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Abstract
The attribution problem, that is the problem of
attributing a model’s prediction to its base fea-
tures, is well-studied. We extend the notion of
attribution to also apply to feature interactions.
The Shapley value is a commonly used method
to attribute a model’s prediction to its base fea-
tures. We propose a generalization of the Shapley
value called Shapley-Taylor index that attributes
the model’s prediction to interactions of subsets
of features up to some size k. The method is
analogous to how the truncated Taylor Series de-
composes the function value at a certain point
using its derivatives at a different point. In fact,
we show that the Shapley Taylor index is equal
to the Taylor Series of the multilinear extension
of the set-theoretic behavior of the model. We
axiomatize this method using the standard Shap-
ley axioms—linearity, dummy, symmetry and effi-
ciency—and an additional axiom that we call the
interaction distribution axiom. This new axiom
explicitly characterizes how interactions are dis-
tributed for a class of functions that model pure
interaction. We contrast the Shapley-Taylor index
against the previously proposed Shapley Interac-
tion index (cf. (9)) from the cooperative game
theory literature. We also apply the Shapley Tay-
lor index to three models and identify interesting
qualitative insights.

1. Introduction
1.1. Motivation

There is considerable literature on feature impor-
tance/attribution for deep networks(cf. (2; 23; 22; 3; 26;
14; 28; 14)). The basic idea of attribution is to distribute the
prediction score of a model for a specific input to its base
features; the attribution to a base feature can be interpreted
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as its contribution to the prediction. For instance, when
attribution is applied to a network that predicts the senti-
ment associated with a paragraph of text, it quantifies the
influence of every word in the text on the network’s score.
This can be used, for instance, to tell if the model bases its
prediction on words that connote a protected category like
a specific race/gender/religion. This would be indicative
of the model possibly being biased along the protected di-
mension. Attribution/feature importance for Deep Networks
has been applied to a variety of real world applications, for
instance in health, drug-discovery, machine translation, nat-
ural language tasks, recommendation systems etc. Thus,
attributions are quite useful despite their simple form; no-
tice they don’t reveal the logic of the network beyond base
feature importance.

In this paper, we take a step towards making attributions
a somewhat richer form of explanation by identifying the
importance of feature interactions, either pairwise or of
higher orders. We would like to identify to what extent a
set of features exert influence in conjunction as opposed to
independently. We expect the study of interactions to be
fruitful. Deep networks are likely to have an abundance of
strong feature interactions, because they excel at creating
higher-order representations (e.g. filters) out of the base
features (e.g. pixels). We also expect the study of interac-
tions to be critical for the tasks that cannot be performed by
features acting independently. We study two such tasks in
Section 5. In the sentiment analysis task, negation, should
manifest as an interaction between the negation word (e.g.
not) and the sentiment bearing word (e.g. good or bad) that
it modifies. If such an interaction is not detectable, then
the network needs fixing. Another example is reading com-
prehension, i.e., question answering about paragraphs of
text. A good model will match question words to certain
words/phrases in the paragraph, and these matches should
manifest as interactions between those words.

Before we describe our contributions, we mention some
related work on feature interactions besides the attribution
literature briefly described above.
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1.2. More Related Work

1.2.1. SHAPLEY VALUE, SHAPLEY INTERACTION
VALUE

Some of the deep network attribution literature (cf. (28;
12; 13; 6; 7; 27; 25)) is built on prior work in cooperative
game theory, specifically, the Shapley value ((21)) and its
continuous variant (1). These prescribe a way to distribute
the value of a game among its players.1 Shapley values have
been used to study global feature/variable importance in
statistics (cf. (17; 4)). The work most closely related to ours
is the Shapley interaction value, first proposed by (18) to
study pairwise interactions between players. (9) generalized
it to study interactions of higher orders, and provided an
axiomatic foundation. (13) applied it to studying feature
interactions in trees. We provide comparison against the
Shapley interaction value.

1.2.2. INTERACTIONS IN MACHINE LEARNING

It is hard to describe all of the vast literature on interactions
in machine learning and statistics. Most of this literature
is focused on global feature importance, i.e., important
interactions across the data set. In contrast, we study feature
importance for individual inputs.

There is, for instance, the classic literature on ANOVA
(cf. (8)), and the more recent literature on Lasso, (29), both
of which can be used to quantify the importance of putative
interactions.

