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Abstract

In a standard setting of Bayesian optimiza-
tion (BO), the objective function evaluation
is assumed to be highly expensive. Multi-
fidelity Bayesian optimization (MFBO) acceler-
ates BO by incorporating lower fidelity observa-
tions available with a lower sampling cost. We
propose a novel information-theoretic approach
to MFBO, called multi-fidelity max-value en-
tropy search (MF-MES), that enables us to ob-
tain a more reliable evaluation of the information
gain compared with existing information-based
methods for MFBO. Further, we also propose a
parallelization of MF-MES mainly for the asyn-
chronous setting because queries typically oc-
cur asynchronously in MFBO due to a variety
of sampling costs. We show that most of com-
putations in our acquisition functions can be de-
rived analytically, except for at most only two di-
mensional numerical integration that can be per-
formed efficiently by simple approximations. We
demonstrate effectiveness of our approach by us-
ing benchmark datasets and a real-world applica-
tion to materials science data.

1. Introduction
Bayesian optimization (BO) is a popular machine-learning
technique for the black-box optimization problem. Effi-
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ciency of BO has been widely shown in a variety of appli-
cation areas such as scientific experiments (Wigley et al.,
2016), simulation calculations (Ramprasad et al., 2017),
and tuning of machine-learning methods (Snoek et al.,
2012). In these scenarios, observing an objective function
value is usually quite expensive and thus achieving the op-
timal value with low querying cost is strongly demanded.

Although standard BO only considers directly querying
to an objective function f(x), in many practical prob-
lems, lower fidelity approximations of the original objec-
tive function can be observed. For example, theoretical
computations of physical processes often have multiple lev-
els of approximations by which the trade-off between the
computational cost and accuracy can be controlled. The
goal of multi-fidelity Bayesian optimization (MFBO) is to
accelerate BO by utilizing those lower fidelity observations
to reduce the total cost of the optimization.

In this paper, we focus on the information-based approach.
For usual BO without multi-fidelity, which we call sin-
gle fidelity BO, seminal works of this direction are en-
tropy search (ES) and predictive entropy search (PES) pro-
posed by Hennig & Schuler (2012) and Hernández-Lobato
et al. (2014), respectively. They define acquisition func-
tions by using information gain for the optimal solution
x∗ := argmaxx f(x). Unlike classical evaluation measures
such as expected improvement, the information-based cri-
terion is a measure of global utility which does not require
any additional exploit-explore trade-off parameter. The
superior performance of information-based methods have
been shown empirically, and then, the same approach has
also been extended to the multi-fidelity setting (Swersky
et al., 2013; Zhang et al., 2017).

Even in the case of single fidelity BO, however, accurately
evaluating information gain is notoriously difficult, which
often requires complicated numerical approximations. For
MFBO, evaluating information across multiple fidelities is
further difficult. To overcome this difficulty, we consider
a novel information-based approach to MFBO, which is
based on a variant of ES called max-value entropy search
(MES), proposed by Wang & Jegelka (2017). MES con-
siders the information gain for f∗ := maxx f(x) instead
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of x∗. This greatly facilitates the computation of the in-
formation gain because f∗ is in one dimensional space un-
like x∗, and they showed superior performance of MES
compared with ES/PES. Our method, called multi-fidelity
MES (MF-MES), can evaluate the information gain for f∗
from an observation of an arbitrary fidelity, and we show
that additional expressions, compared with MES, can be
derived analytically except for one dimensional integral,
which can be calculated accurately and efficiently by using
standard numerical integration techniques. This enables us
to obtain a more reliable evaluation of the information gain
compared with existing information-based MFBO methods
containing approximations that are difficult to justify. Our
MF-MES is also advantageous to other measures of global
utility for MFBO, such as the knowledge gradient-based
method (Poloczek et al., 2017), because they are often com-
putationally extremely complicated. Section 5 discusses re-
lated studies in more detail.

Further, we also propose parallelization of MF-MES.
Since objective functions have a variety of sampling costs,
queries naturally occur asynchronously in MFBO. We ex-
tend our information gain so that points currently being
queried can be taken into consideration. Similarly in the
case of MF-MES, we show that a required numerical inte-
gration in addition to the sampling of f∗ is also reduced to
one dimensional space through the integration by substitu-
tion. This allows us to obtain the reliable evaluation of the
information gain for the parallel extension of MF-MES.

Our main contributions are summarized as follows:

1. We develop an information-theoretic efficient MFBO
method. Naı̈ve formulation and implementation of
this problem raise computationally challenging is-
sues that need to be addressed by carefully-tuned and
time-consuming approximate computations. By us-
ing several computational tricks mainly inspired by
MES (Wang & Jegelka, 2017), we show that this com-
putational bottleneck can be nicely avoided without
additional assumptions or approximations.

