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Abstract

This paper studies an entropy-based multi-
objective Bayesian optimization (MBO). Exist-
ing entropy-based MBO methods need compli-
cated approximations to evaluate entropy or em-
ploy over-simplification that ignores trade-off
among objectives. We propose a novel entropy-
based MBO called Pareto-frontier entropy search
(PFES), which is based on the information gain
of Pareto-frontier. We show that our entropy
evaluation can be reduced to a closed form whose
computation is quite simple while capturing the
trade-off relation in Pareto-frontier. We further
propose an extension for the “decoupled” set-
ting, in which each objective function can be ob-
served separately, and show that the PFES-based
approach derives a natural extension of the origi-
nal acquisition function which can also be evalu-
ated simply. Our numerical experiments show ef-
fectiveness of PFES through several benchmark
datasets, and real-word datasets from materials
science.

1. Introduction

This paper studies the black-box optimization problem
with multiple objective functions. A variety of engineering
problems require optimally designing multiple utility eval-
uations. For example, in materials design of the lithium-ion
batteries, simultaneously maximizing ion-conductivity and
stability is required for practical use. This type of problems
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can be formulated as jointly maximizing L unknown func-
tions f1(x),..., fL(x) on some input domain X, which
is called a multi-objective optimization (MOO) problem.
MOO is often quite challenging because, typically, there
does not exist any single optimal option due to the trade-
off relation among different objectives. Further, as in the
case of the single-objective black-box optimization, obtain-
ing observations of each objective function is often highly
expensive. For example, in the scientific experimental de-
sign such as synthesizing proteins, querying one observa-
tion can take more than a day. Since in MOO, the unique
optimal point cannot be determined usually, a common ap-
proach is to search a set of Pareto-optimal points. For
Pareto-optimal f, := (f!(z),..., f%(x))", there should
not exist an alternative f, that improves all the objectives
simultaneously, and Pareto-frontier F* is defined as a set
of Pareto-optimal f,s (see Section 2 for the formal defini-
tion).

1.1. Related Work

The combination of scalarization and evolutionary com-
putations have been quite popular (e.g., Knowles, 2006;
Zhang et al., 2010) for MOO problems. In particular,
ParEGO (Knowles, 2006) has been widely known for
its outstanding performance. The scalarization approach
transforms MOO into a single-objective problem by which
the Pareto-optimal solutions can be obtained under the cer-
tain regularity conditions. However, acquisition functions
for the transformed single-objective are expected to be sub-
optimal. Although recently, some studies (Paria et al.,
2018; Marban & Frazier, 2017) have explored extensions
of scalarization for identifying a specific subset of Pareto-
frontier, we focus on identifying the entire Pareto-frontier
in this paper.

Extending acquisition functions of usual Bayesian opti-
mization (BO) has been a popular direction in MOO stud-
ies. An extension of standard expected improvement (EI)
considers increase of Pareto hyper-volume (Emmerich,
2005), which we call expected hyper-volume improvement
(EHI). Further, Shah & Ghahramani (2016) extended EHI
to correlated objectives. Although EI is a widely accepted
criterion, it measures the local utility only. Upper con-
fidence bound (UCB) is another well-known acquisition
function for BO (Srinivas et al., 2010). SMSego (Pon-
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weiser et al., 2008) is one of UCB based approaches to
MOO that optimistically evaluates the hyper-volume. PAL
and e-PAL (Zuluaga et al., 2013; 2016) are another UCB
approaches in which a confidence interval based evaluation
of Pareto-frontier is proposed. Shilton et al. (2018) evaluate
the distance between a querying point and Pareto-frontier
for defining a UCB criterion. A common difficulty of UCB
approach is its hyper-parameter that balances the effect of
the uncertainty term. Although there often exist theoretical
suggestions for determining the hyper-parameter, careful
tuning is necessary in practice since the suggested values
usually contain unknown constants.

Campigotto et al. (2014) considers uncertainty sampling
for directly modeling Pareto-frontier as a function. Al-
though the simplest uncertainty sampling only measures lo-
cal uncertainty at a querying point, global uncertainty mea-
sures have also been studied. SUR (Picheny, 2015) con-
siders the expected decrease of probability of improvement
(PD) as a measure of uncertainty reduction. However, SUR
is computationally extremely expensive, because PI after a
querying point is added to the training set is integrated over
the entire X', which severely limits scalability for the input
space dimension.