We mention some recent deep learning literature: (30) con-
structs a generalized additive model that mimics the behav-
ior of a deep network by investigating the structure of the
inter-layer weight matrices. (31) forces the weight matrices
to be block-diagonal, restricting the type of interactions, by
designing the appropriate regularization. (5) studies pair-
wise interactions by building deep networks of a specific
form and then interpreting the network via its gradients, and
averaging appropriately over the data set. (24) combines
agglomerative clustering with influence propagation across
the layers of the deep-network, to produce a hierarchical
decomposition of the input with influence scores for each
group; this work, unlike the others in this section, is about
feature importance of individual inputs.

1.3. Model

In this section, we formally model the attribution problem
for interactions. We have a set of features N . The deep
network is modeled as a function F : 2N → R, i.e., we treat
the features as discrete variables. Modeling the network
as a function of Boolean features simplifies our theory of

1Games are analogous to models, players to features, and the
shares to the feature importance.

attribution, i.e., we can investigate the influence of variables
via the change in score resulting from removing/ablating the
variable. For many problems, treating features as Boolean
is natural; for a text model, words are either present or
absent. In our applications, we will model the absence of a
feature by replacing it with a sentinel value (zero embedding
vector/out of vocabulary word/average value of the feature
across the training data).

To simplify the notation, we denote the cardinalities of a set
S, T etc. using lowercase letters: s, t. We omit braces for
small sets and write T ∪ i instead of T ∪ {i} and T ∪ ij
instead of T ∪ {i, j}.

Define
δiF (T ) = F (T ∪ i)− F (T ) (1)

and

δijF (T ) = F (T ∪ ij)−F (T ∪ i)−F (T ∪j)+F (T ) (2)

Here i, j 6∈ T .2 These are discrete equivalents of first and
second order derivatives. In general, for T ⊆ N \ S, we
define the discrete derivative with respect to set S as:

δSF (T ) =
∑
W⊆S

(−1)w−sF (W ∪ T ) (3)

We use a fixed number k as the order of explanation to
mean that we’ll compute the Shapley-Taylor indices for
subsets of size up to k. For instance, k = 2 corresponds
to computing main effects as well as pairwise interaction
effects. For a set S such that |S| ≤ k, IkS(v) denotes the
interaction effect for the set S.

1.4. Our Results

Our goal is to axiomatically identify the best kth order
explanation. For instance, when k = 2, we would like to
identify the main effects of each feature and the interaction
effects for every pair of features.

• We propose the Shapley-Taylor index to solve this prob-
lem (Section 2).

• We axiomatize the Shapley-Taylor indices in Section 3.
We introduce a new axiom called the interaction dis-
tribution axiom. This axiom explicitly defines how in-
teractions are distributed for a class of functions called
interaction functions.

• We compare the Shapley-Taylor indices against a pre-
viously proposed method called Shapley interaction in-
dices ((9)). This method is the unique method that sat-
isfies variants of the standard Shapley axioms, namely

2If features i and j don’t interact, this quantity will be zero,
because adding j to the set T or to the set T ∪ i will have the same
influence.
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dummy, linearity and symmetry (see Section 3 for ax-
iom definitions) and an additional axiom called the
recursive axiom3. Critically, the Shapley interaction
indices do not satisfy efficiency, i.e., the attributions do
not sum to the score of the function at the input minus
its score at the empty set. Axiomatically, the main con-
tribution of this paper is to replace the recursive axiom
with the efficiency axiom; the consequence is that the
method of choice goes from being Shapley interaction
indices to Shapley-Taylor indices. Section 4 contrasts
the results of the two methods. We find that the lack
of efficiency causes Shapley interaction indices to am-
plify interaction effects (Section 4.1), or causes the
interaction effects to have seemingly incorrect signs
(Section 4.2).

• In Section 3.3, we connect the Shapley-Taylor inter-
action index to the Taylor series (with a Lagrangian
remainder); we show that the Taylor series applied to
the so called multilinear extension of the function is
equivalent to the Shapley-Taylor index applied to the
function.

• Though our key contributions and evaluations are
mainly theoretical, we demonstrate the applicability
of our work in Section 5, which studies models for
three tasks (sentiment analysis, random forest regres-
sion, and question answering). We identify certain
interesting interactions.

