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Abstract

The Shapley value has become the basis for sev-
eral methods that attribute the prediction of a
machine-learning model on an input to its base
features. The use of the Shapley value is justi-
fied by citing the uniqueness result from (Shapley,
1953), which shows that it is the only method that
satisfies certain good properties (axioms). There
are, however, a multiplicity of ways in which the
Shapley value is operationalized for model ex-
planation. These differ in how they reference
the model, the training data, and the explanation
context. Hence they differ in output, rendering
the uniqueness result inapplicable. Furthermore,
the techniques that rely on they training data pro-
duce non-intuitive attributions, for instance un-
used features can still receive attribution. In this
paper, we use the axiomatic approach to study
the differences between some of the many op-
erationalizations of the Shapley value for attribu-
tion. We discuss a technique called Baseline Shap-
ley (BShap), provide a proper uniqueness result
for it, and contrast it with two other techniques
from prior literature, Integrated Gradients (Sun-
dararajan et al., 2017) and Conditional Expecta-
tion Shapley (Lundberg & Lee, 2017).

1. Motivation and Related Work

We discuss the attribution problem, i.e., the problem of
distributing the prediction score of a model for a specific
input to its base features (cf. (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Sundararajan et al., 2017)); the attribution to
a base feature can be interpreted as the importance of the
feature to the prediction. For instance, when attribution is
applied to a model that makes loan decisions, the attributions
tell you how influential a feature was to the loan decision for
a specific loan applicant. Attributions thus have explanatory
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value.

One of the leading approaches to attribution is based on the
Shapley value (Shapley, 1953), a construct from cooperative
game theory. In cooperative game theory, a group of players
come together to consume a service, and this incurs some
cost. The Shapley value distributes this cost among the
players. There is a correspondence between cost-sharing
and the attribution problem: The cost function is analogous
to the model, the players to base features, and the cost-shares
to the attributions.

The Shapley value is known to be the unique method that
satisfies certain properties (see Section 2.1 for more de-
tails). The desirability of these properties, and the unique-
ness result make a strong case for using the Shapley value.
Unfortunately, despite the uniqueness result, there are a mul-
tiplicity of Shapley values that differ in how they refer to
the model, the training data, and the explanation context.
Here is a sampling of the literature to illustrate the variety
of approaches:

1. (Lindeman et al., 1980; Gromping, 2007)) uses the
Shapley value to attribute the goodness of fit (R?) of a
linear regression model to its features by retraining the
model on different feature subsets.

2. (Owen, 2014; Owen & Prieur, 2017) apply the Shapley
value to study the importance of a feature to a given
function, by using it to identify the ”variance explained”
by the feature; no retraining involved.

3. (étrumbelj etal., 2009; gtmmbelj & Kononenko, 2014)
use the Shapley value to solve the attribution problem,
i.e., feature importance for a specific prediction. The
first paper applies the Shapley value by retraining the
model on every possible subset of the features. The sec-
ond paper applies the Shapley value to the conditional
expectation of a specific model (no retraining) (see
Section 2.1.1 for a formal definition of the conditional
expectation approach). They assume that features are
distributed uniformly and independently.

4. (Datta et al., 2016) applies the Shapley value to the
conditional expectations of the model’s function with
a contrived distribution that is the product of the
marginals of the underlying feature distribution.
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5. (Lundberg & Lee, 2017) also investigates the Shap-
ley value with conditional expectations; it constructs
various approximations that make assumptions about
either the function, or the distribution, and applies it
compositionally on modules of a deep network.

6. (Lundberg et al., 2018) computes the Shapley value
with conditional expectations efficiently for trees; how-
ever, it is not very clear about its assumptions on the
feature distribution !.

7. (Aas et al., 2019) generalizes one of the approaches
in (Lundberg & Lee, 2017) to the case when the distri-
butions are not independent, either by assuming that
the features are generated by a mixture of Gaussians
or by a non-parametric, heuristic approach that applies
the Mahalanobis distance to the empirical distribution.

8. Unlike the methods above that either delete or
marginalize over a feature, (Sun & Sundararajan, 2011;
Sundararajan et al., 2017; Agarwal et al., 2019) apply
the Shapley value, by using a different approach to
‘turn features off’. This approach takes an auxiliary
input called a baseline, and switches the explicand’s
feature value to the value of the feature in the baseline
(see Section 2.2 for details).

9. (Sundararajan et al., 2017) proposes a technique called
Integrated Gradients, that is based on the Aumann-
Shapley (Aumann & Shapley, 1974) cost-sharing tech-
nique. Aumann-Shapley is one of the several exten-
sions of the discrete Shapley value to continuous set-
tings. Also, this technique is applicable only when the
gradient of the prediction score with respect to the base
features is well-defined, and is therefore not applicable
to models like tree ensembles.