In this paper, we particularly focus on the information-
theoretic approach, which has been successful in single-
objective BO (Hennig & Schuler, 2012; Herndndez-Lobato
etal., 2014; Wang & Jegelka, 2017). A seminal work of this
direction for MOO is predictive entropy search for multi-
objective optimization (PESMO), which defines an acquisi-
tion function through the entropy of a set of Pareto-optimal
x (Hernandez-Lobato et al., 2016). They showed that the
entropy-based acquisition function can achieve the superior
performance compared with other types of criteria. How-
ever, PESMO employs an approximation based on expec-
tation propagation (EP) (Minka, 2001) because the direct
evaluation of their entropy is computationally intractable.
In their EP, a non-Gaussian density is replaced with a Gaus-
sian density, and it is difficult to show accuracy and relia-
bility of this replacement. Further, the resulting calculation
of the acquisition function is extremely complicated. On
the other hand, Belakaria et al. (2019) proposed to use the
entropy of the max-values of each dimension! =1,..., L,
called max-value entropy search for multi-objective opti-
mization (MESMO). This drastically simplifies the calcu-
lation, but obviously, f, € F* that does not have any val-
ues near the maximum of each axis is not preferred by this
criterion. This means that trade-off relations among objec-
tives, which are often essential for MOO problems, can-
not be captured. For the relation with existing information-
based methods, we further discuss in Section 5.

1.2. Contributions

We propose another entropy-based Bayesian MOO, called
Pareto-frontier entropy search (PFES). We consider the en-
tropy of the Pareto-frontier /™, defined in the space of the
objective functions f,, unlike PESMO that considers the
entropy of the Pareto-optimal . By inheriting the advan-
tage of the entropy-based approach, PFES provides a mea-
sure of global utility without any trade-off parameter. Un-
der a few common conditions in entropy-based methods,
we show that our acquisition function can be expressed as
a closed form by using a cell-based partitioning of the out-
put space. Although a naive cell partitioning can generate
a large number of cells for L > 3, we show an efficient
computation by using a partitioning technique used in the
Pareto hyper-volume computation. As a result, compared
with PESMO, PFES provides a reliable evaluation of the
entropy with much simpler computations. On the other
hand, since the entire Pareto-frontier /™ is considered in
the entropy calculation, PFES can capture trade-off rela-
tions in Pareto-frontier, which are ignored by MESMO.

We also discuss the decoupled setting, which was first in-
troduced by (Hernandez-Lobato et al., 2016) as an exten-
sion of PESMO. This scenario assumes that each one of
objective functions can be observed individually. Since
observing all the objective functions simultaneously can
cause huge cost, the decoupled setting evaluates only one
of objectives at every iteration. Although this setting has
not been widely studied, this can be highly important in
practice. In particular, for search problems in scientific
fields such as materials science and bio-engineering, mul-
tiple properties of objects (e.g., crystals, compounds, and
proteins) can often be investigated separately by perform-
ing different experimental measurements or simulation-
computations. In the battery material example, conduc-
tivity and stability can be evaluated through two indepen-
dent physical simulations. Other directions of examples are
also suggested by (Hernandez-Lobato et al., 2016), such
as in robotics and design of a low calorie cookie (Solnik
et al., 2017). However, the existing PESMO-based acquisi-
tion function, derived by naively decomposing the original
acquisition function, was not fully justified in a sense of
the entropy. We show that our PFES can be simply ex-
tended to the decoupled setting by considering the entropy
of the marginal density without introducing any additional
approximation.

Our numerical experiments show effectiveness of PFES
through synthetic functions and real-world datasets from
materials science.
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2. Preliminary

We consider the multi-objective optimization (MOQ) prob-
lem which maximizes L > 2 objective functions f Loy =
R for! = 1,...,L, where ¥ C R? is an input domain.
Let fo == (fL,...,f5)T, where f. = f!(x). The op-
timal solution of MOO is usually defined by Pareto opti-
mality.  For a pair of f, and far, if fL > f., for all
I € {1,...,L} with at least one of the inequalities being
strict, we say “f, dominates f/” and the relation is de-
noted as fr = fg. If fy is not dominated by any other
fx in the domain, f, is called Pareto-optimal. Pareto-
frontier F* is a set of Pareto-optimal f, which is written
as F* = {fm € Fxr | fm’ %— fa,,me/ S f,’y}, where
Fx = {fs € RL | Vz € X}. Although the Pareto-
optimal points can be infinite, most strategies aim at finding
a small subset of them that approximate the true F* with
sufficient accuracy.