2. We develop an information-theoretic asynchronous
parallel MFBO method. To our knowledge, there are
no existing works in this topic — We believe that
our method is useful in many practical experimental
design and black-box optimization tasks with multi-
ple information sources with different fidelities and its
parallel evaluation.

We empirically demonstrate effectiveness of our approach
by using benchmark functions and a real-world application
to materials science data.

2. Preliminary
In this section, we first briefly review a multi-fidelity ex-
tension of Gaussian process regression (GPR). Suppose
that y(1)x , . . . , y

(M)
x are the observations at x ∈ X ⊂ Rd

with M different fidelities in which y
(M)
x is the high-

est fidelity and y
(1)
x is the lowest fidelity. Each obser-

vation is modeled as y
(m)
x = f

(m)
x + ϵ in which a ran-

dom noise ϵ ∼ N (0, σ2
noise) is added to the underlying

true function f
(m)
x : X → R. The training data set

Dn = {(xi, y
(mi)
xi ,mi)}i∈[n] contains a set of triplets con-

sisting of an input xi, fidelity mi ∈ [M ], and an output
y
(mi)
xi , where [n] := {1, . . . , n}.

Throughout the paper, we assume that a set of outputs
{f (m)

x } for any set of pairs (x,m) are always modeled
as the multi-variate normal distribution. Standard multi-
output extensions of GPR such as multi-task GPR (Bonilla
et al., 2008), co-kriging (Kennedy & O’Hagan, 2000), and
semiparametric latent factor model (SLFM) (Teh et al.,
2005), satisfy this condition. We call GPR fitted to ob-
servations across multiple fidelities multi-fidelity Gaussian
process regression (MF-GPR), in general.

MF-GPR defines a kernel function k((xi,mi), (xj ,mj))

for a pair of training instances (xi, y
(mi)
xi ,mi) and

(xj , y
(mj)
xj ,mj). An example of this kernel function in

the case of SLFM is shown in appendix A.1. By defin-
ing a kernel matrix K ∈ Rn×n in which the i, j ele-
ment is defined by k((xi,mi), (xj ,mj)), all the fidelities
f (1), . . . , f (M) are integrated into a GPR model in which
predictive mean and variance are µ(m)

x = k
(m)
n (x)⊤C−1y,

and σ
2(m)
x = k((x,m), (x,m))−k

(m)
n (x)⊤C−1k

(m)
n (x),

where C := K + σ2
noiseI with the identity ma-

trix I , y := (y
(m1)
x1 , . . . , y

(mn)
xn )⊤, and k

(m)
n (x) :=

(k((x,m), (x1,m1)), . . . , k((x,m), (xn,mn)))
⊤. For

later use, we define σ
2(mm′)
x as the predictive co-

variance between (x,m) and (x,m′), i.e., covariance
for the identical x at different fidelities: σ

2(mm′)
x =

k((x,m), (x,m′))− k
(m)
n (x)⊤C−1k

(m′)
n (x).

3. Multi-fidelity Bayesian Optimization with
Max-value Entropy

We consider Bayesian optimization (BO) for maximizing
the highest fidelity function f

(M)
x when M different fi-

delities y
(m)
x for m = 1, . . . ,M are available to query-

ing. The querying cost is assumed to be known as λ(m),
where λ(1) ≤ λ(2) . . . ≤ λ(M). Our goal is to achieve
a higher value with smaller accumulated cost of the query-
ings. We call this problem multi-fidelity Bayesian optimiza-
tion (MFBO). When M = 1, MFBO is reduced to the usual



Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its Parallelization

black box optimization to which we refer as the single fi-
delity setting, while we refer to the setting M ≥ 2 as the
multi-fidelity setting.

We employ the information-based approach, which has
been widely used in the single fidelity BO. In particular, our
approach is inspired by max-value entropy search (MES)
proposed by Wang & Jegelka (2017), which considers in-
formation gain about the optimal value maxx∈X f(x) ob-
tained by a querying. In the case of MFBO, we need to
consider the information gain for identifying the maximum
of the highest fidelity function f∗ := maxx∈X f

(M)
x by

observing an arbitrary fidelity observation. We refer to
our information-based MFBO as multi-fidelity MES (MF-
MES). Although information-based approaches often result
in complicated computations, we show that the calculation
of our information gain is reduced to simple computations
by which stable information evaluation becomes possible.