2. Shapley-Taylor indices
2.1. Shapley Value

Before we discuss feature interactions, let us revisit the
Shapley value. The central concept in the Shapley value is
that of the marginal, i.e., the change in the function value F
by the addition of a feature, i.e. δiF (S) = F (S∪i)−F (S).
In general, for a nonlinear function F , the value of this
expression depends on the set S ⊆ N \ {i} at which we
compute the marginal and there are several choices for this
set S. The Shapley value defines a random process that
implicitly prescribes a certain weighting over these sets.
Given an ordering of the features, add the features one by
one in this order. Each feature i gets ascribed the marginal
value of adding it to the features that precede it. The Shapley
value of the feature i is the expected value of this marginal
over an ordering of features chosen uniformly at random.

The Shapley Value is known to be the unique method that
satisfies four axioms (see Section 3 for formal definitions of
the axioms): efficiency (the attributions of all the features

3The recursive axiom requires that the interaction index for a
pair of features i, j is equal to the difference in the Shapley value
of feature i in a game with feature j omnipresent and the Shapley
value of feature i in a game with feature j absent.

sum to the difference between the prediction scores at the
input minus that at the empty set.), symmetry (symmetric
features receive equal attributions), linearity (the sum of the
attributions of a feature for two functions is identical to the
attribution of the feature in the game formed by the sum of
the two functions) and the dummy (if the marginal value of
a feature is zero for every set S, it has a zero attribution)
axioms.

2.2. Definition of Shapley-Taylor indices

In this section we define Shapley-Taylor indices. Just like
the Shapley value, Shapley-Taylor indices can also be com-
puted as an expectation over orderings chosen uniformly
at random. The output of the Shapley-Taylor indices is
more extensive compared to the Shapley value; it includes
attributions to interaction terms.

For an order of explanation k = 2, i.e., the index specifies
values for individual features and pairs of features. The
indices for an individual feature i is just the marginal δiF (∅).
To compute the indices for pairs, we pick an ordering of the
features, and ascribe to each pair of features the expression 2
computed at the set S of features that precede both i and j
in the ordering. The Shapley Taylor interaction index for
a pair is the expectation of this quantity over an ordering
chosen uniformly at random.

Similarly for the general case, Shapley-Taylor indices are de-
fined by random process over orderings of features. Let π =
(i1, i2, . . . , in) be an ordering. Let πik = {i1, . . . , ik−1} be
the set of predecessors of ik in π. For a fixed ordering π and
a set, we define Shapley-Taylor indices IkS,π(F ) as follows:

IkS,π(F ) =

{
δSF (∅) if |S| < k

δSF (πS) if |S| = k,
(4)

Here, πS is defined as ∩i∈Sπi, the set of elements that pre-
cede all of the features in S. Let us briefly discuss the three
cases. When the size of the interaction term is strictly less
than the order of explanation, its interaction value (for the
fixed permutation) is simply equal to the discrete derivative
(Equation 3) at the empty set. Notice that this quantity does
not depend on the permutation itself. When the order of
approximation is k = 2, this is just the marginal value of
adding the feature to the empty set. When the size of the
interaction term is equal to the order of explanation, its in-
teraction value (for the fixed permutation) is equal to the
discrete derivative at the largest set of elements that precede
all of the elements of S. when the order of approximation is
k = 2, the discrete derivatives match Equation 2.

The Shapley-Taylor indices are defined as the expectation
of IkS,π(F ) over an ordering of the N features chosen uni-
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formly at random:

IkS(F ) = Eπ(IkS,π(F )) (5)

A noteworthy special case is k = 1. Here the first case of
Equation 4 does not occur and the discrete derivatives cor-
respond to marginals. The resulting definition is precisely
the well-known Shapley value. Shapley-Taylor indices thus
generalize the Shapley value.

We have defined the Shapley-Taylor indices in terms of
permutations. The theorem below derives a closed form ex-
pression for Shapley-Taylor indices. This provides a method
to compute the Shapley-Taylor indices. We have given the
proof in the Appendix (Section 7.1).
Theorem 1. Let k be the order of explanation. For a set
S ⊆ N , such that |S| = k, Shapley-Taylor indices satisfy
the following expression:

IkS(F ) =
k

n

∑
T⊆N\S

δSF (T )
1(
n−1
t

) (6)

Remark 1. The formula in Theorem 1 gives us a way to
compute the Shapley-Taylor indices. It involves computa-
tion over all subsets of the feature set and hence it takes
exponential time. In practice, we can trade off accuracy for
speed. One way to obtain a fast approximation is to apply
Equation 4 over a sample of permutations. This is similar
to the Shapley value sampling methods(15). In Section 5,
we use a different approximation. We first identify a subset
of features with high attribution (using Shapley values or
Integrated Gradients method). We use Theorem 1 formula
on this subset.

