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A. Proof of Theorem 3.1
The normalization constant Z is written as
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which is a sum of the Gaussian integrals in the cells.
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Based on the independence of f, the integral of the first term can be transformed into
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The term indicated by « is the negative entropy of the truncated normal distribution. For the entropy of the truncated normal
distribution, analytical formula is available (e.g, Michalowicz et al., 2013), by which we can obtain
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Then, the above equation (9) is further transformed into
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Substituting this into (8), we obtain
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B. Proof of Theorem 4.1
The marginalization can be represented as
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where C;ll is the (L — 1)-dimensional cell created by eliminating the {-th dimension of C,,, and f;l is a subvector of f,
without the [-th dimension.

The marginal distribution of f can be partitioned into an interval f € (f{", f/"™] as shown in (10), which can be further
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transformed into
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Let f? = —oo, for convenience. Then, the entropy is
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By transforming the last term in the parenthesis into the entropy of the truncated normal distribution, we see
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By substituting this into (11), we obtain
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C. Extension to Correlated Objectives

Objective functions in MOO are often correlated each other. Then, by incorporating the correlation into GPR, the search
can be accelerated. Several studies have considered constructing multiple correlated GPR models including multi-task GPR
model (Bonilla et al., 2008) and semiparametric latent factor (SLF) model (Seeger et al., 2004). In the standard approaches
including multi-task GPR and SLF, the multi-dimensional predictive distribution for  is reduced to a multi-variate Gaus-
sian distribution A"(p(x), 2(x)), where pu(x) € RY and 3 (x) € RE*E are the predictive mean and covariance matrix.
For considering an extension of PFES to correlated objectives, we assume that the surrogate model is represented as a GPR
model jointly for multiple responses.

For the coupled setting, we need to evaluate analytically intractable integrations in (7) and (8). The normalization constant
Z (7) is defined by the sum of the integral of Gaussian distribution on the hyper-rectangle region (C,,). The numerical
computation of this form of integrations have been extensively studied (Genz & Bretz, 2009) mainly in the context of the
Gaussian probability calculation. The integration in the entropy (8) can also be evaluated through the Gaussian probability
(Appendix D shows computational detail). Although this approach requires O(L) times L — 1-dimensional and O(L?)
times L — 2-dimensional CDF calculations, in many practical problems, the number of objectives L is quite small.

For the decoupled setting, if L = 2, we can derive a simple form of the entropy calculation because the conditional distri-

bution p( f;l | fL,D) in (10) becomes a one-dimensional Gaussian distribution. Let 0%, (x) be the predictive covariance
of two-dimensional f = (fL, f2)T. Then, we obtain the following theorem:
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where o, = (fL — 1 (x)) /o1 ().
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Although the integral inside the sum is analytically intractable, we can numerically calculate it easily because the integral
is over the one-dimensional interval.

In the case of L > 2, the integral |, o p( Ql | fL,D)d fél in (10) is also the multi-dimensional Gaussian integration (Genz

& Bretz, 2009). The marginal density p(f., | D, f» < F*) defined by (10) can also be evaluated through the integration of

the Gaussian density because p( f;l | L, D) can be analytically derived for a given f.. Here again, for the integral in (10),
we can use numerical technique for the Gaussian probability (Genz & Bretz, 2009). Then, we can simply approximate the
integral of the entropy ffl p(fL | D, fo = F*)logp(fL | D, f» = F*)dfL by a sum of finite grid points. This is also
one-dimensional integral, and thus accurate approximation can be expected.

D. Entropy Evaluation for Correlated Objectives

Here, we redefine

z:= [ olte| Do a0a 2, = | plfa | D)L
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which indicate Z = 3_™ | Z,.. The entropy of the conditional distribution p(f, | D, f» < F*) can be transformed as
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The term indicated by « is the entropy of the multi-variate truncated normal distribution. This term can also be written as
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with the predictive mean p € R and the predictive covariance matrix X € RY*Z of the current GPR. We derive that this
entropy can be represented through the moment of the truncated normal distribution:
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Let prN == Erx[fe). d = prx — pt, and By = Ern[(Ffe — prn)(Ffz — ) '] Then, the second term of the above
equation (14) is written as
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If prn and 3y are available, the entropy (13) can be evaluated by combining (14) and (15).

The two expected values purn and 3y can be obtained from the first and the second moment of the multi-variate truncated
normal distribution, for which Manjunath & Wilhelm (2009) show efficient computations through the Gaussian integral
calculation. Let % and pi%, be the i-th element of p and prn, respectively, and let o7 and oq be the (i, j)-th element
of ¥ and Xy, respectively. By defining the k-th dimensional marginal distribution of the truncated normal as
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Table 2: Computational time of acquisition function on Ackley/Sphere 2D.