3.1. Information Gain for Sequential Querying

We first consider the case that a query is sequentially issued
after the previous one is observed, which we refer to as se-
quential querying. Suppose that we already have a training
data setDt and need to determine next xt+1 and mt+1. We
define an acquisition function

a(x,m) := I(f∗; f
(m)
x | Dt) / λ

(m), (1)

where I(f∗; f
(m)
x | Dt) is the mutual information between

f∗ and f
(m)
x conditioned on Dt. By maximizing a(x,m),

we obtain a pair of the input x and the fidelity m which
maximally gains information of the optimal value f∗ of the
highest fidelity per unit cost.

The mutual information can be written as the difference of
the entropy:

I(f∗; f
(m)
x | Dt)

= H(f (m)
x | Dt)− Ef∗|Dt

[
H(f (m)

x | f∗,Dt)
]
,

(2)

where H(· | ·) is the conditional entropy of p(· | ·). The
first term in the right hand side can be derived analytically
for any fidelity m: H(f

(m)
x | Dt) = log

(
σ
(m)
x

√
2πe
)

,
where e := exp(1). The second term in (2) takes the expec-
tation over the maximum f∗. Since an analytical formula
is not known for this expectation, we employ Monte Carlo
estimation by sampling f∗ from the current GPR:

Ef∗|Dt

[
H(f (m)

x | f∗,Dt)
]
≈
∑

f∗∈F∗

H(f
(m)
x | f∗,Dt)

|F∗|
,

(3)

where F∗ is a set of sampled f∗. Note that since this
sampling approximation is in one dimensional space, ac-
curate approximation can be expected with a small amount

of samples. In Section 4, we discuss computational proce-
dures of this sampling. For a given sampled f∗, the en-
tropy of p(f

(m)
x | f∗,Dt) is needed to calculate in (3).

To make the computation tractable, we replace this con-
ditional distribution with p(f

(m)
x | f (M)

x ≤ f∗,Dt), i.e.,
conditioning only on the given x rather than requiring
f
(M)
x ≤ f∗ for ∀x ∈ X . Note that this simplification

has been employed by most of entropy-based BO meth-
ods (e.g., Hernández-Lobato et al., 2014; Wang & Jegelka,
2017) including MES, and superior performance compared
with other approaches has been shown.

For any ζ ∈ R, define γ
(m)
ζ (x) := (ζ − µ

(m)
x )/σ

(m)
x as a

function for scaling. When m = M , the density function
p(f

(m)
x | f (M)

x ≤ f∗,Dt) is truncated normal distribution.
The entropy of truncated normal distribution can be repre-
sented as (Michalowicz, 2014)

H(f (M)
x | f (M)

x ≤ f∗,Dt)=log
(√

2πeσ(M)
x Φ

(
γ
(M)
f∗

(x)
))

−
γ
(M)
f∗

(x)ϕ
(
γ
(M)
f∗

(x)
)

2Φ
(
γ
(M)
f∗

(x)
) , (4)

where ϕ and Φ are the probability density function and the
cumulative distribution function of the standard normal dis-
tribution.

Next, we consider the case of m ̸= M . Unlike the case
of m = M , the density p(f

(m)
x | f

(M)
x ≤ f∗,Dt) is

not the truncated normal. Since MF-GPR represents all
fidelities as one unified GPR, the joint marginal distribu-
tion p(f

(M)
x , f

(m)
x | Dt) can be immediately obtained from

the two dimensional predictive distribution, from which we
obtain p(f

(M)
x | f (m)

x ,Dt) as

f (M)
x | f (m)

x ,Dt ∼ N (u(x), s2(x)), (5)

where u(x) = σ
2(mM)
x

(
f
(m)
x − µ

(m)
x

)
/σ

2(m)
x +

µ
(M)
x , and s2(x) = σ2(M)

x −
(
σ
2(mM)
x

)2
/σ

2(m)
x . By

using this conditional distribution, the entropy of
p(f

(m)
x | f (M)

x ≤ f∗,Dt) can be written as follows:

Lemma 3.1. Let Z := 1/σ
(m)
x Φ(γ

(M)
f∗

(x)) and

Ψ(f
(m)
x ) := Φ

(
(f∗ − u(x))/s(x)

)
ϕ
(
γ
(m)

f
(m)
x

(x)
)
. Then, for

a given f∗, we obtain

H(f (m)
x | f (M)

x ≤ f∗,Dt)

= −
∫

ZΨ(f (m)
x ) log

(
ZΨ(f (m)

x )
)
df (m)

x .
(6)

See Appendix B for the proof.

