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A. Semiparametric Latent Factor Model and its RFM approximation
A.1. Model Definition

Semiparametric Latent Factor Model (SLFM) is a Gaussian process based multiple response model (Teh et al., 2005).
SLFM represents each output as a sum of C functions having different kernel functions k1, . . . , kC , where kc : x×x→ R
is a kernel function. Let wmc ∈ R be a weight that the m-th output (fidelity) assigns to the c-th function. By introducing
an independent term κcm > 0, the kernel function is written as

k((x,m), (x′,m′)) =

C∑
c=1

(wcmwcm′ + κcmδm=m′)kc(x,x
′),

where δm=m′ = 1 if m = m′, and 0 otherwise. The parameters wcm and κcm which control dependence between multiple
outputs are regarded as hyper-parameters, and standard approaches such as marginal likelihood optimization are often used
to set them.

A.2. RFM for SLFM

Let fx := (f
(1)
x , . . . , f

(M)
x )⊤ be the M -dimensional output vector, and

cov(fx,fx′) :=

 k((x, 1), (x′, 1)) · · · k((x, 1), (x′,M))
...

...
k((x,M), (x′, 1)) · · · k((x,M), (x′,M))


be the M × M covariance matrix of x and x′. By defining wc := (wc1, . . . , wcM ) and κc := (κc1, . . . , κcM ), this
covariance is written as

cov(fx,fx′) =

C∑
c=1

(wcw
⊤
c + diag(κc))kc(x,x

′).

Since kc(x,x
′) is assumed to be one of stationary kernel functions (e.g., Gaussian kernel), RFM can produce a feature

vector representation ϕc which approximates the kernel function as kc(x,x
′) ≈ ϕ⊤

c (x)ϕc(x). To transform wcw
⊤
c +

diag(κc) into a form of inner product, we use the Cholesky decomposition

wcw
⊤
c + diag(κc) = LcL

⊤
c ,

where Lc ∈ RM×M is a lower triangular matrix. Then, we obtain

cov(fx,fx′) ≈
C∑

c=1

LcL
⊤
c

(
ϕ⊤

c (x)ϕc(x
′)
)

=

C∑
c=1

Ψ⊤
c (x)Ψc(x

′)

where Ψc(x) := L⊤
c ⊗ ϕc(x). Here, in the last line, we use the mixed-product property of Kronecker product. Then, the

m-th column of Ψc(x) is defined as the feature of x for the m-th fidelity ϕ(x,m).
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B. Proof of Lemma 3.1
Using Bayes’ theorem, we obtain

p(f (m)
x | f (M)

x ≤ f∗,Dt)

=
p(f

(M)
x ≤ f∗ | f (m)

x ,Dt)p(f
(m)
x | Dt)

p(f
(M)
x ≤ f∗ | Dt)

. (15)

The densities p(f (m)
x | Dt) and p(f

(M)
x ≤ f∗ | Dt) are directly obtained from the predictive distribution:

p(f (m)
x | Dt) = ϕ(γ

(m)

f
(m)
x

(x))/σ(m)
x ,

p(f (M)
x ≤ f∗ | Dt) = Φ(γ

(M)
f∗

(x)).
(16)

In addition, from (5), p(f (M)
x ≤ f∗ | f (m)

x ,x,Dt) is written as the cumulative distribution of this Gaussian:

p(f (M)
x ≤ f∗ | f (m)

x ,Dt) = Φ((f∗ − u(x))/s(x)). (17)

Substituting (16) and (17) into (15), the entropy is obtained.

C. Information Gain with Noisy Observation

Here, we describe calculation of the mutual information between f∗ and noisy observation y
(m)
x , where y

(m)
x := y(m)(x)

in this section. The mutual information can be written as the difference of the entropy:

I(f∗; y
(m)
x | x,Dt) = H(y(m)

x | x,Dt)− Ep(f∗|x,Dt)

[
H(y(m)

x | x, f∗,Dt)
]
. (18)

The first term in the right hand side is

H(y(m)
x | x,Dt) = log

(√
2πe(σ

2(m)
x + σ2

noise)

)
. (19)

Using the sampling approximation of f∗, the second term in (18) is

Ep(f∗|x,Dt)

[
H(y(m)

x | x, f∗,Dt)
]
≈
∑

f∗∈F∗

1

|F∗|
H(y(m)

x | x, f∗,Dt). (20)

For any ζ ∈ R, define

γ
(m)
ζ (x) := (ζ − µ(m)

x )/σ(m)
x ,

and

ρ
(m)
ζ (x) := (ζ − µ(m)

x )/

√
σ
2(m)
x + σ2

noise.