The first and second approaches solve a different problem
(of feature importance across all the training data), and we
will ignore them for the most part. Notice that the rest are
solving the same attribution problem, and are reflective of
the non-uniqueness of the Shapley value for model expla-
nation. (Lundberg & Lee, 2017) unifies several of these
methods (excluding Integrated Gradients) under a common
framework based on certain conditional expectations over
feature distributions. However, as we point out later in
the paper, the choice of feature distribution influences the
attributions significantly, not just in quantity, but also in
quality.

'In an email exchange, Scott Lundberg clarified that the im-
plicit assumption is that the features are distributed according to
the distribution generated by the tree”.

1.1. Our Results

We identify two reasons for the multiplicity of Shapley
values. The first is whether training data plays a role (in
addition to the model) in the definition of the Shapley value
or not. Section 3 discusses a previously proposed approach
from (Lundberg & Lee, 2017) where the training data does
play a role. We show that sparsity of the training data
obscures properties of the model; for instance, an unused
feature may still accrue importance. (A recent paper by
(Janzing et al., 2020) discusses the same issue using the
vocabulary of Pearl causality; they discuss that this approach
relies on observational conditional probabilities instead of
‘interventional’ conditional probabilities.)

In Section 2.2, we study definitions of the Shapley value that
do not depend on the training data. Here, the multiplicity
arises because there are multiple extensions of the Shapley
value to continuous features; recall that the Shapley value is
implicitly defined for binary features. We study two such
methods. A simple extension of the Shapley value that we
call Baseline Shapley, and Integrated Gradients (Sundarara-
jan et al., 2017). We provide uniqueness results for these
methods via a reductions to prior results from cooperative
game theory.

2. Preliminaries

We model the machine-learning model as a real-valued func-
tion f that takes a vector of real-valued features as input. If
the problem is a classification problem, the function models
the score of a class. The set of features is denoted by N.
We designate the input to be explained, i.e., the explicand,
by the vector x of features; when we say zg we mean the
sub-vector of a vector x restricted to the features in the set
S.

At times, we may assume that the features are generated
according to a distribution D; this distribution could be
a posited distribution as in Section 4.3. Often, it is the
empirical distribution of the training data, wherein it is
written as D. Of special significance are independent feature
distributions. The product of marginals of distribution D is
written as II(D). The conditional expectation E[f (z)|xs]
is the expected value of the function over the distribution
with the features in S fixed at the explicand’s value.

2.1. Shapley value

The Shapley value takes as input a set function v : 2% — R.
The Shapley value produces attributions s; for each player
i € N that add up to v(N). The Shapley value of a player 4
is given by:
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There is an alternate permutation-based description of the
Shapley value: Order the players uniformly at random, add
them one at a time in this order, and assign to each player ¢
its expected marginal contribution V(S U ¢) — v(S); here S
is the set of players that precede ¢ in the ordering.

In this paper, we study three extensions of the Shapley value
to model explanation.

2.1.1. CONDITIONAL EXPECTATIONS SHAPLEY (CES)

This approach takes three inputs: an explicand x, a function
f, and a distribution D. The set function is defined by the
conditional expectation

v(S) = Ep[f()|2’s = x5 2)

We denote the CES attribution for feature ¢ with explicand
x, distribution D and function f by ces;(z, D, f). This
approach has been used by (Strumbelj & Kononenko, 2014;
Lundberg & Lee, 2017; Datta et al., 2016) and was proposed
in this specific form by (Lundberg & Lee, 2017), where it
is called Shapley Additive Explanations, or SHAP. (The
associated library employs variants of the Shapley value
that resemble the Baseline Shapley approach discussed next.
Therefore to prevent confusion, we call this approach CES
and not SHAP. Furthermore, a lot of the criticism that we
apply to CES do not carry over to the SHAP library.) When
CES is carried out with the empirical distribution of the
training D, it will be denoted as CES(D).

2.2. Baseline Shapley (BShap)

This approach takes as input an explicand x, the function
f and an auxiliary input called the baseline z’. The set
function is defined as:

o(S) = f(ws; Ty s) 3)

That is, we model a feature’s absence using its value in
the baseline. We call this the Baseline Shapley (BShap)
approach. We denote BShap attribution by bs;(z,z’, f).
Variants of this approach have been used by (Sun & Sun-
dararajan, 2011; Agarwal et al., 2019; Lundberg & Lee,
2017).

2.2.1. RANDOM BASELINE SHAPLEY (RBSHAP)

This approach is a variant of BShap that takes three inputs:
An explicand z, a function f, and a distribution D. The
attributions are the expected BShap values, where the base-
line 2’ is drawn randomly according to the distribution D.

