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Abstract 
This document contains additional details for the 
main ICML 2020 paper. 

A. Proof of the Matrix Variate Normal 
Parameterization 

In this section of the appendix, we formally explain the 
connections between the k-tied Normal distribution and the 
matrix variate Gaussian distribution (Gupta & Nagar, 2018), 
referred to as MN . 

Consider positive definite matrices Q ∈ Rr×r and P ∈ 
Rc×c and some arbitrary matrix M ∈ Rr×c . We have by 
definition that W ∈ Rr×c ∼ MN (M, Q, P) if and only 
if vec(W) ∼ N (vec(M), P ⊗ Q), where vec(·) stacks the 
columns of a matrix and ⊗ is the Kronecker product 

The MN has already been used for variational inference 
by Louizos & Welling (2016) and Sun et al. (2017). In par-
ticular, Louizos & Welling (2016) consider the case where 
both P and Q are restricted to be diagonal matrices. In 
that case, the resulting distribution corresponds to our k-tied 
Normal distribution with k = 1 since 

P ⊗ Q = diag(p) ⊗ diag(q) = diag(vec(qp >)). 

Importantly, we prove below that, in the case where k ≥ 2, 
the k-tied Normal distribution cannot be represented as a 
matrix variate Gaussian distribution. 
Lemma (Rank-2 matrix and Kronecker product). Let B 
be a rank-2 matrix in Rr×c . There do not exist matrices + 
Q ∈ Rr×r and P ∈ Rc×c such that 

diag(vec(B)) = P ⊗ Q. 
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Proof. Let us introduce the shorthand D = diag(vec(B)). 
By construction, D is diagonal and has its diagonal terms 
strictly positive (it is assumed that B ∈ Rr×c, i.e., bij > 0+ 
for all i, j). 

We proceed by contradiction. Assume there exist Q ∈ Rr×r 

and P ∈ Rc×c such that D = P ⊗ Q. 

This implies that all diagonal blocks of P⊗Q are themselves 
diagonal with strictly positive diagonal terms. Thus, pjj Q 
is diagonal for all j ∈ {1, . . . , c}, which implies in turn that 
Q is diagonal, with non-zero diagonal terms and pjj 6= 0. 
Moreover, since the off-diagonal blocks pij Q for i 6= j 
must be zero and Q 6= 0, we have pij = 0 and P is also 
diagonal. 

To summarize, if there exist Q ∈ Rr×r and P ∈ Rc×c such 
that D = P ⊗ Q, then it holds that D = diag(p) ⊗ diag(q) 
with p ∈ Rc and q ∈ Rr . This last equality can be rewritten 
as bij = pj qi for all i ∈ {1, . . . , r} and j ∈ {1, . . . , c}, or 
equivalently 

>B = qp . 

This leads to a contradiction since qp> has rank one while 
B is assumed to have rank two. 

Figure 1 provides an illustration of the difference between 
the k-tied Normal and the MN distribution. 

B. He-scaled Normal Prior 

We investigate whether the low-rank structure is specific to 
the GMFVI neural networks that use a Normal prior with 
a single scalar scale for all the weights. Instead of using 
the single scale parameter, we analyse a setting in which 
the Normal prior scale is set according to the scaling rules 
devised for neural network weights initialization (Glorot & 
Bengio, 2010; He et al., 2015). According to these rules, 
a per layer scale parameter is set according to the layer 
shape and activation function used. In particular, we use the 
scaling rule from He et al. (2015) for the models with ReLU 
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Figure 1. Illustration of the difference in modeling of the posterior 
covariance by the k-tied Normal distribution (green), the MN 
distribution (red), the Gaussian mean field (blue) and the dense 
Gaussian covariance (black) for a layer of size m × n. The k-tied 
Normal with k = 1 is equivalent to MN with diagonal row and 
column covariance matrices (half-red, half-green circle). Our ex-
periments show that the k = 1 fails to capture the performance 
of the mean field. On the other hand, while the full/non-diagonal 
MN increases the expressiveness of the posterior, it also increases 
the number of parameters. In contrast, the k-tied Normal distribu-
tion with k ≥ 2 not only decreases the number of parameters, but 
also matches the predictive performance of the mean field. 

activations (Glorot et al., 2011): � � 
2 

p(wl) = N 0, , (1) 
ml 

where ml is the fan-in of the m’th layer.1 However, the 
scaling rule proposed in He et al. (2015) does not cover the 
bias terms, which are initialized at zero. Therefore, for the 
ResNet-18 on CIFAR-10 which we take under test, we keep 
the prior for the biases unchanged at N (0, I). We rerun 
then the low-rank structure experiments from Section 2.3 
Figure 5, but now with the He-scaled prior. Figure 2 shows 
the low-rank structure analysis results for the new prior. 
While we observe an overall drop in performance, the low-
rank structure clearly remains present. 