In this case, even for the highest fidelity M , the density p(y
(m)
x | x, f (M)

x ≤ f∗,Dt) is not the truncated normal because of
the noise term. Using Bayes’ theorem, we decompose this density as

p(y(m)
x | x, f (M)

x ≤ f∗,Dt) =
p(f

(M)
x ≤ f∗ | y(m)

x ,x,Dt)p(y
(m)
x | x,Dt)

p(f
(M)
x ≤ f∗ | x,Dt)

. (21)

The densities p(y(m)
x | x,Dt) and p(f

(M)
x ≤ f∗ | x,Dt) are directly obtained from the predictive distribution:

p(y(m)
x | x,Dt) =

1√
σ
2(m)
x + σ2

noise

ϕ(ρ
(m)

y
(m)
x

(x)),

p(f (M)
x ≤ f∗ | x,Dt) = Φ(γ

(M)
f∗

(x)).

(22)
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The joint marginal distribution p(f
(M)
x , y

(m)
x | x,Dt) is written as[

y
(m)
x

f
(M)
x

]
| x,Dt ∼ N

([
µ
(m)
x

µ
(M)
x

]
,

[
σ2(m)

x + σ2
noise σ2(mM)

x

σ2(mM)
x σ2(M)

x

])
,

From this distribution, we obtain p(f
(M)
x | y(m)

x ,x,Dt) as

f (M)
x | y(m)

x ,x,Dt ∼ N (unoise(x), s
2
noise(x)),

where

unoise(x) =
σ2(mM)

x

(
y
(m)
x − µ

(m)
x

)
σ2(m)

x + σ2
noise

+ µ(M)
x ,

s2noise(x) = σ2(M)
x −

(
σ2(mM)

x

)2
σ2(m)

x + σ2
noise

.

Thus, p(f (M)
x ≤ f∗ | y(m)

x ,x,Dt) is written as the cumulative distribution of this Gaussian:

p(f (M)
x ≤ f∗ | y(m)

x ,x,Dt) = Φ(γ′
f∗(x)), (23)

where, γ′
f∗
(x) := (f∗−unoise(x))/snoise(x). Using (15), (16), and (17) in the proof of Lemma 3.1, the entropy is obtained

as

H(y(m)
x | x, f (M)

x ≤ f∗,Dt)

= −
∫

ZΦ
(
γ′
f∗(x)

)
ϕ
(
ρ
(m)

y
(m)
x

(x)
)
· log

(
ZΦ
(
γ′
f∗(x)

)
ϕ
(
ρ
(m)

y
(m)
x

(x)
))

dy(m)
x , (24)

where Z := 1/

√
σ
2(m)
x + σ2

noiseΦ(γ
(M)
f∗

(x)). The integral in (24) can be calculated by using numerical integration in the
same way as (6).

Using I(f∗; y
(m)
x ) instead of I(f∗; f

(m)
x ) would be more natural when the observations are assumed to contain the obser-

vation noise with large variance σ2
noise, but in practice, difference of these two formulations would not largely effect on

performance of BO when σ2
noise is small.

Note that the mutual information of parallel querying I(f∗; f
(m)
x | Dt,fQ) can be replaced with the noisy observation

I(f∗; y
(m)
x | Dt,fQ) by using same procedure.

D. Additional Information for Parallel Querying
D.1. Proof of Lemma 3.2

The first term of (8) is

EfQ|Dt

[
H(f (m)

x | Dt,fQ)
]
= EfQ|Dt

[
log
(
σ
(m)
x|fQ

√
2πe
)]

= log
(
σ
(m)
x|fQ

√
2πe
)
.