This approach is implicit in (Lundberg & Lee, 2017) (see
Equation 11).

v(S) = Evnnfl(siThns) )

2.2.2. INTEGRATED GRADIENTS (IG)

This approach takes as input an explicand z, the function f
and an auxiliary input called the baseline x’. We consider
the straight-line path (in RIN!) from the baseline ' to the
input x, and compute the gradients at all points along the
path. The path can be parameterized as y(z, @) = ' + « -
(z — 2’). Integrated gradients are obtained by accumulating
these gradients. The integrated gradients attribution for an
explicand x and baseline 2/, for a variable x; is:

IG(z, 2, f) = (z; — z}) / of(z' + alz — ')

a=0 Ox;

do
@)

IG is an analog of the Aumann-Shapley method from cost-
sharing (Aumann & Shapley, 1974). We will discuss the
sense in which IG is an extension of the Shapley value in
Section 4.1.

2.3. Axioms

We now list several desirable properties of an attribution
technique and discuss why each property is desirable. Later,
we will use these properties as a framework to compare
and contrast various attribution methods. Variants of these
axioms have appeared in prior cost-sharing literature (cf.
(Friedman & Moulin, 1999)).

An attribution method satisfies:

e Dummy if dummy features get zero attributions. A
feature ¢ is dummy in a function f if for any two values
x; and z} and every value ~\s of the other features,
f(wi;2a;) = f(2); 280;); this is just a formal way of
saying that the feature is not referenced by the model,
and it is natural to require such variables to get zero
attributions.

o Efficiency if for every explicand xz, and baseline 2,
the attributions add up to the difference f(x) — f(a')
for the baseline approach. For the conditional expec-
tation approach, f(a') is replaced by E, p[f(z')].
This axiom can be seen as part of the framing of the
attribution problem; we would like to apportion blame
of the entire difference f(x) — f(2’) to the features.

o Linearity if, feature by feature, the attributions of the
linear combination of two functions f; and f5 is the
linear combination of the attributions for each of the
two functions. Attributions represent a kind of forced
linearization of the function. It is therefore desirable
to preserve the existing linear structure in the function.
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e Symmetry if for every function f that is symmetric in
two variables ¢ and j, if the explicand x and baseline
' are such that z; = x; and 2} = :cg», then the attri-
butions for ¢ and 5 should be equal. This is a natural
requirement with obvious justification.

e Affine Scale Invariance (ASI) if the attributions are
invariant under a simultaneous affine transformation of
the function and the features. That is, for any c, d, if
filzr, ... xn) = fo(z, .., (2 — d) /e, ..., xy), then
for all < we have attr;(z,2', f1) = attr;((z1,...,c*
i+ dy. oy, (2, exal+d, . x), f2). ASI
conveys the idea that the zero point and the units of
a feature should not determine its attribution. Here
is a concrete example: Imagine a model that takes
temperature as a feature. ASI dictates that whether
temperature is measured in Celsius or Farenheit, the
attribution to the feature should be identical.

e Demand Monotonicity if the model is monotone in a
feature (e.g. a linear model has a positive coefficient
for the ’age’) then the attributions for a feature increase
with increasing feature values (say when ’age=20’ is
changed to *age=21"), all else being fixed, including
the baseline value for the feature.

e Proportionality If the function f can be rewritten as a
function of ) ; s, and the baseline (x’) is zero, then the
attributions are proportional to the explicand values(x).

2.4. An Empirical Case Study: Diabetes Prediction

While the bulk of this paper is axiomatic and theoretical,
we will replicate some of our observations on a diabetes
prediction task. The motivation is to show that many of the
issues we identify theoretically show up in practice, and that
too in the simplest possible setting, indicating that the issues
are commonplace. We train our diabetes prediction models
on a data set from the Scikit learning library (Pedregosa
et al., 2011); this data set was originally used in (Efron
et al., 2004). The data has ten base features, age, sex, body
mass index (BMI), average blood pressure (BP), and six
blood serum measurements. Data is obtained for each of
442 diabetes patients, as well as the response of interest, a
quantitative measure of disease progression one year after
the time of measurement of the base features.

We train a linear model using Scikit’s implementation of
Lasso regression (Tibshirani, 1996); we used the standard
settings of the fitting algorithm and 75%-25% train-test split.
The variance explained by the model is 35%. The model
coefficients are 399 for BMI, 4.9 for BP and 291 for the
fifth blood serum measurement (s5). The intercept is 154.15,
which closely matches the data set average of response.

3. An Analysis of CES

While CES was proposed by (Lundberg & Lee, 2017),
and justified axiomatically (by citing the original Shapley
axiomatization), the justification did not cover the choice
of using conditional expectations as the set function (recall
the definition of CES in Section 2.1.1). Furthermore, it
appears that CES has only been applied with modification:
For instance, (§trumbelj & Kononenko, 2014), assumes an
independent feature distribution while (Lundberg & Lee,
2017) applies it to modules of a deep network rather than
end-to-end. Consequently, the properties have CES have
not been carefully studied. This is what we remedy in this
section.

3.1. Comprehending CES(D)

As discussed in Sections 1 and 2.1.1, CES attributions de-
pend crucially on the choice of the distribution D. Arguably,
the most obvious choice is to use the training data distribu-
tion ﬁ; we call this CES(ﬁ).