Following the standard formulation of Bayesian optimiza-
tion (BO), we model the objective function by Gaussian
process regression (GPR). An observation for the /-th ob-
jective value of x; is assumed to be y! = fil + &,
where ¢ ~ N(0,02.,..). The training dataset is writ-
ten as D = {(x;,y;)}7",, where y; = (y},...,y5)7.
Independent L GPRs are applied to each dimension with
a kernel function k(x,x’). By setting prior mean as
0, the predictive mean and variance of the [-th GPR
are (z) = k(z)" (K + 0'121015(31’)71 y!, and o} (z) =
k(z,x) — k(z)" (K + ofmiseI)_1 k(x), where k(x) =
(k(z,21),...,k(z.x,) ",y = (4,...,¥}) T, and K is
the kernel matrix in which the i, j-element is defined by
k(zi, ;). We also define pu(z) = (u1(x),...,pr(x))"
and o(z) = (01(x),...,0r(x)) . Although we assume
L GPRs are independent throughout the paper, the exten-
sion for incorporating correlation among objectives are dis-

cussed in Appendix C.

3. Pareto-frontier Entropy Search for
Multi-Objective Optimization

We propose a novel information-theoretic approach to
multi-objective BO (MBO). Our method, called Pareto-
frontier entropy search (PFES), considers maximizing the
information gain for Pareto-frontier F*. With a slight
abuse of notation, we write f < F* when f € RE is
dominated by or equal to at least one of F*. The intuition
behind Pareto-frontier entropy is shown in Fig. 1. The in-
formation gain can be evaluated by the mutual information
between f, and Pareto-frontier 7, which we approximate
as follows:

I(]:*vfac|D)

~H[p(fo | D)) — Er- [Hlp(fo | D o < F)],

|
o =
© o

=3
o

B o i
(a) high information gain (b) low information gain

Figure 1: Illustrative examples of Pareto-frontier entropy.
The blue heatmap represents p(fz < F*) estimated by 10
Pareto-frontiers sampled from Gaussian process, and the
white points are the observed data. The predictive distri-
bution for f, is illustrated by the nested red circles in the
above two plots. Suppose that the red star point is a sample
generated by each predictive distribution, and the bottom
two plots show p(f, = F*) after adding the red star point
into the training dataset. (a) Since the predictive distribu-
tion is on around the Pareto-frontier, the mutual informa-
tion between f, and F* is high. Therefore, when a sample
is obtained from the predictive distribution, uncertainty of
the Pareto-frontier is drastically reduced in the bottom plot.
(b) Since the predictive distribution has low variance and is
not particularly close to the Pareto-frontier, the mutual in-
formation is low in this case. Even if a sample is obtained
from the predictive distribution, uncertainty of the Pareto-
frontier is not largely changed.

where H|-| is the differential entropy. In the second term,
we regard the conditional distribution f, given F* as
p(fz | D, fo < F*), ie., conditioning f =< F* only on
the given x rather than requiring it for V& € X. Note that
the same simplification has been employed by most of ex-
isting state-of-the-art information-theoretic BO algorithms
including well-known predictive entropy search (PES) and
max-value entropy search (MES) proposed by Hernandez-
Lobato et al. (2014) and Wang & Jegelka (2017), respec-
tively. Since the superior performance of these methods
compared with other approaches has been shown, we also
employ this simplification.

3.1. Acquisition Function

Since the first term in (1) is the simple L-dimensional
Gaussian entropy, it can be analytically calculated. For the
expectation over F* in the second term, we use the Monte
Carlo estimation. By sampling Pareto-frontier /* from the
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current GPR model, our acquisition function is written as
follows:

a(@) =H[p(fs | D)
LS Hp(fe DS = F, @

~ |PF]
F*EPF

where PF is a set of sampled Pareto-frontier /. We dis-
cuss the detail of the sampling procedure in Section 3.2.1.
Although the entropy in the second term of (2) is still com-
plicated at a glance, we show a tractable closed form of it
by using a hyper-rectangle based partitioning of the domi-
nated region.