Lemma 3.1 indicates that the entropy is represented
through the one dimensional integral over f (m)

x . Since the



Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its Parallelization

TimeWorkers

Query 1

Query 6

Query 3

Query 5

Query 2

Query 4

Query 8

Query 9

Query 7

Figure 1: Asynchronous parallelization in MFBO. Because
of diversity of the evaluation cost of objective functions,
queries typically occur asynchronously. When a worker be-
comes available, a next query should be determined while
taking queries being evaluated in the other workers into
consideration.

integral is only on the one dimensional space, standard nu-
merical integration techniques (e.g., quadrature) can pro-
vide precise approximation efficiently. Consequently, we
see that that the entropy H(f

(m)
x | f∗,Dt) in (3) can be

obtained accurately with simple computations.

3.2. Asynchronous Parallelization

We consider an extension of MF-MES for the case that
multiple queries can be issued in parallel, which we refer to
as parallel querying. Suppose that we have q > 1 “work-
ers” each one of which can evaluate an objective function
value. In the context of parallel BO, the two settings called
synchronous and asynchronous parallelizations can be con-
sidered. As shown in Figure 1, since MFBO evaluates
a variety of different costs of objective functions, queries
naturally occur asynchronously. Thus, we focus on asyn-
chronous parallelization (See Appendix D.4 for the discus-
sion of the synchronous setting).

Suppose that q − 1 pairs of the input x and the fidelity m,
written as Q := {(x1,m1), . . . , (xq−1,mq−1)}, are now
being evaluated by using q − 1 workers, and an additional
query to an available worker needs to be determined. Let
fQ := (f

(m1)
x1 , . . . , f

(mq−1)
xq−1 )⊤. Then, a natural extension

of MF-MES to determine the q-th pair (xq,mq) is

apara(x,m) = I(f∗; f
(m)
x | Dt,fQ) / λ

(m). (7)

The numerator is the mutual information conditioned on
fQ which is defined by

I(f∗; f
(m)
x | Dt,fQ) := EfQ|Dt

[
H(f (m)

x | Dt,fQ)
]

− EfQ,f∗|Dt

[
H(f (m)

x | Dt,fQ, f
(M)
x ≤ f∗)

]
. (8)

Compared with the mutual information in sequential query-
ing (2), this equation additionally takes the expectation
over fQ which is currently under evaluation. Thus, by us-
ing (7), we can select a cost effective pair of x and m while
the q − 1 pairs running on the other workers are taken into
consideration.

Although (8) contains the |Q| + 2 dimensional integral
at a glance, we show that this can be calculated by at
most 2 dimensional numerical integral. Let ΣM ∈ R2×2

and ΣQ ∈ Rq−1×q−1 be the predictive covariance matri-
ces for M := {(x,m), (x,M)} and Q, respectively, and
ΣQ,M(= Σ⊤

M,Q) ∈ Rq−1×2 be the predictive covariance
matrix of the rowsQ and the columnsM. For later use, we
define the conditional distribution p(f

(m)
x , f

(M)
x | Dt,fQ)

as follows[
f
(m)
x

f
(M)
x

]
| Dt,fQ ∼ N

([
µ
(m)
x|fQ

µ
(M)
x|fQ

]
,

[
σ
2(m)
x|fQ

σ
2(mM)
x|fQ

σ
2(mM)
x|fQ

σ
2(M)
x|fQ

])
,

where[
µ
(m)
x|fQ

µ
(M)
x|fQ

]
=

[
µ
(m)
x

µ
(M)
x

]
+ΣM,QΣ

−1
Q (fQ − µQ), (9)[

σ
2(m)
x|fQ

σ
2(mM)
x|fQ

σ
2(mM)
x|fQ

σ
2(M)
x|fQ

]
= ΣM −ΣM,QΣ

−1
Q ΣQ,M, (10)

and µQ := (µ
(m1)
x1 , . . . , µ

(mq−1)
xq−1 )⊤. Note that (9) is a ran-

dom variable vector because it depends on fQ, while all the
elements of (10) are constants. By using these equations,
the mutual information (8) is re-written as follows:
Lemma 3.2. Let

f̃∗ := f∗ − µ
(M)
x|fQ

, (11)

and f̃
(m)
x := f

(m)
x − µ

(m)
x|fQ

. Then, we obtain

I(f∗; f
(m)
x | Dt,fQ) = log

(
σ
(m)
x|fQ

√
2πe
)

− Ef̃∗|Dt

[∫
−η(f̃∗, f̃ (m)

x ) log η(f̃∗, f̃
(m)
x ) df̃ (m)

x

]
(12)

where

η(f̃∗, f̃
(m)
x ):=

Φ

(
f̃∗−

(
σ
2(mM)

x|fQ
/ σ

2(m)

x|fQ

)
f̃(m)
x

σ
2(M)

x|fQ
−
(
σ
2(mM)

x|fQ

)2
/ σ

2(m)

x|fQ

)
ϕ

(
f̃(m)
x

σ
(m)

x|fQ

)
σm
x|fQ

Φ

(
f̃∗

σ
(M)

x|fQ

) .