Unfortunately, the properties of CES(D) are not immedi-
ately apparent from its definition; the functional forms of the
Shapley value and conditional expectations are sufficiently
complex as to prevent direct understanding. We therefore
begin by redefining CES(D) as an intuitive procedure.

The input is the (training) data, i.e., a list of examples 7' =
{xt}. (We use superscripts to index examples and subscripts
to index features.) Given an explicand x, T’s is the subset
of T that agrees with x on the features in the set .5, i.e.,
Ty = {z'|Vi € S,a} = x;}. Notice that Ty = T, and
Tn = {x;}. The value of the set function v(S) is the
average value of the function over inputs in the set Ts;
this corresponds to computing the conditional expectation
E[f(z)|zs)] in the CES approach (Section 2.1.1).

We now use the procedural definition of the Shapley value
(see Section 2.1), i.e., we average the marginal contribution
of ’adding’ variable ¢ (i.e., conditioning on it) over permu-
tations of the variables. We notice that conditioning on an
additional variable ¢ only reduces examples that *agree’ with
x on the conditioned features. We call this the Downward
Closure property?:

Lemma 3.1 (Downward Closure). For every pair of sets
of features S, S’ , if S C S’ then Ts: C Ts. (Proof in
Section 5)

Putting these observations together, we have Algorithm 1.
(If needed, the computation can be further sped up by sam-

“We borrow the term from the frequent itemset mining liter-
ature (cf. (Agrawal & Srikant, 1994)). In itemset mining, the
downward closure property reflects that every subset of a frequent
itemset is also frequent. Analogously, for every feature set .S, every
row in T's is also in T'g/ for every subset S’ C S.
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pling over permutations as is common with the Shapley
value, and by caching values of the sets 7; for all i.)

Algorithm 1 Computing CES(D)
Inputs: explicand x and examples T, each over feature
set N
{Compute Shapley values via permutations }
5o, < Oforall i
for all permutations o of N do
Unew |T1‘ erT f(IC)
T+ T
forallie1...|N|do
Vold < Unew
{Use the Downward Closure Lemma to update 7"}
forallt € T’ do
{0 is the ith feature in the ordering o'}
if !+ x; then
delete ¢ from T”
end if
end for
Unew € ﬁ ZH}ET' f(lL')
{Update Shapley value of ith feature in ordering o}
So; < So; + ﬁ(vnew - Uold)
end for
end for

3.2. The Effect of Sparsity on CES(D)

Our main motivation for providing a procedure for CES(D)
is to understand its properties. Our first observation is that
CES(D) is extremely sensitive to the degree of sparsity;
sparsity arises naturally when the variables are continuous
because it unlikely that data points share feature values
precisely.

Remark 3.2. Suppose we have an explicand x such that
every feature value x; is unique, i.e., it does not occur
elsewhere in the training data. Then, notice that Ts = {z}
for all non-empty sets S. Therefore in each permutation, the
first feature gets attribution f(x) — E, p[f(a’)] while all
the other features get an attribution of zero. Therefore all
the variables get equal attributions, even if the function is
not symmetric in the variables!

A practical implication of Remark 3.2 is that the attributions
would be very sensitive to noise in the data. For instance,
Figure 1 shows the distribution of attributions across 20
explicands for CES(b) (the second column in each plot) on
the linear model. The attributions vary across features—for
instance BMI has a larger variation than Sex. If we add
a tiny amount of noise, and recompute attributions, then
all the features (including BMI and Sex) will get identical
attributions (we don’t show this in the figure).

One way to deal with this sensitivity is to smooth the data.

We can simulate smoothing within Algorithm 1. When
we condition on a set S of features in the computation
of CES, we average the prediction over all the training
data points that are close to the explicand in each of the
features in S; two data points are close in a certain feature
if their difference is within a certain fraction of the standard
deviation. In our experiments, we use two settings 0.1 and
0.2. Figure 1 shows how different amounts of smoothing
change the attributions (see for instance the attributions of
the feature S2). Thus while smoothing mitigates sensitivity,
it is still unclear how much smoothing to do.

There are some other approaches to dealing with sparsity.
One approach is to use the distribution II(D), i.e., the prod-
uct of empirical marginal distributions, as in (Datta et al.,
2016), or to assume that the function is somewhat smooth,
and to compute the function’s value at a point outside the
training data using a weighted sum of nearby points in the
training data as in (Aas et al., 2019). Again, these will un-
doubtedly give different results, and we cannot easily pick
between them.

3.3. An Axiomatic Analysis of CES(D)

As discussed in Section 2.1, the Shapley value and its vari-
ants were conceived in the context of cooperative game-
theory where there is no analog of the feature distribution D.
The axioms (see Section 2.3) were meant to guarantee that
if the set function has certain properties (the antecedent),
then the Shapley values must have certain properties (the
consequent). For instance, the Dummy axiom says that if
a function is insensitive to a feature (the antecedent), then
the feature should have zero attributions (the consequent).
However, there are two functions at work here: the function
f whose value we wish to attribute, and the set function v
used to compute Shapley values.