The last equation holds since σ
(m)
x|fQ

does not depend on fQ.

The second term of (8) is written as

EfQ,f∗|Dt

[
H(f (m)

x | Dt,fQ, f
(M)
x ≤ f∗)

]
= −

∫ ∫
p(fQ, f∗ | Dt)

∫
p(f (m)

x | Dt,fQ, f
(M)
x ≤ f∗) log p(f

(m)
x | Dt,fQ, f

(M)
x ≤ f∗)df

(m)
x dfQdf∗. (25)



Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its Parallelization

For the conditional distribution

f (M)
x | Dt,fQ, f

(m)
x ∼ N (up(x), s

2
p(x)),

the mean and the variance function can be written as

up(x) =
σ
2(mM)
x|fQ

(
f
(m)
x − µ

(m)
x|fQ

)
σ
2(m)
x|fQ

+ µ
(M)
x|fQ

,

s2p(x) = σ
2(M)
x|fQ

−
(
σ
2(mM)
x|fQ

)2
/ σ

2(m)
x|fQ

.

Then, from Bayes’ theorem, we see

p(f (m)
x | Dt,fQ, f

(M)
x ≤ f∗) =

p(f
(M)
x ≤ f∗ | Dt, f

(m)
x ,fQ)p(f

(m)
x | Dt,fQ)

p(f
(M)
x ≤ f∗ | Dt,fQ)

=

Φ
(

f∗−up(x)
sp(x)

)
ϕ

(
f(m)
x −µ

(m)

x|fQ

σ
(m)

x|fQ

)
σ
(m)
x|fQ

Φ

(
f∗−µ

(M)

x|fQ

σ
(M)

x|fQ

) . (26)

By defining

A :=
σ
2(mM)
x|fQ

σ
2(m)
x|fQ

,

we can re-write

f̃∗ − up(x) = f̃∗ −Af̃ (m)
x ,

and then, (26) is transformed into

Φ
(

f̃∗−Af̃(m)
x

sp(x)

)
ϕ

(
f̃(m)
x

σ
(m)

x|fQ

)
σ
(m)
x|fQ

Φ

(
f̃∗

σ
(M)

x|fQ

) =: η(f̃∗, f̃
(m)
x ).

By further defining h(f̃∗, f̃
(m)
x ) := η(f̃∗, f̃

(m)
x ) log η(f̃∗, f̃

(m)
x ), we simplify (25) as follows

−
∫ ∫

p(fQ, f∗ | Dt)

∫
h(f̃∗, f̃

(m)
x )df (m)

x dfQdf∗. (27)

This indicates that the most inner integrand can be shown as a function which only depends two random variables f̃∗ and
f̃
(m)
x . We change the variables of integration from (f∗, f

(m)
x ,f⊤

Q )⊤ to (f̃∗, f̃
(m)
x ,f⊤

Q )⊤.

J :=


∂f̃∗
∂f∗

∂f̃∗

∂f
(m)
x

∂f̃∗
∂f⊤

Q
∂f̃(m)

x

∂f∗

∂f̃(m)
x

∂f
(m)
x

∂f̃(m)
x

∂f⊤
Q

∂fQ
∂f∗

∂fQ

∂f
(m)
x

∂fQ
∂f⊤

Q


=

[
I2 ΣM,QΣ

−1
Q

0 I|Q|

]
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where I2 and I|Q| are the identity matrices with size 2 and |Q|, respectively. Note that determinant of J is |J | = 1. Thus,
by changing variables of integration and variables of the densities, (27) can be transformed into

−
∫ ∫

p(fQ, f∗ | Dt)

∫
h(f̃∗, f̃

(m)
x )df (m)

x dfQdf∗ = −
∫ ∫

p(fQ, f̃∗ | Dt)

∫
h(f̃∗, f̃

(m)
x )df̃ (m)

x dfQdf̃∗

= −
∫

p(f̃∗ | Dt)

∫
h(f̃∗, f̃

(m)
x )df̃ (m)

x df̃∗

= −Ef̃∗|Dt

[∫
h(f̃∗, f̃

(m)
x )df̃ (m)

x

]
. (28)