Since the condition f, =< JF* indicates that f, must be
dominated by or equal to at least one of Pareto-frontier
F*, the density p(fz | D, fo = F*) is defined as a trun-
cated distribution of the unconditional p(f, | D) which
is the predictive distribution of GPR, i.e., the independent
multi-variate normal distribution. We call this distribution
Pareto-frontier truncated normal distribution (PFTN). Fig-
ure 2 (a) and (b) illustrate the densities before and after
the truncation, respectively. The density of PFTN p(fz |
D, fo =< F*) is written as

if fo X F*,
otherwise ,

1
p(fz | D, fo < F*) = {Ozp(.fm | D)

where Z = [ o<+ P(fz | D)dfz is a normalization con-

stant. Let F := {f € RE | f < F*} be the dominated re-
gion, and M € N be the number of hyper-rectangles, called
cells, by which the region F can be disjointly constructed
as illustrated by Figure 2 (c). In other words, we can write
F =C1UCoU...UCys, where the m-th cell C,,, is defined
by (€%, ul] x (£2,,u2,] x ... x (¢L,uL]. Note that this
partitioning is created from F* which is generated by the
current GPR model (not from the observed data {y; }1_;).

Let amg = (0, — u(@))/of(@), Gmg = (uj, —
w(x))/oi(@), Zm = P(Gm,) — P(am,), and Z,, =
Hlel Zmi, Where @ is the standard Gaussian cumulative
distribution function (CDF). For the entropy in the second
term of (2), the cell-based decomposition of the dominated
region derives the following theorem (the proof is in Ap-
pendix A):

Theorem 3.1. For L independent GPRs, the entropy of
PFTN p(fo | D, fz <X F*) is given by

H[p(fx | D, fo = F7)]
L Mo, L
= log ((\/Qﬂe)LZHUl(CB)> + Z 7m Zrmla
=1 =1 =1
3)

where T'ny = (amid(am,1) — Cm 10(®m,1))/(2Zm1)
with standard Gaussian probability density function (PDF)

¢, and
M L ul, M
S | ATARIITES SE AT
- m=1

This entropy is a simple function of the predictive distri-
bution of GPR at « and the Gaussian PDF/CDF functions.
Thus, we can easily evaluate (3) if the cell-based partition-
ing is available. For the procedure of the partitioning, we
discuss in Section 3.2.2.

3.2. Computation of Pareto-frontier Entropy

Suppose that we already have the predictive distribution of
x, i.e., u(x) and o(x), a set of sampled Pareto-frontier
PF, and a set of cells {C,, }}/_,. Then, the normalization
constant Z (4) is calculated by O(M L), and the acquisi-
tion function (2) can also be obtained by O(M L). We here
describe the sampling procedure of F*, and the cell parti-
tioning of the dominated region.

3.2.1. SAMPLING PARETO-FRONTIER

PFES first needs to sample a set of Pareto-frontier F*.
For this step, we follow an approach proposed by the ex-
isting information-based MBO (Hernandez-Lobato et al.,
2016). They employed random feature map (RFM)
(Rahimi & Recht, 2008) to approximate the current GPR
by a Bayesian linear model w;" ¢(x), where w; € R is
a parameter vector for the [-th objective and ¢ : X — RP
is a pre-defined basis vector. By generating w; from the
posterior, we can sample a “function” w; ¢(z) with com-
putational cost O(D?), and D is typically less than 1000.
A sample of F* can be obtained through solving MOO on
w]' ¢(x) for | = 1,..., L. Since the objective w, ¢(x)
can be easily evaluated for any @, general MOO algorithms
such as NSGA-II (Deb et al., 2002) is applicable. It has
been empirically shown that entropy-based approaches are
robust with respect to the number of this sampling (e.g.,
Wang & Jegelka, 2017), and usually only the small number
of samples are used (e.g., 10). In the later experiments, we
evaluate sensitivity of performance to this setting.