CES defines v(.S) using conditional expectations that de-
pend both on the function f and the distribution D. Conse-
quently, even if the function f satisfies certain properties,
the consequent property of the axiom need not hold for v.
This gives rise to counter-intuitive attributions. We give
several such examples in this section. These do not imply
that prior axiomatizations (cf. (Lundberg & Lee, 2017)
or (Datta et al., 2016)) are incorrect. The various axioms
still hold for the v based on the conditional expectation (see
Section 2.1.1). However, the axioms have no natural inter-
pretation for this set function. In contrast, it is natural to
seek interpret axioms as properties of the model function f.

In all our examples, each row of the table is a combination
of feature values; the first column specifies the probability
of this feature combination, the next two columns specify
the feature values for two discrete, abstract features x and y,
and the remaining columns specify the value of the function
for this feature combination. Feature and function values
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used as explicand in the examples are in bold.

Example 3.3 (Failure of Dummy). See the function f, in
Table 1 modeled as a bivariate function of x and y. For the
explicand x = 5,y = 5, the CES attributions are 222‘5 each
for x and y (a consequence of Remark 3.2). Therefore the

variable x gets a large attribution despite being dummy.

Probability = y fi=y° fo=x fi+fe
€ 5 5 25 5 30

1;E 1 1 1 1 2

1—e 1 2 4 1 5

2

Table 1. Example for: (a) Dummy, correlated variables can have
large CES attributions. (b) CES attributions are not linear in the
function.

The implication is this: Say, in the context of an analysis
of fairness, we require that a certain feature play no role
in the prediction model, and indeed, it does not. If we use
CES, it may still be assigned significant attribution, leading
us to incorrectly believe that the function is sensitive to the
variable. In our diabetes prediction task, for the linear model
(see Figure 1), we note that 7 of the 10 variables are dummy
features. Despite this, CES assigns non-zero attributions to
them. (In contrast, BShap assigns zero attributions to the
dummy features.)

Example 3.4 (Failure of Linearity). See the functions f1
and f5 in Table 1; model them as univariate functions of y
and x respectively. Consider the explicand x = 5,y = 5.
Then the CES for the variable y with the function f; is the
difference between the function value at the explicand (25)
and the mean of the function (2.5), i.e., 22.5, and that for the
function fy is zero (y does not appear in the function). Now
consider the attribution of y for the function fi1 + fa,; both
variables get an attribution of 30;3'5 (again, a consequence
of Remark 3.2), which is not 22.5 + 0.

Here is an implication: Imagine, if we were computing attri-
butions for an ensemble of trees. Recall that the prediction
of the forest is a uniform average over the trees, i.e., it is
linear in the prediction of the trees. Therefore, we would
expect the attributions to also be linear. But this is not the
case. We saw large failures in linearity for the diabetes
prediction task even for a two tree ensemble with trees of
depth two.

4. Baseline Shapley and its Properties

In this section, we discuss the properties of BShap and pro-
vide a proper axiomatic result for it. (Recall the definition
of Baseline Shapley (BShap) from Section 2.2.) As dis-
cussed in the introduction, prior axiomatization results from
the machine learning literature (e.g. (Datta et al., 2016;
gtrumbelj & Kononenko, 2014; Lundberg & Lee, 2017))
did not cover the choice of function input to the Shapley

value, and consequently there are a multiplicity of methods
that yield different results.

4.1. BShap versus IG

The model explanation literature has largely built on top
of the Shapley value from the binary cost-sharing litera-
ture. In this literature, players (features) are either present
or absent. In contrast, machine learning tends to involve
continuous features and deep learning involves only con-
tinuous features—even discrete/categorical are often turned
into continuous features via embeddings. Therefore, it is
worth connecting model explanation with the continuous
cost-sharing literature.

We begin by defining cost-sharing formally.

A cost-sharing problem is an attribution problem with
function f, explicand x and baseline 2’ such that the base-
line 2’ = 0, the explicand z is non-negative, and the func-
tion f is non-decreasing in each variable, i.e., if two fea-
ture vectors z~ < xt (point-wise for every feature), then

fla™) < f(=*)?

There are several extensions of the Shapley value to the
continuous cost sharing literature (see (Friedman & Moulin,
1999) for details). Two of these extensions correspond to
BShap and IG. BShap is a generalization of a classic cost-
sharing method called Shapley-Shubik (cf. (Friedman &
Moulin, 1999)), and IG is a generalization of a cost-sharing
method called Aumann-Shapley (cf. (Aumann & Shap-
ley, 1974)). One can get Shapley-Shubik from BShap and
Aumann-Shapley from IG by setting the baseline z’ to zero;
the explicand value x; corresponds to the demand of player
1, the function f corresponds to the cost incurred, and the
attributions to the cost-shares.