(13)

See Appendix D.1 for the proof. It should be noted that
the second term of (12) only contains the integral over two
variables (f̃ (m)

x and f̃∗) unlike the original formulation (8).
The first term of (12) can be directly calculated because
σ
(m)
x|fQ

does not depend on the random vector fQ as shown
in (10). We calculate the expectation in the second term of
(12) by using the Monte Carlo estimation with sampled f̃∗:∑

f̃∗∈F̃∗

1

|F̃∗|

∫
−η(f̃∗, f̃ (m)

x ) log η(f̃∗, f̃
(m)
x ) df̃ (m)

x (14)
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where F̃∗ is a set of sampled f̃∗. The integral in this equa-
tion can be easily evaluated by using quadrature because it
is on the one dimensional space and η(f̃∗, f̃

(m)
x ) can be an-

alytically calculated from the definition (13). Further, when
m = M , this integral is also can be analytically calculated
(See Appendix D.2).

4. Computations
Algorithm 1 shows the procedure of MF-MES for sequen-
tial querying. As the first step in the every iteration, a set
of max values F∗ are sampled from p(f∗ | Dt). There are
several approaches to sampling the max value. Wang &
Jegelka (2017) showed that the effective approximation is
possible by using sampling through Gumbel distribution or
random feature map (RFM). Gumbel distribution is widely
known in extreme value theory (Gumbel, 1958) as one of
generalized extreme value distributions.

Although the Gumbel approximation is performed under
an independent approximation of GPR, Wang & Jegelka
(2017) showed the accurate approximation can be obtained.
In contrast, RFM (Rahimi & Recht, 2008) can incorpo-
rate dependency in the GPR model by using a set of pre-
defined basis functions ϕ(x,m) ∈ RD, and the highest
fidelity function is represented as f

(M)
x ≈ w⊤ϕ(x,M),

where w ∈ RD (Appendix A.2 shows an example of an
RFM approximation in the case of SLFM). The max value
is sampled by maximizing w⊤ϕ(x,M) with respect to x.
For further detail of these two approaches, see (Wang &
Jegelka, 2017), in which it is also shown that MES is em-
pirically robust with respect to this sampling, and theoreti-
cally, they showed that the regret bound can be guaranteed
even only for one sample of f∗.

Once F∗ is generated, the acquisition function calculation
can be analytically performed except for one dimensional
numerical integration. Although most complicated process
in the algorithm is the calculation of (6) shown in line 15
of Algoirthm 1, this is also quite simple in practice as de-
scribed below. For a given f∗ and the conditional distribu-
tion (5) which is constructed from the two dimension GPR
predictive distribution p(f

(M)
x , f

(m)
x | x,Dt), the integral

of (6) can be computed by O(1). Further, since (5) does
not depend on sampled f∗, it is not required to re-calculate
(5) for each one of sampled f∗.

For the acquisition function maximization (argmax in line
4), if the candidate space X is a discrete set, we simply
calculate the acquisition values for all x ∈ X . For a con-
tinuous space, popular approaches such as DIRECT (Jones
et al., 1993) and gradient-based optimizers are applicable.
Note that our acquisition function is differentiable, and the
derivative of the integral (6) can be calculated by the same
one dimensional numerical integral procedure.

Algorithm 1 MF-MES for sequential querying

1: function MF-MES(D0,M,X , {λ(m)}Mm=1)
2: for t = 0, . . . , T do
3: Generate F∗ from current f (M)(x)
4: (xt+1,mt+1)← argmaxx∈X ,m

INFOGAIN(x, m, F∗, Dt) / λ(m)

5: Dt+1 ← Dt ∪ (xt+1, y
(mt+1)(xt+1),mt+1)

6: end for
7: end function
8: function INFOGAIN(x, m, F∗, Dt)
9: Calculate µ

(m)
x and σ

(m)
x

10: Set H0 ← log
(
σ
(m)
x

√
2πe
)