C. KL Annealing with Adam 

We verify that when using KL annealing with Adam the 
posterior standard deviation parameters do not converge 
prematurely, but rather continue being optimized after the 
KL is at its full contribution. Figure 3 illustrates this on the 
example of the ResNet-18 CIFAR-10 model trained the stan-
dard GMFVI. Furthermore, for the MLP, CNN and LSTM 
models, we observed their posterior standard deviations at 

1For a dense layer the fan-in is the number of input dimensions, 
for a 2D Convolutional layer with a kernel of size k × k and d 
input channels the fan-in is ml = k2d. 

Method -ELBO ↓ NLL ↓ Accuracy ↑ 
Mean-field 1.379±0.0096 0.6384±0.0096 79.0±0.41 

1-tied 5.428±0.018 1.485±0.0056 57.0±0.50 

2-tied 1.448±0.0097 0.648±0.0079 78.8±0.41 

3-tied 1.411±0.0097 0.646±0.0079 78.9±0.41 

Figure 2. The post-training low rank structure is still present in the 
posterior standard deviation parameters of the ELBO-converged 
standard GMFVI ResNet-18 CIFAR-10 model when using the 
He-scaled prior. Approximations to these parameters with ranks 
higher than 1 result in performance close to that when not using 
the approximation. We report mean and SEM for predictions made 
using an ensemble of 100 weights samples. The SEM is measured 
across the test examples. 

convergence to have large values compared to the prior stan-
dard deviation value (>50% of the prior value), showing that 
we are modeling substantial uncertainty. 

D. Experimental Details 

In this section we provide additional information on the 
experimental setup used in the main paper. In particular, 
we describe the details of the models and datasets, the uti-
lized standard Gaussian Mean Field Variational Inference 
(GMFVI) training procedure, the low-rank structure analy-
sis of the GMFVI trained posteriors and the proposed k-tied 
Normal posterior training procedure. 

D.1. Models and datasets 

To confirm the validity of our results, we performe the ex-
periments on a range of models and datasets with different 
data types, architecture types and sizes. Below we describe 
their details. 

MLP MNIST Multilayer perceptron (MLP) model with 
three dense layers and ReLu activations trained on the 
MNIST dataset (LeCun & Cortes, 2010). The three layers 
have sizes of 400, 400 and 10 hidden units. We preprocess 

https://78.9�0.41
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Figure 3. Change in the mean of posterior standard deviation pa-
rameters for selected layers of the standard GMFVI ResNet-18 
CIFAR-10 model over the course of training. KL is annealed over 
the first 50 epochs linearly from 0 to 1 (gray area). Top: posterior 
standard deviation parameters continue being optimized when the 
KL is at its full contribution. Bottom: the posterior standard de-
viations reach large values after 700 epochs showing that we are 
modeling substantial uncertainty. 

the images to be have values in range [−1, 1]. We use the 
last 10,000 examples of the training set as a validation set. 

LeNet CNN CIFAR-100 LeNet convolutional neural net-
work (CNN) model (LeCun et al., 1998) with two convolu-
tional layers followed by two dense layers, all interleaved 
with ReLu activations. The two convolutional layers have 
32 and 64 output filters respectively, each produced by ker-
nels of size 3 × 3. The two dense layers have sizes of 512 
and 100 hidden units. We train this network on the CIFAR-
100 dataset (Krizhevsky et al., 2009). We preprocess the 
images to have values in range [0, 1]. We use the last 10,000 
examples of the training set as a validation set. 

LSTM IMDB Long short-term memory (LSTM) model 
(Hochreiter & Schmidhuber, 1997) that consists of an em-
bedding and an LSTM cell, followed by a dense layer with 
a single unit. The LSTM cell consists of two dense weight 
matrices, namely the kernel and the recurrent kernel. The 
embedding and the LSTM cell have both 128-dimensional 

output space. More precisely, we adopt the publicly avail-
able LSTM Keras (Chollet et al., 2015) example2, except 
that we set the dropout rate to zero. We train this model 
on the IMDB text sentiment classification dataset (Maas 
et al., 2011), in which we use the last 5,000 examples of the 
training set as a validation set. 

