013.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K.
R. M., Ozenberger, B. A., Ellrott, K., Shmulevich, I.,
Sander, C., Stuart, J. M., Network, C. G. A. R., et al. The
cancer genome atlas pan-cancer analysis project. Nature
genetics, 45(10):1113, 2013.

Zeng, J., Pang, J., Sun, W., and Cheung, G. Deep graph
laplacian regularization for robust denoising of real im-
ages. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 0–0,
2019.

Zou, H. The adaptive lasso and its oracle properties. Journal
of the American statistical association, 101(476):1418–
1429, 2006.