It is relatively clear how Shapley-Shubik (BShap) is an
extension of the binary Shapley value from its definition
(see Section 2.2).

However it is less clear how Aumann-Shapley (IG) (Equa-
tion 5) is an extension of the binary Shapley value. IG
traverses a single, smooth path between the baseline and
the explicand, and aggregates the gradients along this path.
Whereas the Shapley value takes an average over several dis-
crete paths—in each step of a discrete path, a variable goes
from being ’off” to *on’ in one shot. To establish the connec-
tion, notice that the IG path can be seen to be the internal
diagonal of a | V| dimensional hypercube, and in contrast,
the Shapley value is an average over the extremal paths over
the edges of this hypercube. Suppose we partition every
feature 7 into m micro features, where each micro feature

In (Friedman & Moulin, 1999), the function is defined to
satisfy an additional property of being zero at f(0); but this is
only used to simplify the definition of the efficiency axiom (see
Section 2.3 to not require the f(0) term.
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Figure 1. Attribution distribution across 20 explicands for four methods, BShap, CES, CES (smoothing 0.1), CES (smoothing 0.2).

represents a discrete change of the feature value of = —
And then we apply the Shapley value on these IV x m fea-
tures. Notice that this is equivalent to creating a grid within
the hypercube, and averaging over random, monotone walks
from the baseline x’ to the explicand x in this grid. As m
increases, the density of the random walks converges to the
diagonal of the hypercube, and if the function f is smooth,
then running Shapley on these micro-features is equivalent
to running IG on the original features.

Of course, in general, IG and BShap use different paths and
hence give different attributions (see Example 4.6).

The standard axiomatization of the Shapley value (Shapley,
1953) only references (binary variants of) the first four ax-
ioms (Dummy, Efficiency, Linearity and Symmetry). How-
ever, in the continuous setting there are infinitely many
methods that satisfy these four axioms. A uniqueness result
requires further axioms, as we study in the next section.

4.2. Axiomatizing BShap (and IG)

In this section, we provide axiomatizations for BShap and
IG by formally reducing model explanation to cost-sharing:

Theorem 4.1 (Reducing Model Explanation to Cost-Shar-
ing). Suppose there is an attribution method that satisfies
Linearity and ASI. Then for every attribution problem with
explicand x, baseline x' and function f (satisfying the minor
technical condition that the derivatives are bounded) , then
there exist two cost-sharing problems such that the resulting
attributions for the attribution problem are the difference
between cost-shares for the cost-sharing problems.

Proof. Given an attribution problem f,x, 2, we progres-
sively transform it into equivalent cost-sharing problems.

First, we transform the problem f, 2,z into a problem
f™, '™, x™ such that the baseline x'™ is the zero vector,
and z" is non-negative. The proof is inductive. The base
case is by definition: we define f°, 20 20 to be f,z, 2’
In step i we transform f'=1 2?1 2/"~linto f 2%, 2’ by
transforming along feature ¢ using the transformation in the

definition of ASI (see Section 2.3) using the ¢ = 1 if x;

is non-negative and ¢ = —1 otherwise, and d = —z} * c.
The proof for the inductive step: By ASI, the attribution
for fi=1, xi=1 2"~ should equal to that for f?, z%, 2", and
we have set the baseline value for this feature to 0, and its
explicand value is non-negative.

Next we express the function [, as the difference of two
non-decreasing functions f; and f5. Let p denote the infi-
mum of the partial derivative f ( ) , where x ranges over
the domain of the function f7, and 1 ranges over all the
variables. By the technical conditions, this infimum exists.
If p is zero or positive, then [ is itself non-decreasing—
therefore set f1 to f™ and f5 to the constant zero function.
Otherwise, define f5 to be the linear function ZZ —p*I;; NO-
tice that —p is positive and so the function is non-decreasing.
Set f1 = f™ + fo; by definition of p, f; is non-decreasing.
By Linearity, the attributions for f™, z™, 2/, (which we
have already shown are equal to the attributions for f, z, ")

is the difference between the attributions of f;, z™, 2’ and
f2, .,L,TL’ x/n

To complete the proof, notice that both f1,z™, 2’ and
f2, 2™, '™ are cost-sharing problems. O

Both IG and BShap satisfy ASI and Linearity. Therefore
any axiomatization that applies to Aumann-Shapley applies
to IG and any axiomatization that applies to Shapley-Shubik
applies to BShap. For instance, Corollary 1 from (Friedman
& Moulin, 1999) reads:

Theorem 4.2. Shapley-Shubik is the unique method that
satisfies the Efficiency, Linearity, Dummy, Affine Scale In-
variance (ASI), Demand Monotonicity (DM) and Symmetry
(plus some technical conditions we exclude for clarity) for
all cost-sharing problems.