ResNet-18 CIFAR-10 ResNet-18 model (He et al., 2016) 
trained on the CIFAR-10 dataset (Krizhevsky et al., 2009). 
We adopt the ResNet-18 implementation3 from the Ten-
sorflow Probability (Dillon et al., 2017) repository. We 
train/evaluate this model on the train/test split of 50,000 and 
10,000 images, respectively, from the CIFAR-10 dataset 
available in Tensorflow Datasets4. 

D.2. GMFVI training 

We train all the above models using GMFVI. We split the 
discussion of the details of the GMFVI training procedure 
into two parts. First, we describe the setup for the MLP, 
CNN and LSTM models, for which we prepare our own 
GMFVI implementations. Second, we explain the setup for 
the GMFVI training of the ResNet-18 model, for which we 
use the implementation available in the Tensorflow Proba-
bility repository as mentioned above. 

MLP, CNN and LSTM In the MLP and the CNN mod-
els, we approximate the posterior using GMFVI for all the 
weights (both kernel and bias weights). For the LSTM 
model, we approximate the posterior using GMFVI only 
for the kernel weights, while for the bias weights we use a 
point estimate. For all the three models, we use the standard 
reparametrization trick estimator (Kingma & Welling, 2013). 
We initialize the GMFVI posterior means using the standard 
He initialization (He et al., 2015) and the GMFVI poste-
rior standard deviations using samples from N (0.01, 0.001). 
Furthermore, we use a Normal prior N (0, σpI) with a sin-
gle scalar standard deviation hyper-parameter σp for all the 
layers. We select σp for each of the models separately from 
a set of {0.2, 0.3} based on the validation data set perfor-
mance. 

We optimize the variational parameters using an Adam 
optimizer (Kingma & Ba, 2014). We pick the op-
timal learning rate for each model from the set of 
{0.0001, 0.0003, 0.001, 0.003} also based on the validation 
data set performance. We choose the batch size of 1024 for 
the MLP and CNN models, and the batch size of 128 for 

2See: https://github.com/keras-team/keras/ 
blob/master/examples/imdb_lstm.py. 

3See: https://github.com/tensorflow/ 
probability/blob/master/tensorflow_ 
probability/examples/cifar10_bnn.py. 

4See: https://www.tensorflow.org/datasets/ 
catalog/cifar10. 

https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py
https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://www.tensorflow.org/datasets/catalog/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10
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the LSTM model. We train all the models until the ELBO 
convergence. 

To implement the MLP and CNN models we use the 
tfp.layers module from the Tensorflow Probabil-
ity, while to implement the LSTM model we use the 
LSTMCellReparameterization5 class from the Ed-
ward2 Layers module (Tran et al., 2019). 

ResNet-18 The specific details of the GMFVI training of 
the ResNet-18 model can be found in the previously linked 
implementation from the Tensorflow Probability repository. 
Here, we describe the most important and distinctive aspects 
of this implementation. 

The ResNet-18 model approximates the posterior using GM-
FVI only for the kernel weights, while for the bias weights 
it uses a point estimate. The model uses the Flipout esti-
mator (Wen et al., 2018) and a constraint on the maximum 
value of the GMFVI posterior standard deviations of 0.2. 
The GMFVI posterior means are initialized using samples 
from N(0, 0.1), while the GMFVI posterior log standard 
deviations are initialized using samples from N (−9.0, 0.1). 
Furthermore, the model uses a Normal prior N (0, I) for all 
of its layers. 

The variational parameters are trained using the Adam op-
timizer with a learning rate of 0.0001 and a batch size of 
128. The model is trained for 700 epochs. The contribution 
of the DKL term in the negative Evidence Lower Bound 
(ELBO) equation is annealed linearly from zero to its full 
contribution over the first 50 epochs (Sønderby et al., 2016). 

D.3. Low-rank structure analysis 

After training the above models using GMFVI, we investi-
gate the low-rank structure in their trained variational poste-
riors. For the MLP, CNN and LSTM models, we investigate 
the low-rank structure of their dense layers only. For the 
ResNet-18 model, we investigate both its dense and convo-
lutional layers. 

To investigate the low-rank structure in the GMFVI poste-
rior of a dense layer, we inspect a spectrum of the posterior 
mean and standard deviation matrices. In particular, for 
both the posterior mean and standard deviation matrices, we 
consider the fraction of the variance explained by the top 
singular values from their SVD decomposition (see Figure 
3 in the main paper). Furthermore, we explore the impact 
on predictive performance of approximating the reshaped 
diagonal matrices with their low-rank approximations us-
ing only the components corresponding to the top singular 
values (see Table 2 in the main paper). Note that such low-

5See: https://github.com/google/edward2/ 
blob/master/edward2/tensorflow/layers/ 
recurrent.py. 

rank approximations may contain values below zero. This 
has to be addressed when approximating the matrices of 
the posterior standard deviations, which can contain only 
positive values. Therefore, we use a lower bound of zero for 
the values of the approximations to the posterior standard 
deviations. 