We now define the previously proposed Shapley interac-
tion index ((9)) 4. The Shapley interaction index for a
subset S ⊆ N for a function F ⊆ GN is defined as:

ISh(F, S) :=
∑

T⊆N\S

(n− t− s)!t!
(n− s+ 1)!

δSF (T ) (7)

3. Axiomatization of the Shapley-Taylor
Interaction Index

In this section, we axiomatize Shapley-Taylor indices. Let
GN denote the set of functions on N features.

The first three axioms are all variants of the standard Shapley
axioms generalized to interactions by (9); they were used in
the axiomatization of Shapley interaction indices.

4The Shapley interaction index can also defined by a random
order process. To compute the interaction index for a set S, the
set S is fused into an artificial player. The players are ordered
randomly as before and the discrete derivative δS is evaluated at
the set of players which precede the artificial player in the ordering.
The combinatorial weights that occur in Equation 7 arise from this
random process.

1. Linearity axiom: Ik(·) is a linear function; i.e. for
two functions F1, F2 ∈ GN , IkS(F1 +F2) = IkS(F1)+
IkS(F2) and IkS(c · F1) = c · IkS(F1).

2. Dummy axiom: If i is a dummy feature for F , i.e.
F (S) = F (S \ i) + F (i) for any S ⊆ N with i ∈ S,
then

(i) Iki (F ) = F (i)

(ii) for every S ⊆ N with i ∈ S, we have IkS(F ) = 0

3. Symmetry axiom: for all functions F ∈ GN , for all
permutations π on N , :

IkS(F ) = IkπS(πF )

where πS := {π(i)|i ∈ S} and the function πv is de-
fined by (πF )(πS) = F (S), i.e. it arises from relabel-
ing of features 1, . . . , n with the labels π(1), . . . , π(n).

In addition to these three axioms from (9), we use the effi-
ciency axiom. Again, this is a generalization of the standard
efficiency axiom for Shapley values.

4. Efficiency axiom: for all functions F ,∑
S⊆N,|S|≤k IkS(F ) = F (N)− F (∅)

Finally, we introduce the Interaction Distribution axiom.
This axiom is defined for functions that we call interaction
functions. An interaction function parameterized by a set
T , has the form FT (S) = 0 if T 6⊆ S and has a constant
value FT (S) = c when T ⊆ S. These functions model pure
interaction among the members of T (when |T | > 1—the
combined presence of the members of T is necessary and
sufficient for the function to have non-zero value. We call
|T | the order of the interaction of the interaction function.
In machine learning terminology, the function FT (S) is a
model with a single feature cross of all the (categorical)
features in T , with a coefficient of c for this cross.

5. Interaction Distribution Axiom: For an interaction
function FT parameterized by the set T , for all S with
S ( T and |S| < k, where k denotes the order of
explanation, we have IkS(FT ) = 0.

3.1. The Roles of the Axioms

Here we discuss informally the roles that the various axioms
play, and specifically, the need for the Interaction Distri-
bution axiom. For simplicity, we consider explanations of
order k = 2. Consider the space of Interaction Distribution
methods that satisfy linearity. It is well-known that the set
of unanimity functions (defined as uT (S) = 1 if T ⊆ S and
0 otherwise) constitute a basis for the space of all functions.
That is, every function v, can be expressed as a unique linear
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combination of these functions. By linearity, the interaction
indices for the function v should be the same linear combi-
nation of the interaction indices for the unanimity functions.
Therefore, defining the interaction indices for unanimity
functions specifies the interaction indices for all functions.

Specifically, consider the unanimity function defined for a
set T ⊆ N , such that |T | > 1. Now let us consider the
effect of the Dummy and Symmetry axioms. Dummy con-
strains us from attributing to interaction terms that contain
elements not in T . Symmetry dictates that all the single-
ton elements in T get the same credit (say aT ), and all the
pairwise terms (i, j) such that i ∈ and j ∈ T , get the same
credit (say bT ).

Recall that Shapley interaction indices satisfy Linearity,
Dummy and Symmetry, and as we show later, so do Shapley-
Taylor indices. Pairwise Shapley interaction indices assign
a value of bT = 1/(|T | − 1) to every one of the

(|T |
2

)
pairs

of elements. Pairwise Shapley interaction indices does not
define assignments to the singleton terms, but for simplicity,
we can consider aT = 0. Pairwise Shapley interaction
indices thus violate efficiency.