11: if m = M then
12: Set H1 ←

∑
f∗∈F∗

H(f(M)
x |f(M)

x ≤f∗,Dt)
|F∗|

by using (4)
13: else
14: Calculate µ

(M)
x and σ

(M)
x and σ

2(mM)
x

15: Set H1 ←
∑

f∗∈F∗

H(f(m)
x |f(M)

x ≤f∗,Dt)
|F∗|

by using (6)
16: end if
17: Return H0 −H1

18: end function

For the case of parallel querying, the acquisition function
maximization is performed when a worker becomes avail-
able. To evaluate (14), we need to sample f̃∗, which is
determined through f∗ and fQ as shown in (11). This
can be easily performed through RFM. By calculating
w⊤ϕ(x,m) for (x,m) ∈ Q with the sampled parameter
w, we can directly obtain a sample of fQ. For f∗, we max-
imize w⊤ϕ(x,M) as in the sequential querying case. The
algorithm of Parallel MF-MES is shown in Appendix D.3.

Throughout the paper, we use I(f∗; f
(m)
x ) as the informa-

tion gain for brevity. I(f∗; y
(m)
x ), in which noisy obser-

vation y
(m)
x is contained, is also possible to use with the

almost same procedure (for details, see Appendix C).

Although we mainly focus on the case that we only have
the discrete fidelity level m ∈ {1, . . . ,M} as an “ordinal
scale”, several studies consider the setting in which a fi-
delity can be defined as a point z in a continuous “fidelity
feature” (FF) space Z (Kandasamy et al., 2017). This set-
ting is more restrictive because it requires additional side-
information z which specifies a degree of fidelity, though
this prior knowledge may be able to improve the accuracy.
By introducing a kernel function in fidelity space Z , our
method can easily adapt to this setting (See appendix E).

5. Related Work
Multi-fidelity extension of BO has been widely studied.
For example, (Huang et al., 2006; Lam et al., 2015; Picheny
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et al., 2013) extended the standard EI to the multi-fidelity
setting. As with the usual EI, these are local measures
of utility unlike the information-based approaches. Gaus-
sian process upper confidence bound (GP-UCB) (Srinivas
et al., 2010) is a popular approach in the single fidelity
setting, and some studies proposed its multi-fidelity ex-
tensions. Kandasamy et al. (2016) proposed multi-fidelity
GP-UCB for discrete fidelity m = 1, . . . ,M , and further,
Kandasamy et al. (2017) proposed a similar UCB-based ap-
proach for the setting with the continuous fidelity space
Z . However, the UCB criterion has a trade-off parame-
ter which balances exploit-exploration. In practice, this
parameter needs to be carefully selected to achieve good
performance. Another approach recently proposed in (Sen
et al., 2018) is a multi-fidelity extension of a hierarchical
space partitioning (Bubeck et al., 2011). However, this
method assumes that the approximation error can be repre-
sented as a known function form of cost, and further, they
associate fidelity with the depth of hierarchical tree, but the
appropriateness of a specific choice of a pair of a point x
and fidelity m is difficult to interpret.

Information-based BO has also been studied for the multi-
fidelity setting, including entropy search (ES)-based (Swer-
sky et al., 2013; Klein et al., 2017) and predictive entropy
search (PES)-based (Zhang et al., 2017; McLeod et al.,
2018) methods. Although these methods can measure
global utility of the query without introducing any trade-
off parameter, they inherit the computational difficulty of
the original ES and PES, which consider the entropy of
p(x∗), where x∗ := argmaxx f(x) is the optimal solu-
tion. PES mitigates computational difficulty by using 1) the
symmetric property of the mutual information, and 2) sev-
eral assumptions which simplify involved densities. How-
ever, integral with respect to x∗ is still necessary though
the dimension of x∗ can be high, and the complicated ap-
proximation procedure including expectation propagation
(Minka, 2001) is required. Further, an additional assump-
tion about inter-fidelity differences are required in the case
of (Zhang et al., 2017). Song et al. (2018) proposed another
information-based approach, which separates phases of the
low-fidelity exploration and the highest fidelity optimiza-
tion. However, the transition of these phases are controlled
by a hyper-parameter which is necessary to set appropri-
ately beforehand.

Another approach incorporating a measure of global util-
ity is knowledge gradient (KG)-based methods (Poloczek
et al., 2017; Wu & Frazier, 2017). This approach evaluates
the max gain of predictive mean maxx∈X µ

(M)
x . In partic-

ular, misoKG (Poloczek et al., 2017) deals with the discrete
fidelity case. However, the acquisition function evaluation
requires the expected value of the maximum of the mean
function E[maxx′∈X µ

(M)
x′ ] after adding y

(m)
x into training

set, meaning that the maximization of the acquisition func-

tion is defined as a nested optimization. Although a vari-
ety of computational techniques have been studied for KG,
this nested optimization process is highly cumbersome to
implement and computationally expensive.