D.2. Analytical Calculation of Entropy for m = M

When m = M , the most inner integral in (25) can be further simplified because it is equal to the entropy of the truncated
normal p(f (M)

x | Dt,fQ, f
(M)
x ≤ f∗), which is written as

−
∫

p(f (M)
x | Dt,fQ, f

(M)
x ≤ f∗) log p(f

(M)
x | Dt,fQ, f

(M)
x ≤ f∗)df

(M)
x

= log

√2πeσ(M)
x|fQ

Φ

 f̃∗

σ
(M)
x|fQ

− f̃∗

σ
(M)
x|fQ

ϕ

(
f̃∗

σ
(M)

x|fQ

)
2Φ

(
f̃∗

σ
(M)

x|fQ

)
=: ω(f̃∗),

By using the same change of variables as (28), we obtain

−
∫ ∫

p(fQ, f∗ | Dt)ω(f̃∗)dfQdf∗ = −Ef̃∗|Dt

[
ω(f̃∗)

]
.

D.3. Algorithm

As shown in Algorithm 2, the acquisition function maximization is performed when a worker becomes available. The
sampling of f̃∗ ∈ F̃∗ is performed through an RFM approximation of MF-GPR: w⊤ϕ(x,m). For the entropy calculation
in line 19, one dimensional numerical integration is necessary for the integral in (14) when m ̸= M , while the analytical
formula is available when m = M as shown in Appendix D.2.

D.4. Synchronous Parallelization

D.4.1. SINGLE-FIDELITY SETTING

In the main text, we focus on the asynchronous setting because of the diversity of sampling costs in MFBO. On the other
hand, many parallel BO studies on the single-fidelity setting consider the synchronous setting (Figure 4). To our knowledge,
a parallel extension of MES has not been studies even in the single-fidelity setting. Our approach is actually applicable to
defining the single fidelity acquisition function. Although our main focus is in MFBO, we here show a counterpart of our
multi-fidelity acquisition function in the single fidelity setting.

Suppose that we need to select q points written as Q = {x1, . . . ,xq} for the single fidelity parallel BO. Unlike the
asynchronous setting, q points is needed to be selected simultaneously. By setting fQ := (fx1 , . . . , fxq )

⊤, a natural
extension of MES for synchronous single-fidelity setting is written as

I(f∗;fQ | Dt) := H(fQ | Dt)− EfQ|Dt
[H(fQ | fQ ≤ f∗,Dt)] . (29)

Note that we impose the condition fQ ≤ f∗, indicating that all the elements of fQ is less than or equal to f∗, instead
of fx ≤ f∗ in the usual MES. The first term is the entropy of the q-dimensional Gaussian distribution which can be
analytically calculated. The second term is the entropy of the multi-variate truncated normal distribution, for which we
show analytical and approximate approaches to the computation.
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Algorithm 2 Parallel MF-MES

1: function PARALLEL MF-MES(D0,M,X , {λ(m)}Mm=1)
2: for t = 0, . . . , T do
3: Wait for a worker to be available
4: Generate F̃∗ from RFM
5: (xt+1,mt+1)← argmaxx∈X ,m

INFOGAIN(x, m, F̃∗, Dt) / λ(m)

6: Dt+1 ← Dt ∪ (xt+1, y
(mt+1)(xt+1),mt+1)

7: end for
8: end function
9: function INFOGAIN(x, m, F∗, Dt)

10: Calculate µ
(m)
x|fQ

and σ
(m)
x|fQ

11: Set H0 ← log
(
σx|fQ

√
2πe
)

12: if m ̸= M then
13: Calculate µ

(M)
x|fQ

, σ
(m)
x|fQ

, and σ
2(mM)
x|fQ

14: end if
15: Set H1 ← (14)
16: Return H0 −H1

17: end function

TimeWorkers

Query 1

Query 5

Query 3

Query 4

Query 2

Query 6

Figure 4: Synchronous setting in parallel BO.

First, we consider the analytical approach. The density p(fQ | Dt) is the predictive distribution of GPR, and we define µQ
and ΣQ as the mean and covariance matrix, respectively. The truncated normal in the second term is defined through this
density as follows

p(fQ | fQ ≤ f∗,Dt) =

{
p(fQ | Dt)/Z, if fQ ≤ f∗,

0, otherwise,
(30)

where

Z :=

∫
fQ≤f∗

p(fQ | Dt)dfQ.