3.2.2. PARTITIONING OF DOMINATED REGION

For the generated Pareto-frontier, we need to construct a
set of cells {Cp, }M_,. A similar cell-based decomposi-
tion has been performed by existing MBO methods such
as the well-known expected improvement-based method
(Shah & Ghahramani, 2016) in a slightly different context.
Although Shah & Ghahramani (2016) employed a naive
grid-based partitioning, which produces O(|F*|L) cells,
this may cause large computational cost, particularly when
L > 2. We show a method for the partitioning by which the
number of cells can be drastically reduced compared with
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Figure 2: A schematic illustration of truncation by Pareto-frontier. (a) Original predictive distribution of two GPRs in the
output space. (b) Predictive distribution truncated by Pareto-frontier, which results in PFTN. All f, should be dominated
by the given Pareto-frontier (red stars). (c) Rectangle-based partitioning for the entropy evaluation. The entropy of PFTN
is evaluated by decomposing the dominated region into rectangles called cells (C1,Ca, and Cs in the plot). (d) Marginal
density p(fL | D, fz = F*) considered in the decoupled setting (the solid pink line).

this naive approach.

For L = 2, which is the most common setting in MOOQO,
there exists a decomposition with M = |F*| as we can
clearly see in Figure 2 (c). Most of MOO algorithms (such
as NSGA-II, used for generating F*) can explicitly specify
the maximum number of |F*| beforehand. This value is
typically set as at most a few hundreds (Deb & Jain, 2014)
even for a large L more than 10, which does not commonly
occur in real-world MOO problems. We also empirically
observed that a small | F*| is sufficient to capture the trade-
off relation among objectives. In our later experiments, we
set |F*| = 50 by following an existing information-based
approach (Hernandez-Lobato et al., 2016).

For L > 2, the simple partitioning like Figure 2 (c) is
not applicable. To produce a smaller number of cells,
we propose to use techniques in the Pareto hyper-volume
computation. Pareto hyper-volume is defined by the vol-
ume of the region dominated by Pareto-frontier, which is
widely used as an evaluation measure of MOO. Therefore,
many studies have been devoted to its efficient computa-
tion mainly by decomposing the region into as few cells
as possible (Couckuyt et al., 2014). Through this decom-
position, we can obtain a partitioning as a by-product of
the hyper-volume computation. For example, quick hyper-
volume (QHV) (Russo & Francisco, 2014) is one of well-
known methods which recursively calculates the volume by
partitioning the region with a quick-sort like divide-and-
conquer procedure. Under a few assumptions on the distri-
bution of F*, QHV takes O(L|F*|' T log"™? | F*|) time
for the average case with high probability, where € > 0 is
an arbitrary small constant (see Russo & Francisco, 2014,
for the detail). Since the hyper-volume computation is still
actively studied, more advanced algorithms are also appli-
cable if it produces rectangle regions as a by-product of the
algorithm. In this paper, we employ QHV because of its
efficiency and simplicity.

4. Extension to Decoupled Setting

In the previous section, we assumed that all the objectives
are observed simultaneously, to which we refer as the cou-
pled setting. In contrast, the decoupled setting assumes
that each one of objectives can be separately observed. Al-
though this setting has not been widely studied in the MBO
literature, this can be a significant problem setting partic-
ularly in the case that the sampling cost of each objective
is highly expensive, because then, observing all the objec-
tives every time may cause large amount of waste-of-cost.
Further, we also focus on the fact that observation costs
are often different among multiple objective functions, and
introduce a cost-sensitive acquisition function into the de-
coupled setting.

In this setting, we need to determine a pair of an input x
and an objective function index | € {1,..., L} to be ob-
served. PFES can provide a natural criterion for this pur-
pose by considering the mutual information between F*
and the [-th objective I(F*; fL). We define the following
cost-sensitive acquisition function:

ale,) =5 {Hlp(fL | D)

S H(L D g < P},

- [PF]
F*€EPF

®)

where A\; > 0 is the observation cost of the /-th objective
which is assumed to be known beforehand. A pair of x
and [ to be queried can be determined by argmax,, a(x,l).
Here again, the first term of (5) is easy to calculate. We
derive an efficient computation for the entropy in the sec-
ond term. Figure 2 (d) shows an illustration of the density
p(fL | D, f < F*) in the second term.

Define S := |F*| as the number of the Pareto optimal
points, and f{, ceey ffgl for S5; < S as a sequence ascend-
ingly sorted by the [-th dimension of Vf, € F* in which
duplicated values are eliminated. For Vm € {1,..., M},
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-V /:
fify

Figure 3: An example of partitioning for decoupled setting.
In this case, M(l, s) for | = 1 are M(1,0) = {1, 2}, and
M(1,1) = {3}.

we assume that there exists s € {0,...,S5;} such that
(¢, ut,] = (fL, fl4] (this assumption is just for nota-
tional simplicity, and we can create the cells in such a
way that this condition is satisfied). The marginal den-
sity of PFIN p(fL | D, fz < F*) depends on the in-
terval (fL, fL, ] that fL exists. Let M(l,s) = {m |
(0 ul] = (Y, Z—s—l}} be the index set of C,,, in which
the I-th dimension is equal to ( Z, ﬁ +1) as illustrated in

Figure 3, and sl(f) € {0,...,5; — 1} be the index s such
that f € (fL, fl1], where f} = —oc.