In contrast, our MF-MES is based on much simpler com-
putations compared with existing information-based meth-
ods and other measures of global utility. Original MES
calculates the entropy by representing a conditional distri-
bution of fx given f∗ as a truncated normal distribution.
As we saw in Section 3.1, for the information gain from
a lower fidelity, the truncated normal approach is not ap-
plicable anymore because lower fidelity functions f (m)

x for
m = 1, . . . ,M − 1 are not truncated for a given f∗. We al-
ready show that equations derived in Lemma 3.1 enables us
to evaluate the entropy accurately with the only one dimen-
sional additional numerical integration. For further accel-
eration of MES, Ru et al. (2018) proposed approximating
the density of f∗ and f given f∗ by normal distributions,
but reliability of these approximations are not clearly un-
derstood, and thus we do not employ in this paper.

The parallel extension of BO has been widely studied (e.g.,
Snoek et al., 2012; Desautels et al., 2014). As we de-
scribed in Section 3.2, MFBO is typically asynchronous,
while many of existing studies focus on the synchronous
setting including PES-based parallel BO (Shah & Ghahra-
mani, 2015). Several papers focus on the asynchronous set-
ting (Kandasamy et al., 2018; Alvi et al., 2019), but these
methods are difficult to apply to the multi-fidelity setting
because they do not provide any criterion to select fidelity.
To our knowledge, a KG-based method (Wu & Frazier,
2017) and BOHB (Falkner et al., 2018; Klein et al., 2020)
are only parallel methods proposed for MFBO. However,
the KG-based method is only for the synchronous setting,
and further, it is only shown for the FF-based setting which
is more restrictive as we described in the end of Section 4.
BOHB combines BO and Hyperband (Li et al., 2018). Al-
though asynchronous queries can be issued by A-BOHB
(Klein et al., 2020), the BOHB-based methods focus on a
more specific setting for the hyperparameter optimization
of machine-learning algorithms. We also note that a par-
allel extension of MES has not been shown even for the
single-fidelity setting. For possible sequential/parallel set-
tings of MF-MES, a summary is shown in Appendix F.

6. Experiments
We evaluate effectiveness of MF-MES compared with
other existing methods. To evaluate performance, we em-
ployed simple regret (SR) and inference regret (IR). SR
is defined by maxx∈X f

(M)
x − max

x∈X (M)
t

f
(M)
x , where

X (M)
t is a set of x for which a highest fidelity observation

y
(M)
x is included in the training dataset at iteration t (note
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that X (M)
t cannot be empty because highest fidelity obser-

vations must be included for the initial dataset as shown in
Appendix G.1.1). SR indicates the error by the best point
queried so far. IR is defined by maxx∈X f

(M)
x − f

(M)
x̂t

,

where x̂t := argmaxx∈X µ
(M)
x which is seen as the rec-

ommendation from the model at iteration t. If IR is larger
than SR at an iteration, we employed the value of SR as
IR of that iteration for stable evaluation. For MF-GPR, we
used SLFM in GP-based methods, unless otherwise noted.
For the kernel function, we used Gaussian kernel with au-
tomatic relevance determination (ARD).

We used a synthetic function generated by MF-GPR, two
benchmark functions, and a real-world dataset from ma-
terials science. The details of functions are described as
follows.

GP-based Synthetic Function: We generated d = 3
dimensional synthetic functions through an SLFM
model that has M = 2 fidelities. The sampling cost is
set as (λ(1), λ(2)) = (1, 5).

Benchmark Functions: We used two benchmark func-
tions called Styblinski-Tang (d = 2,M = 2),
and HartMann6 (d = 6,M = 3). The sampling
cost of Styblinski-Tang and HartMann6 are set as
(λ(1), λ(2)) = (1, 5) and (λ(1), λ(2), λ(3)) = (1, 3, 5),
respectively.

Material Data: As an example of practical applications,
we applied our method to the parameter optimization
of a simulation model in materials science. The task
is to optimize d = 2 material parameters in the sim-
ulation model (Tsukada et al., 2014). The objective
function is the discrepancy between the precipitate
shape predicted by the model and one measured by
an electron microscope. Based on the numerical accu-
racy of the simulation model, the number of fidelities
and the relative sampling cost are set as M = 3 and
(λ(1), λ(2), λ(3)) = (5, 10, 60), respectively. Unlike
other functions, the candidate x is fixed beforehand
in this dataset (so-called the pooled setting). Each fi-
delity has 62,500 candidate points.