We refer to the truncated normal (30) as TN(µTN
Q ,ΣTN

Q ), where µTN
Q and ΣTN

Q are the mean and covariance matrix,
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respectively. Let ETN be the expectation by the density (30). Then, the entropy in the second term of (29) is re-written as

H[fQ | D,fQ ≤ f∗] = −
∫
fQ≤f∗

p(fQ | Dt)

Z
log

p(fQ | Dt)

Z
dfQ

= −ETN

[
log

p(fQ | Dt)

Z

]
= −ETN

[
log p(fQ | Dt)− logZ

]
= −ETN

[
log p(fQ | Dt)

]
+ logZ

= −ETN

[
−1

2
log |2πΣQ| −

1

2
(fQ − µQ)

⊤Σ−1
Q (fQ − µQ)

]
+ logZ

=
1

2
log |2πΣQ|+

1

2
ETN

[
(fQ − µQ)

⊤Σ−1
Q (fQ − µQ)

]
︸ ︷︷ ︸

=:B

+ logZ.

By defining d = µTN
Q − µQ, we see

B = ETN

[
Tr
(
Σ−1

Q (fQ − µQ)(fQ − µQ)
⊤)]

= Tr
(
Σ−1

Q ETN

[
(fQ − µQ)(fQ − µQ)

⊤])
= Tr

(
Σ−1

Q ETN

[
(fQ − µTN

Q + d)(fQ − µTN
Q + d)⊤

])
= Tr

(
Σ−1

Q ETN

[
(fQ − µTN

Q )(fQ − µTN
Q )⊤ + d(fQ − µTN

Q )⊤ + (fQ − µTN
Q )d⊤ + dd⊤]).

Since ETN[(fQ − µQ)] = 0, we further obtain

B = Tr
(
Σ−1

Q ETN

[
(fQ − µTN

Q )(fQ − µTN
Q )⊤ + dd⊤])

= Tr
(
Σ−1

Q (ΣTN
Q + dd⊤)

)
Therefore, we obtain

H[fQ | D,fQ ≤ f∗] =
1

2

(
log |2πΣQ|+Tr

(
Σ−1

Q (ΣTN
Q + dd⊤)

))
+ logZ.

If Z, µTN
Q , and ΣTN

Q are available, the above equation is easily calculated. The normalization term Z is the q-dimensional
Gaussian CDF, for which a lot of fast computation algorithms have been proposed (e.g., Genz, 1992; Genton et al., 2017).
A method proposed by (Genz, 1992) has been widely used, which requires O(q2) computations. For µTN

Q , and ΣTN
Q , G

& Wilhelm (2012) shows analytical formulas which also depend on the multivariate Gaussian CDF. This needs q times
computations of the q − 1 dimensional CDF, and q(q − 1) times computations of the q − 2 dimensional CDF.

To avoid many computations of q − 1 dimensional CDF, we can introduce approximation of the entropy calculation or
greedy selection of Q. As a fast approximation, expectation propagation (EP) can be used to replace the truncated normal
distribution with a Gaussian distribution, which makes the entropy calculation analytical. The similar technique is also
used in (Hernández-Lobato et al., 2014). For the greedy strategy, we can choose a next point to add Q by maximizing
I(f∗;fx | Dt,fQ̃), where Q̃ is a set of (x,m) already determined to be included in Q. This information can be evaluated
by the same way as we saw in the asynchronous setting (8) because the equation has the same form of conditional mutual
information.

D.4.2. MULTI-FIDELITY SETTING

Combining the synchronous setting with multi-fidelity functions m = 1, . . . ,M results in a combinatorial selection of
Q = {(x1,m1), . . . , (xq,mq)} because of the discreteness of the fidelity level m. When a simple greedy strategy is
employed to select Q, the procedure is reduced to the almost the same procedure as the synchronous single fidelity case
described above. This indicates that we can avoid the q dimensional integral by using the technique shown in Section 3.2.
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Table 1: Summary of possible settings. “FF-based” indicates the setting that the fidelity feature z is available, while
“FF-free” does not assume it. Synchronous querying is denoted as ’sync’, and asynchronous querying is denoted as ’asyn’.