Using independence of the objectives, we derive the fol-
lowing theorem (the proof is in Appendix B):

Theorem 4.1. For L independent GPRs, the entropy of

p(fL | D, fo < F*) is given by
Hp(fy | D, fu = F*)] =
Si—1
B 1 EmGM(l,s) Zm 1Og ZmGM(l,S) Zm _ f\ l
s=0 Z Z\/%JZ(CC)ZSZ ® ’
(6)

where  Zg = O(Qsy1,0) —
asyp = (fi = (=) o),
(ds,l¢(ds,l) - ds+1,l¢(ds+17l))/(2zsl)'

(I)(O?S;l) with
and Ty =

As shown in this theorem, even for the decoupled case,
we obtain a closed form representation of the entropy. Al-
though the equation may look complicated, this can be eas-
ily calculated from the predictive distribution if the cell-
based partitioning is given.

The computation for the acquisition function of the decou-
pled setting is similar to the coupled case. We first sample
F* from the current GPR model, and then, creating the
cell partitioning for each sampled Pareto-frontier. The par-
titioning shown in Figure 3 can also be created from the
QHV partitioning. For each interval (f!, f! 41)sifacell C
created by QHV contains this interval, we extract a sub-cell
C’ C C in which only the interval of the I-th dimension of

C is replaced with ( Nﬁ, z +1)- This procedure increases the
total number of cells at most |F*| times which we usually
set a small value (50 in this paper). After the partitioning,
for a given predictive distribution of GPR, the acquisition
function (5) can be simply calculated with O(M|F*|L) by
using (6).

5. Relation with Other Information-theoretic
Approaches

For MBO, two other information-theoretic approaches,
called Predictive entropy search for multi-objective opti-
mization (PESMO) (Hernandez-Lobato et al., 2016) and
Max-value entropy search for multi-objective optimization
(MESMO) (Belakaria et al., 2019), have been proposed.
Herein, we discuss relation of our PFES with those exist-
ing methods.

PESMO considers the entropy of a set of Pareto opti-
mal x, defined as Pareto set X*. PESMO first samples
X* from the current model, and consider the entropy of
p(fz | D,X*). However, unlike the case of PFES, the
entropy is not directly reduced to a closed form. An expec-
tation propagation (EP) (Minka, 2001) based approxima-
tion results in that the each dimension of p(fz | D, X™*)
is represented by an independent Gaussian distribution,
whose accuracy and appropriateness are not clarified. Fur-
ther, the computational procedure of this approximation
is highly complicated. By contrast, in our PFES, PFTN
p(fz | D, f= =< F*) and its entropy is computationally
tractable without approximations, and thus, the dependent
relation in this density is incorporated into the acquisition
function evaluation. From Figure 2 (b), we can clearly see
that p(fe | D, fx= = F*) can have dependent relation
among f, nevertheless the original GPR is assumed to be
independent. Although PESMO is the only method that is
applicable to the decoupled setting, the acquisition function
is derived by simply decomposing the information gain of
the coupled setting, and an interpretation of what the de-
composed value represents has not been explicitly shown.
On the other hand, in PFES, the entropy of the conditional
density p(fL | D, f» < F*) is directly derived as shown
in (6).