The experiments on the GP-based synthetic function were
performed 100 times (10 different initialization for each
one of 10 generated functions). The other benchmark func-
tions and the material dataset were performed 10 times with
different initialization. For further detail of the settings, see
Appendix G.1.

6.1. Evaluation for Sequential Querying

We first evaluate the performance for sequential query-
ing. For comparison, we used MF-SKO (Huang et al.,

2006), Bayesian optimization with continuous approxima-
tions (BOCA) (Kandasamy et al., 2017), and multi-fidelity
PES (MF-PES) (Zhang et al., 2017). We also evaluated sin-
gle fidelity MES which applied to the highest fidelity func-
tion f (M)(x). As we see in Section 5, misoKG is another
measure of global utility for MFBO. However, we could
not employ it as a baseline because it was not straightfor-
ward to modify the author implementation for fair compar-
ison (e.g., changing the MF-GPR model), and creating ef-
ficient implementation from scratch is also extremely com-
plicated (naı̈ve implementation of KG can be prohibitively
slow). Only BOCA employed the multi-task GPR (MT-
GPR) model because the acquisition function assumes MT-
GPR. For the sampling of f∗ in MES and MF-MES, we
employed the RFM-based approach described in Section 4,
and sampled 10 f∗s at every iteration. In MF-PES, x∗
was also sampled 10 times through RFM as suggested by
(Hernández-Lobato et al., 2014).

Figure 2 shows SR and IR. In both of SR and IR, MF-
MES decreased the regret faster than or comparable with
all the other methods. The single-fidelity MES is relatively
slow because it cannot use lower-fidelity functions, and we
clearly see that MF-MES successfully accelerates MES.
For SR of the GP-based synthetic, HartMann6 and material
functions, MF-PES was slower than the others. We empiri-
cally observed that MF-PES sometime did not aggressively
select the highest fidelity samples enough.

A possible reason is in an approximation employed by MF-
PES which assumes f (m)

x ≤ f
(m)
x∗ + c for m < M , where

c is a constant (see Zhang et al., 2017, for the detailed def-
inition). However, even when x∗ is given, this strict in-
equality relation does not hold obviously (note that x∗ is
the maximizer only when m = M ), and we conjecture that
the information gain from lower fidelity functions can be
overly estimated because of this artificial truncation. In the
material data, IR was slightly unstable which was caused
by noisy observations contained in this real-world dataset.
In particular, MF-PES largely fluctuated, and this would
also be due to the lack of the highest fidelity samples as we
mentioned above. We also evaluate computational time of
the acquisition functions in Appendix G.2.

6.2. Evaluation for Parallel Querying

Next, we evaluate performance on parallel querying. For
comparison, we used MES combined with local penaliza-
tion (Gonzalez et al., 2016), denoted as MES-LP, Gaus-
sian process upper confidence bound with pure exploration
(GP-UCB-PE) (Contal et al., 2013), asynchronous paral-
lel Thompson sampling (AsyTS) (Kandasamy et al., 2018).
Here, we would like to note that no existing methods have
been proposed for discrete fidelity parallel MFBO, to our
knowledge, and extending existing methods to this setting
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Figure 2: Performance comparison on sequential querying.
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Figure 3: Performance comparison on parallel querying.
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is not straightforward because of discreteness of fidelity
levels. We also compare the performance of “sequential”
MF-MES (which is same as “MF-MES” in Figure 2), and
a parallel extension of single-fidelity MES (shown in Ap-
pendix D.4) as baselines. For the sampling of f̃∗ in Parallel
MF-MES and Parallel MES, the number of samples are set
10 through RFM. The number of workers is set q = 4.

Figure 3 shows SR and IR. We see that parallel MF-MES
substantially faster than sequential MF-MES and parallel
MES. This indicates that parallel MF-MES succeeded in
assigning workers across multiple fidelities. Compared
with other methods, parallel MF-MES shows rapid or com-
parable convergence.

7. Conclusion
We propose a novel information-based multi-fidelity
Bayesian optimization (MFBO). The acquisition function
is defined through the information gain for the optimal
value f∗ of the highest fidelity function. We show that our
method called MF-MES (multi-fidelity max-value entropy
search) can be reduced to simple computations, which al-
lows reliable evaluation of the entropy. For the asyn-
chronous setting, which naturally arises in MFBO, we fur-
ther propose parallelization of MF-MES and show that it is
also easy to compute. We demonstrate effectiveness of MF-
MES by using benchmark functions and a real-world ma-
terials science data. We showed the performance by total
cost of function evaluations this time. However, wall-clock
time is also often important in the multi-fidelity setting and
the performance evaluation based on wall-clock time is one
of our important future work.
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