Therefore we have:

Corollary 4.3. BShap is the unique method that satisfies the
Linearity, Dummy, Affine Scale Invariance (ASI), Demand
Monotonicity (DM), and Symmetry (plus minor technical
conditions) for all attribution problems. (See Proof in Sec-
tion 5.)

Analogously, we have the following corollary of Theorem 3
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from (Friedman & Moulin, 1999):

Corollary 4.4. IG is the unique method that satisfies the
Linearity, Dummy, Affine Scale Invariance (ASI), Propor-
tionality, and Symmetry (plus minor technical conditions)
for all attribution problems.

Remark 4.5 (Interpreting the Uniqueness Results). How
should we interpret the axiomatic results? First, notice that
we have two results Corollary 4.3 and 4.4. How do we use
this to decide which of BShap or IG is superior? They differ
in two axioms, Demand Monotonicity and Proportionality.
If one property was clearly more desirable than the other,
we would have a definitive answer. Unfortunately, this is
not the case. Despite this, the axiomatic results adds to our
understanding of the qualitative difference between the two
methods. Remarks 4.6 and Remark 4.7 elaborate qualitative
differences between the two approaches.

Second, both uniqueness results (Corollary 4.3 and 4.4) as-
sume a fixed baseline x'. The attributions will still vary by
choice of baseline and we only have uniqueness up to the
choice of baseline. Remark 4.9 discusses practical implica-
tions of this.

Remark 4.6 (BShap versus IG). A simple example where
the IG and BShap differ is the min of two variables 1 and
xo. Suppose the baseline is ) = xf, = 0, and the explicand
is xt1 = b,xe = 1. IG attributes the entire change in
the function of 1 to the arg min, i.e., x2; this is intuitively
reasonable if you see xo as the critical variable. BShap on
the other hand assigns attributions of 2.5 to the first variable
and —1.5 to the second; this is intuitively reasonable if you
think of x1 as trying to increase the min and x+ as trying to
decrease it. It is not immediately clear which interpretation
is obviously superior.

Let us now consider the cube of the sum of two variables x,
and x5. Suppose the baseline is *'y = !y = 0, and the expli-
cand is x1 = 5,x9 = 1. IG attributes 180 to x1 and 36 to
T, i.e., the attributions are in the ratio 5 : 1, a consequence
of the proportionality axiom. BShap attributes 170 to x1 and
46 to xo. The IG results appear a bit more principled. But
there is a stronger consequence of the proportionality ax-
iom: This axiom forces a smooth interpolation between the
baseline and the explicand, i.e, the form of IG. For instance,
a baseline of an entirely black image used in computer vi-
sion tasks results in intermediate inputs that are variants of
the explicand with different intensities. In contrast, BShap
is likely to construct more unrealistic inputs; in the vision
examples, mixes of black pixels with the explicand pixels.

Remark 4.7 (Applicability of 1G). IG requires that the
score of the model to be differentiable with respect to the
features. This is true for a deep learning models for com-
puter vision that only use continuous features (pixels of the
image). If the deep learning model uses discrete features,
like words for a text model, or categorical variables, then

IG can be applied by working with the embedding repre-
sentation of the features. However, IG does not apply to
models that are discontinuous and non-differentiable, for
instance tree-ensembles. In this sense, BShap is more widely
applicable.

4.3. BShap fits in the CES framework

Thus far, we have studied the source of the difference be-
tween IG and BShap, both in terms of computation (they
take different paths through a feature grid) and in terms of
axioms (Corollary 4.3 versus Corollary 4.4). We now study
the difference between BShap and CES.

First, we show that one can posit a distribution D such
that the BShap approach coincides with CES under the
distribution D*. This shows that BShap fits in the framework
of CES. In this sense, any difference in the properties of BS
and CES(B) can be isolated to the choice of distribution on
which to run CES.

Lemma 4.8. For any explicand x and baseline x’', there
exists a feature distribution such that CES over that distribu-
tion results in attributions that are arbitrarily close to those
produced by BShap. (See Proof in Section 5.)

Remark 4.9 (Explicit Comparison). Unlike CES( D),
BShap does not depend on any distribution but requires
an additional input (the baseline). We can use the baseline
to model the explanation context. For instance, consider
a model that makes loan decisions. If the applicant has
been denied a loan, it is likely more useful to produce an
explanation that only attributes to features that are in the
applicant’s power to change (e.g. getting a high school
diploma as opposed to reducing their age). Such an expla-
nation is achievable by selecting a baseline that coincides
with the explicand on immutable features. In this sense the
baseline parameter is useful flexibility. It makes the attri-
butions germane to the decision or actions of the person
consuming the explanation. However, this does pose an
additional cognitive load to select the baseline and interpret
the dependence of the explanation on the baseline. There are
also situations where there is no compelling choice of one
baseline over another. In this situation, RBShap presents an
alternative.