MESMO is another information-based MOO that uses the
entropy of the max-values of each dimension{ =1,..., L.
MESMO is inspired by max-value entropy search (MES)
of single-objective BO (Wang & Jegelka, 2017) that con-
siders the entropy of the optimal output max,, f(«). This
approach drastically simplifies the calculation, but obvi-
ously in MOO, Pareto-frontier is not constructed only by
the max-value of each axis, and thus, f, € F* that does
not have values near the max-values is not preferred by this
criterion. For example, although the red star point in Fig-
ure 1 (a) is not the maximum in the both axes, this point
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largely improves the Pareto-frontier created by the already
observed points (white circles). In fact, in a sense of the
entropy evaluation defined by (3), PFES cannot be worse
than MESMO because MESMO replaced it with an ap-
proximation. Although MESMO claims convergence by
using a well-known R5 indicator (Hansen & Jaszkiewicz,
1998) like criterion, the MESMO convergence analysis is
difficult to interpret. The analysis first calculates fL. — %t,
where x* is a Pareto-optimal solution and «; is the selected
point at the ¢-th iteration. Note that this value can be neg-
ative, because fL. is not necessarily the maximum of f;.
To define a cumulative evaluation through iterations, this
difference for each j is accumulated respectively, and after
that, a norm is taken over the cumulative values of all ob-
jectives. Although each cumulative value before taking the
norm can be negative, an interpretation about this cumula-
tive value is not clarified.

6. Experiments

We compared PFES with ParEGO, EHI, SMSego, and
MESMO. To evaluate performance, we used the hyper-
volume of the region dominated by Pareto-frontier, which
is a standard evaluation measure in MOO. For the kernel
function in all the methods, we employed the Gaussian
kernel k(z,x') = exp(—|lx — x'|3/(20?)). The sam-
plings of 7* in PFES and X* in MESMO, which we call
Pareto sampling, were performed 10 times, respectively.
For the cell partitioning of PFES, we used the QHV algo-
rithm (Russo & Francisco, 2014). For the acquisition func-
tion maximization of all methods, we used the DIRECT
algorithm (Jones et al., 1993). The performance is evalu-
ated by the hyper-volume created by already observed in-
stances relative to the optimal hyper-volume, which we call
relative hyper-volume (RHV). The other experimental set-
tings are shown in Appendix F. Because of implementation
and computational complexity issues, we could not per-
form comparison with PESMO and SUR while they pro-
vide the global measures of utility for MOO (the author
implementation was not compatible with our environment).
We believe that the above compared methods are currently
widely used, and thus, would be sufficient as the baseline
to verify the performance of PFES.

6.1. Benchmark Functions

We first used benchmark functions which have continuous
domain X. Each experiment run 10 times with a different
set of initial observations which were randomly selected 5
points. Here, we consider the coupled setting. For Pareto
sampling, NSGA-II was applied to functions generated
from RFM with 500 basis functions, and we set the max-
imum size of Pareto set as 50 by following (Hernandez-
Lobato et al., 2016). The results on four MOO problems
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Figure 4: Performance comparison on benchmark prob-
lems (average and standard error of 10 runs).

are shown in Figure 4. In the figure, (a) Ackley/Sphere
is created by combining two single objective benchmark
functions L = 2 with d = 2 (Surjanovic & Bingham,
2013), and (b) - (d) are from well-known MOO benchmark
functions (Huband et al., 2006). ZDT4 has two objectives
L = 2 and the input dimension is d = 4. DTLZ3 and
4 have four objectives L = 4 and the input dimension is
d = 6. To calculate RHV, the optimal hyper-volume is
estimated by applying NSGA-II to the true objective func-
tion. Here, in PFES, we evaluate the three settings of the
number of samplings |PF| = 10, 30, and 50.

Figure 4 shows the results. We see that PFES (any of
10, 30 or 50) achieved the fastest convergence for Ack-
ley/Sphere, DTLZ3, and DTLZ4, and for DTLZ3, PFES
was roughly the second best among the compared meth-
ods. The three settings of |PF| showed similar behaviors,
suggesting that the performance dependence of PFES on
|PF| is small. MESMO showed the faster convergence
on ZDT4, while for the two MOO benchmark functions
DTLZ3 and DTLZ4, it was relatively slow. Among the
three MOO benchmark functions, only ZDT4 has the “con-
vex” dominated region F, while DTLZ3 and DTLZ4 have
the “concave” F (see Huband et al., 2006, for the detail).
The stronger trade-off relation exists in the concave case,
for which MESMO failed to improve RHV rapidly.

We also examined the computational time for the acquisi-
tion function evaluation on DTLZ4 which has the largest
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Table 1: Computational time for acquisition function eval-
uation for 100 points on DTLZA4.