Fidelity (S)equential/ Our description Note
(P)arallel

Parallel BO Single P (sync) Appendix D.4.1 -
Single P (asyn) Special case of Parallel MF-MES -

MFBO Multiple (FF-based) S Appendix E -
Multiple (FF-free) S Section 3.1 -

Parallel MFBO Multiple (FF-based) P (sync) Appendix E (Wu & Frazier, 2017)
Multiple (FF-based) P (asyn) Appendix E No prior work
Multiple (FF-free) P (sync) Appendix D.4.2 No prior work
Multiple (FF-free) P (asyn) Section 3.2 No prior work

E. Incorporating Fidelity Feature
Our proposed method is applicable to the case that the fidelity is defined as a point of a fidelity feature (FF) space Z
instead of the discrete fidelity level 1, . . . ,M (Kandasamy et al., 2017). Let f (z)

x be the predictive distribution for the
fidelity z ∈ Z . The goal is to solve maxx∈X f

(z∗)
x , where z∗ ∈ Z is the highest fidelity to be optimized. For example,

in the neural network hyper-parameter optimization, Z can be a two dimensional space defined by the number of training
data and the number of training iterations.

In this case, our acquisition function (1) is extended to

a(x, z) := I(f∗; f
(z)
x ) / λ(z), (31)

where f∗ := maxx∈X f
(z∗)
x in this case, and λ(z) is known cost for z ∈ Z . As with (Kandasamy et al., 2017), we represent

the output f (z)
x as a Gaussian process on the direct product space X × Z . Suppose that the observed training data set is

written as Dn = {(xi, y
(zi)(xi), zi)}ni=1, where y(zi)(xi) is an observation of xi at the fidelity zi. A standard approach

to defining a kernel on the joint space X × Z is to use the product form k((xi, zi), (xj , zj)) = kx(xi,xj) kz(zi, zj),
where kx : X ×X → R is a kernel for the input space X , and kz : Z ×Z → R is a kernel for the fidelity space Z . Based
on this kernel, predictive distribution of GPR can be defined for any pair of (x, z), and thus the numerator of (31) can be
calculated by using the same approach as I(f∗; f

(m)
x ) which we describe in Section 3.1.

Parallelization can also be considered in this FF-based case. For the asynchronous setting, the acquisition function is

apara(x, z) = I(f∗; f
(z)
x | Dt,fQ)/λ

(z),

in which information gain is conditioned on the set of points currently under evaluation Q =
{(x1,m1), . . . , (xq−1,mq−1)}. As in the sequential case above, the calculation of this acquisition function is al-
most same as the discrete case in Section 3.2. For the synchronous case, the same discussion as Appendix D.4 also
holds.

F. Summary of Settings in Sequential/Parallel MFBO
A possible combination of the single/multiple fidelity and sequential/parallel querying are summarized in Table 1. Our
main focus is in FF-free MFBO, and FF-free parallel MFBO with asynchronous querying. In particular, for parallel
MFBO, except for the FF-based synchronous querying, no prior works exist to our knowledge.

G. Additional Information of Empirical Evaluation
G.1. Other Experimental Settings

G.1.1. SETTINGS OF METHODS

We trained the GPR model using normalized training observations (mean 0, and standard deviation 1), other than the GP-
based synthetic function. Model hyper-parameters were optimized by marginal-likelihood at every 5 iterations. For the
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GP-based synthetic function, we set the GPR hyper-parameters as parameters used for sampling the function. For the initial
observations, we employed the Latin hypercube approach shown by (Huang et al., 2006). The number of initial training
points x ∈ X ⊂ Rd were set as follows:

• 5d and 4d for m = 1 and 2, respectively, if M = 2

• 6d, 3d and 2d for m = 1, 2 and 3, respectively, if M = 3

• 10d, 7d and 3d for m = 1, 2 and 3, respectively, in the material dataset

We used the Gaussian kernel k(x,x′) = exp(−
∑d

i=1(xi−x′
i)

2/(2ℓ2i )) for all kernels. The length scale parameter ℓd was
optimized through marginal-likelihood in the following interval:

• ℓd ∈ [Domain size/10,Domain size × 10] for the GP-based synthetic function and the benchmark functions, here
Domain size is the difference between the maximum and the minimum of the input domain in each dimension. The
input domain of each function is shown in Appendix G.1.2.