50 train data 100 train data 200 train data

ParEGO 0.44 £ 0.01 0.67 + 0.02 1.32 £ 0.07
SMSego 0.20 £ 0.01 0.35 £0.01 0.62 £ 0.02
EHI 0.10 £ 0.00 0.13 + 0.00 0.13 + 0.00
MESMO 4835+ 127 4841 +0.85 48.22+0.66
PFES Total 3942+ 0.65 41.20+0.54 43.81 £0.86
RFM 0.05£0.00 0.060 £ 0.00 0.06 + 0.00
NSGAII 3897 £0.67 40.67£0.56 43.26 £0.88
QHV 0.040 + 0.00 0.05 £ 0.00 0.04 £ 0.00
eval entropy  0.36 £ 0.02 0.43 +0.03 0.44 +0.02
# Cell 50.00 £0.00 50.00 £0.00 50.00 +£ 0.00

where d’ := Sy, o"* (Fj,(¢F) — Fi.(uk,)). For o, by defining the (k, ¢)-th two dimensional marginal distribution of
the truncated normal as
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Thus, to calculate (16) and (17), O(L) times L — 1 dimensional Gaussian integration and O(LQ) times L. — 2 dimensional
Gaussian integration are necessary.

E. Acquisition Function Computation

We randomly selected 50, 100, and 200 training instances, and calculated each acquisition function for randomly selected
100 points. We measured CPU time on our python code by the single thread execution. Precise evaluation of computational
cost is difficult because of its dependence on implementation detail. Our main purpose here is to show PFES is feasible
enough for reasonable size of L. The results are shown in Table 2-5 (OOM indicates out-of-memory).

Overall, the results have the same tendency as Table 1 in our main text. Note that since Ackley/Sphere 2D and ZDT4 are
L = 2, #cells in PFES is always 50, which is equal to |PF|.

F. Experimental Settings

For GPR, we used GPy (https://sheffieldml.github.io/GPy/). The noise term in GPR 0,5 is fixed at
10~%. The marginal likelihood optimization of the Gaussian kernel parameter ¢ > 0 is performed by using gradient
descent. This optimization was performed at every iteration in the benchmark experiments. For the material datasets,
we first randomly selected 100 samples to optimize ¢ and oyeige through the marginal likelihood optimization. These
values were fixed during the BO procedure. Since the material datasets are noisy, we employed this approach for avoiding
unstable behaviors of all the compared methods because of the unstable GPR hyper-parameters. We implemented ParEGO
and SMSego by ourselves. For ParEGO, the weighting constant p of the augmented Tchebycheff function is set 0.05
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Table 3: Computational time of acquisition function on ZDT4.

50 train data 100 train data 200 train data

ParEGO 0.40 £+ 0.05 0.55 £+ 0.06 1.23 +0.02
SMSego 0.24 £ 0.02 0.37 £ 0.03 0.71 £ 0.03
EHI 0.11 £0.00 0.11 £ 0.00 0.13 £ 0.00
MESMO 5133 £0.47 48404052 44.17 +0.63
PFES Total 5159 +0.44 4871 +£035 51.89+0.16
RFM 0.06 £ 0.00 0.06 + 0.00 0.07 £ 0.00

NSGAII 5096 +0.44 48.13+0.37 51.26+0.16

QHV 0.05 £ 0.00 0.05 + 0.00 0.05 £+ 0.00

eval entropy  0.51 £0.02 0.47 £ 0.03 0.51 £ 0.01

# Cell 50.00 +0.00 50.00 & 0.00  50.00 + 0.00

Table 4: Computational time of acquisition function on DTLZ3

50 train data 100 train data 200 train data

ParEGO 0.51 £ 0.01 0.68 + 0.03 1.35 + 0.04
SMSego 1.58 + 0.61 2.36 +0.90 2.75 + 0.61
EHI 6.26 £5.76 21.19 + 30.11 20.21 + 11.03
MESMO 62.88 + 1.39 49.38 £ 0.72 62.25 £0.93
PFES Total 65.36 + 2.02 57.73 +£1.26 64.97 + 1.39
RFM 0.11 + 0.00 0.11 £ 0.00 0.13 £+ 0.00
NSGAII 63.024 £+ 2.07 5535+ 1.25 62.23 £+ 1.40
QHV 1.12 £0.12 1.15 £ 0.16 1.32 £+ 0.09
eval entropy 1.10 = 0.09 1.12 £ 0.07 1.29 + 0.08
# Cell 57099 £ 87.26 614.56 £ 109.27 662.69 4+ 107.33

as indicated by the original paper (Knowles, 2006). For SMSego, the coefficient of lower confidence bound is set as
B; = ®71(0.5 + 1/2F) which is also indicated by the original paper (Ponweiser et al., 2008). For MESMO, about Pareto
sampling, we used the same settings as PFES. The number of sampling is 10, and the number of basis of RFM is 500.
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Table 5: Computational time of acquisition function on DTLZ4

50 train data 100 train data 200 train data

ParEGO 0.53 £0.01 0.64 £+ 0.02 1.44 £+ 0.04
SMSego 6.32 & 1.50 11.83 £1.92 19.86 £ 2.89
EHI 317.55 £ 63.18 796.10 + 199.66 OOM
MESMO 59.90 £ 0.43 62.89 £ 0.61 65.30 £ 0.93
PFES Total 62.36 + 0.72 60.97 4+ 0.36 67.85 + 0.86
RFM 0.11 +0.00 0.11 £ 0.00 0.14 £+ 0.00

NSGAII 59.85 +0.79 58.39 £ 0.35 64.77 = 0.97

QHV 1.28 +0.08 1.23 £ 0.08 1.59 +0.24

eval entropy 1.13 +0.07 1.25 +£0.04 1.35+0.12

# Cell

647.86 = 124.84

645.88 = 116.01

710.44 £ 141.77