(a) Comparison of five methods (sec)
‘ ParEGO ‘ SMSego ‘ EHI ‘ MESMO ‘ PFES ‘
‘ 0.53 ‘ 6.32 ‘ 317.55 ‘ 59.90 ‘ 62.36 ‘
(b) Details of PFES (sec, except for # cells)
| Total || RFM | NSGA-II | QHV | Entropy || #cells |
| 6236 || 0.11 | 5985 | 128 | 1.13 | 647.86 |

output dimension L. = 4 in our four benchmark functions.
We randomly selected 50 training instances and also ran-
domly selected 100 candidate = to evaluate the acquisi-
tion functions. The average of 10 runs of this procedure
is shown in Table 1 (a). ParEGO and SMSego are fast
because their acquisition functions are simple. Although
EHI took relatively long time, this is mainly because we
employed the naive cell partitioning described in (Shah &
Ghahramani, 2016). MESMO and PFES are similar com-
putational times. Table 1 (b) shows the detailed elapsed
time in PFES. We see that the most of time was spent by
NSGA-II in this case. The amount of QHV and the entropy
calculation is quite small, and #cells is less than 1,000 even
in this L = 4 problem which is a middle-large sized MOO
problem because a problem L > 4 is sometimes called a
“many-objective” problem in the context of MOO (Chand
& Wagner, 2015). Since MESMO also employed NSGAII
(Belakaria et al., 2019), MESMO and PFES showed similar
result. We further report with other settings in Appendix E.

6.2. Decoupled Setting with Materials Data

For evaluating the decoupled acquisition function, we used
two real-world datasets from computational materials sci-
In this field, efficient exploration of materials is
strongly demanded because accurate physical simulations
are often computationally extremely expensive, in which
simulations taking more than several days are common.
The task is to explore crystal structures achieving high ion-
conductivity and stability (i.e., L = 2), which are desirable
properties for battery materials. For these datasets, X is a
pre-defined discrete set, meaning that we have a fixed num-
ber of candidates (the pooled setting). Details of the two
datasets, called BioO3 and LLTO, are as follows:

ence.

Bi; O3 The size of candidates is | X'| = 335, generated by
the composition Biy_;_y . EryNb,W.Ous 1 3/9..
The input is the three dimensional space defined by
x, 1y, and z.

LLTO The size of candidates is |X'| = 1119, generated by
the crystal called Perovskite type Lag/3_,Li3, TiO3
for z = 0.11. In each candidate, positions of each one
of atoms are permuted. The 2185 dimensional feature

vector x is created through relative three dimensional
positions of the atoms. Note that although this dataset
has the high dimensional input space, BO is feasible
because X is the pre-defined discrete set.

The objective functions are ion-conductivity f. and sta-
bility f2 (negative of the energy), which can be ob-
served through physical simulation models, separately. The
Bi203 and LLTO data are collected based on quantum- and
classical- mechanics, respectively. In the both cases, ion-
conductivity is more expensive because it requires time-
consuming simulations for observing dynamics of the ion.
Here, we examine the two cost settings (A1, A2) = (5,1)
and (A1, \2) = (10, 1), based on the prior knowledge of
the domain experts. In these datasets, PFES directly gen-
erated function values of GPR without RFM, from which
the Pareto set can be easily sampled unlike the continuous
input case. Each experiment run 10 times with a different
set of initial observations which were randomly selected 5
points.

Figure 5 and 6 show the result. The horizontal axis of
the figure is the sum of the observation cost. In BiyOs,
SMSego, EHI, PFES, and PFES (decoupled) showed rel-
atively rapid convergence, while in LLTO, PFES (decou-
pled) reached the maximum first. Interestingly, for the both
datasets, the increase of PFES (decoupled) was moderate
compared with the other methods in the beginning, and it
was accelerated at the middle of iterations. PFES (decou-
pled) starts sampling from low cost functions because in
the beginning the amount of information from the two ob-
jectives are not largely different. After collecting cheaper
information, PFES (decoupled) moves onto the expensive
objectives and the faster improvement of RHV compared
with the coupled PFES was finally observed in a sense of
the total sampling cost.

7. Conclusion

We proposed Pareto-frontier entropy search (PFES) for
multi-objective Bayesian optimization (MBO). We showed
that the entropy of Pareto-frontier can be simply evaluated
via sampling of Pareto-frontier and the cell-based partition-
ing. Further, we showed PFES for the decoupled setting
through the marginalization, for which simple computa-
tions are also obtained. Our empirical evaluation on the
benchmark functions and materials science data demon-
strated effectiveness of our approach.
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