4.4. CES and RBShap

In Section 3, we saw that CES violates axioms like Dummy
and Linearity. In contrast, Theorem 4.3 shows that BS
satisfies these axioms. But since Lemma 4.8 shows that BS
is a variant of CES, one could ask if there are other variants
of CES that also satisfy some of the axioms.

4(Lundberg & Lee, 2017) shows that CES reduces to BShap if
the baseline is the feature means, if the features are independently
distributed and the model is linear. Our reduction applies to non-
linear models and baselines other than the feature means.
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We first note that several axioms (Dummy, Linearity, De-
mand Monotonicity) also apply to RBShap, because these
are satisfied by BShap and preserved by averaging the at-
tributions over several baselines. (Symmetry requires that
the distribution D be symmetric in features over which the
function f is symmetric.) We now note that CES over an
independent distribution D is equal to RBShap where the
baselines are drawn from distribution D. Therefore, these
axioms also carry over to CES if the feature distribution D
is independent.

Lemma 4.10. If the distribution D is an independent dis-
tribution over the features, then RBShap and CES coincide.
(See Proof'in Section 5.)

Remark 4.11. If the function f is linear and the distribution
is independent, then, BShap with the baseline vector that
has each feature set to its average across the data set, has
the same attributions as CES (a consequence of Equation
9-12 from (Lundberg & Lee, 2017)) and hence RBShap (due
to Lemma 4.10).

Remark 4.12. (Datta et al., 2016) runs CES over a con-
trived feature distribution 11(D) that is a product of the
marginal distributions of the input feature distribution D.
By Lemma 4.10, CES over II(D) is equivalent to RBShap
over II(D). One could ask if RBShap on the contrived
feature distribution I1(D) is equivalent to RBShap on the
original feature distribution D. The following example
proves that this is false, by showing that the sum of the attri-
butions in the two cases differ: Suppose we are given two
binary features x1 and xs, function f(x1,T2) = T1 * To
and a distribution D such that P(0,0) = P(1,1) = 0.5.
Suppose that the explicand is v1 = 1,22 = 1. Under D,
E[f(z)] = 0.5. Under D', E[f(z)] = 0.25. Recall that
RBShap attributions sum to f(x) — E[f(x)]; this completes
our counterexample.

Remark 4.13. The examples in Section 3.3, show that if
the distribution is not independent, CES can fail Linearity,
Dummy and Demand Monotonicity. However, it always sat-
isfies Affine Scale Invariance (we omit the easy but technical
proof).

5. Missing Proofs
5.1. Proof of Lemma 3.1

Proof. Consider an ! that belongs to T's. We note that it
also belongs to T's. This is because an example that agrees
with the explicand on a feature set S’ also agrees with the
explicand on every feature set S that is a subset of S’. [J

5.2. Proof of Lemma 4.8

Proof. We construct the feature distribution for CES as
follows: the distribution for feature ¢ has two points in its
support, z; and x}, where Pr(x;) = e and Pr(z}) = 1 — .

It suffices to show that the set functions input to the Shapley
value for the two approaches have values that are arbirarily
close when € — 0. The set function for CES is:

! ’
ZS/QN\S f(ls’us?zﬁv\(s/usﬂe‘s P (1= NS0

v(S) =
ZS/QN\S IS 4 (1 — IN\(S'US)]

(©6)

Because ¢ — 0, the numerator is dominated by the
term where S’ is empty, and the numerator tends to
flrssahy o)+ (1 ¢)IN\S1, By an analogous argument, the
denominator tends to (1 — €)/V\5!. Dividing, we get the set
function for BShap. O

5.3. Proof of Lemma 4.10

Proof. In the special case that the features follow an inde-
pendent distribution we show that the set function v(.5) for
RBShap and CES are the same for all sets S. Fix a set S
and consider v(S) for RBShap:

v(S) = Ep~pf(zs; xﬁv\s) )
= By f@siaig) (8)
= By fesiangles =xs] (9)
= Elf(z)]xs] (10)

where 8 follows because the expression is dummy in z's; 9
is due to feature independence; and the final expression is
the set function for CES. O

5.4. Proof of Corollary 4.3

Proof. 1t is easy to show that BShap satisfies all the axioms
(we skip this part). Now consider the reverse direction,
i.e., we would like to show that no other method satisfies
these axioms. By Theorem 4.1, and because the attribution
method satisfies Linearity and ASI, the attributions for an
attribution problem are the difference between the cost-
shares for two cost-sharing problems, and these cost-shares
are uniquely determined by Theorem 4.2. O

6. A Concluding Remark

Estimating feature importance involves what-if analysis.
One type of what-if analysis (e.g. BShap) performs interven-
tions on the feature, while another (e.g. CES) marginalizes
the feature over the training data. The former may construct
out-of-distribution inputs, but regularization can ensure rea-
sonable model behavior on these inputs. In contrast, the
latter provides counter-intuitive explanations when the train-
ing data is sparse. The remedy to this common occurrence
requires modeling the true feature distribution, a problem
harder than original prediction problem.
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