To investigate the low-rank structure in a GMFVI poste-
rior of a convolutional layer, we need to add a few more 
steps compared to those for a dense layer. In particular, 
weights of the convolutional layers considered here are 4-
dimensional, instead of 2-dimensional as in the dense layer. 
Therefore, before performing the SVD decomposition, as for 
the dense layers, we first reshape the 4-dimensional weight 
tensor from the convolutional layer into a 2-dimensional 
weight matrix. More precisely, we flatten all dimensions 
of the weight tensor except for the last dimension (e.g., 
a weight tensor of shape [3, 3, 512, 512] is reshaped to 
[3 · 3 · 512, 512]). Figure 4 contains example visualizations 
of the resulting flattened 2-dimensional matrices6. Given the 
2-dimensional form of the weight tensor, we can investigate 
the low-rank structure in the convolutional layers as for the 
dense layers. As noted already in Figure 5 in the main paper, 
we observe the same strong low-rank structure behaviour 
in the flattened convolutional layers as in the dense layers. 
Interestingly, the low-rank structure is the most visible in 
the final convolutional layers, which also contain the highest 
number of parameters, see Figure 5. 

Importantly, note that after performing the low-rank approx-
imation in this 2-dimensional space, we can reshape the 
resulting 2-dimensional low-rank matrices back into the 4-
dimensional form of a convolutional layer. Table 1 shows 
that such a low-rank approximation of the convolutional 
layers of the analyzed ResNet-18 model can be performed 
without a loss in the model’s predictive performance, while 
significantly reducing the total number of model parameters. 

D.4. k-tied Normal posterior training 

To exploit the low-rank structure observation, we propose 
the k-tied Normal posterior, as discussed in Section 3. We 
study the properties of the k-tied Normal posterior applied 
to the MLP, CNN and LSTM models. We use the k-tied 
Normal variational posterior for all the dense layers of the 
analyzed models. Namely, we use the k-tied Normal varia-
tional posterior for all the three layers of the MLP model, for 
the two dense layers of the CNN model and for the LSTM 
cell’s kernel and recurrent kernel. 

We initialize the parameters uik and vjk of the k-tied Nor-
mal distribution so that after the outer-product operation 

6After this specific reshape operation, all the weights corre-
sponding to a single output filter are contained in a single column 
of the resulting weight matrix. 

https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.py
https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.py
https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.py
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Figure 4. Heat maps of the partially flattened posterior standard deviation tensors for the selected convolutional layers of the ResNet-18 
GMFVI BNN trained on CIFAR-10. The partially flattened posterior standard deviation tensors of the convolutional layers display similar 
low-rank patterns that we observe for the dense layers. 

Figure 5. Fraction of variance explained per each singular value from SVD of partially flattened tensors of posterior means and posterior 
standard deviations for different convolutional layers of the ResNet-18 GMFVI BNN trained on CIFAR-10. Posterior standard deviations 
clearly display strong low-rank structure, with most of the variance contained in the top few singular values, while this is not the case for 
posterior means. Interestingly, the low-rank structure is the most visible for the final convolutional layers, which also contain the highest 
number of parameters. 

the respective standard deviations σij have the same mean 
values as we obtain when using the standard GMFVI pos-
terior parametrization. More precisely, we initialize the 
parameters uik and vjk so that after the outer-product oper-
ation the respective σij standard deviations have means at 
0.01 before transforming to log-domain. This means that 
in the log domain the parameters uik and vjk are initial-
ized as 0.5(log(0.01) − log(k)). We also add white noise 
N (0, 0.1) to the values of uik and vjk in the log domain to 
break symmetry. 

During training of the models with the k-tied Normal pos-
terior, we linearly anneal the contribution of the DKL term 
of the ELBO loss. We select the best linear coefficient for 
the annealing from {5 × 10−5 , 5 × 10−6} (per batch) and 
increase the effective contribution every 100 batches in a 
step-wise manner. In particular, we anneal the DKL term to 
obtain the predictive performance results for all the models 
in Figure 6 in the main paper. However, we do not perform 
the annealing in the Signal-to-Noise ratio (SNR) and neg-
ative ELBO convergence speed experiments in the same 
Figure 6. In these two cases, KL annealing would occlude 
the values of interest, which show the clear impact of the 
k-tied Normal posterior. 
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