• ℓd ∈ [10−3, 10−1] for the material dateset

• The task kernel in BOCA: ℓd ∈ [2, (M −1)×10] for benchmark functions, and ℓd ∈ [10, 103] for the material dataset

The noise parameter of GPR was fixed as σ2
noise = 10−6. The number of kernels in SLFM was C = 2. The hyper-

parameters in covariance among different output dimension were also optimized through marginal-likelihood in the fol-
lowing interval:

• wc1 ∈ [
√
0.75, 1] for c = 1, 2

• wc2 ∈ [−
√
0.25,

√
0.25] for c = 1, 2

• κcm ∈ [10−3, 10−1] for c = 1, 2 and m = 1, . . . ,M

The number of basis D in RFM was 1000, which was used by MF-MES, MF-PES, MES-LP, and AsyTS. The number of
samplings for f∗ in MES and PES was 10.

For all compared methods, including BOCA, MFSKO, local penalization in MES-LP, GP-UCB-PE, and AsyTS, we fol-
lowed the settings of hyper-parameters in their original papers.

G.1.2. DETAILS OF BENCHMARK DATASETS

GP-based Synthetic functions We used RFM for SLFM described in Appendix A.2. The input dimension is d = 3 and
the domain is xi ∈ [0, 1]. The parameters are C = 1,w = (0.9, 0.9)⊤,κ = (0.1, 0.1)⊤, and ℓi = 0.1 for i = 1, 2, 3.

Styblinski-Tang function

f (1) =
1

2

2∑
i=1

(0.9x4
i − 15x2

i + 6xi),

f (2) =
1

2

2∑
i=1

(x4
i − 16x2

i + 5xi),

xi ∈ [−5, 5], i = 1, 2
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(b) HartMann6

Figure 5: Computational time for acquisition function maximization.

HartMann6 function

f (1) = −
4∑

i=1

(αi − 0.2) exp

(
−

6∑
j=1

Aij(xj − Pij)
2

)
,

f (2) = −
4∑

i=1

(αi − 0.1) exp

(
−

6∑
j=1

Aij(xj − Pij)
2

)

f (3) = −
4∑

i=1

αi exp

(
−

6∑
j=1

Aij(xj − Pij)
2

)
α = [1.0, 1.2, 3.0, 3.2]⊤

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


xj ∈ [0, 1], j = 1, . . . , 6

Materials Data As an example of practical application, we applied our method to the parameter optimization of compu-
tational simulation model in materials science. There is a computational model (Tsukada et al., 2014) that predicts equi-
librium shape of precipitates in the α-Mg phase when material parameters are given. We estimate two material parameters
(lattice mismatch and interface energy between the α-Mg and precipitate phases) from experimental data on precipitate
shape measured by transmission electron microscopy (TEM) (Bhattacharjee et al., 2013). The objective function is the
discrepancy between precipitate shape predicted by the computational model and one measured by TEM.

G.2. Measuring Computational Time of Acquisition Functions

We measured the computational time for the maximization of the acquisition functions. We assume that the predictive
distribution of the GPR model is already obtained, because it is almost common for all the methods. The training dataset
is created by the initialization process in our experiment described in Appendix G.1.

Figure 5 shows the results on three benchmark dataset, used in the main text. BOCA and MFSKO are relatively easy
to compute because they are based on UCB and EI, respectively. Their acquisition function is simple, but difficult to
incorporate global utility of the candidate without tuning parameters as we discuss in the main text. MF-MES was much
faster than MF-PES. We emphasize that MF-PES employs the approximation based on EP to accelerate the computation,
unlike our MF-MES which is almost analytical. This indicates that MF-MES provides more reliable entropy computation
with smaller amount of computations than MF-PES.