Shapley-Taylor indices assign a value of bT = 1/
(|T |

2

)
to ev-

ery pair of elements from the set T and aT = 0; this satisfies
symmetry, dummy, linearity, but also efficiency. However,
this is not the unique way to satisfy efficiency; there are
other assignments to aT and bT that still satisfy efficiency. 5

This ambiguity is tied to non-orthogonality—-the singleton
sets are not orthogonal to the pairs. The consequence is that
we need an additional axiom to pin down the interaction
index. In our case, the Interaction Distribution axiom causes
the explicit choice of setting the singleton assignments aT
to zero. This prevents the singleton elements from accumu-
lating higher order interactions (recall that we are discussing
the case |T | > 1).

In contrast, notice that the assignment to the pairwise shares
is reductive—the pairwise shares capture not only the pair-
wise interactions (|T | = 2) , but also larger interactions
(|T | > 2). This reductiveness is necessitated by the con-
straint on the order of explanation (k = 2) and the efficiency
axiom. Notice that the very same reductiveness is present
in the Shapley value (order of explanation k = 1); recall
that the Shapley value is the Shapley-Taylor indices when
k = 1, see Section 3.3. In the Shapley value, all the interac-
tions are redistributed among the singleton shares. As we

5A different method is to apply the Shapley value to the Shap-
ley value; i.e. treat the Shapley value of an element itself as a set
function and apply Shapley value on that set function. It turns out
that this is well-defined. Doing so sets aT = bT . While it is an
open question to identify an axiom that causes this assignment,
this does show that the approach of explicitly defining interac-
tions for interaction functions (recall that every basis function is an
interaction functions) is interesting beyond Shapley-Taylor indices.

increase the order of explanation, the amount of reductive-
ness decreases—progressively larger interactions (of size
k − 1 or less) are captured unambiguously. However, this is
at the cost of more computation and a longer explanation.

3.2. Main result

We are now ready to state our main result:

Theorem 2. Shapley-Taylor indices are the only interaction
indices that satisfy axioms 1-5.

Proof. We prove this in two steps. First we show that
Shapley-Taylor indices satisfy the axioms (Propositions 1–
3). Next we show that any method that satisfies the axioms
assigns specific interaction values to unanimity functions
(Proposition 4).

Proposition 1. Shapley-Taylor indices satisfy the Linearity,
Dummy and Symmetry axioms

Proof. In Equation 4, Shapley-Taylor indices are defined
as expected values of certain discrete derivatives δS . The
discrete derivative satisfies linearity conditions. Hence
Shapley-Taylor indices satisfy the linearity axiom. The
symmetry axiom follows from the fact that Shapley-Taylor
indices are defined as expectations over all permutations.
To show the dummy axiom, we note that the discrete deriva-
tive δSF (T ) can be rewritten as δS\iF (T ∪ i)− δS\iF (T )
for any i ∈ S. If i is a dummy feature, it follows that
δSF (T ) = 0. Consequently IkS(v) = 0. Furthermore,
Ik{i}(F ) = δiF (∅) = F (i). Thus Shapley-Taylor indices
also satisfy the dummy axiom.

Proposition 2. Shapley-Taylor indices satisfy the Interac-
tion Distribution axiom.

Proof. Consider an interaction function FT and S such
that |S| < |T |. Notice that IkS(FT ) = δS(FT ) =∑
W⊆S(−1)w−sFT (W ). Since |W | < |T |, we know

that FT (W ) = 0. Hence IkS(FT ) = 0. This shows that
Shapley-Taylor indices satisfies the Interaction Distribution
axiom.

Proposition 3. Shapley-Taylor indices satisfy the efficiency
axiom. Formally,∑

S,|S|≤k

IkS(F ) = F (N)− F (∅)

Proof. We prove the proposition for unanimity functions.
By using additivity axiom, this extends to all functions.
Consider the unanimity function uT defined as uT (S) = 1
if S ⊇ T , and 0 otherwise.

Lemma 1. For all sets W , δSuT (W ) = 0 if either S 6⊆ T
or T 6⊆ S ∪W .
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Fix a permutation π as the ordering of the features. Let k
be the order of explanation. The two lemmas above have
following implications:
- IkS,π(uT ) = 0 if |S| > |T |.
- For |T | < k, IkS,π(uT ) = 1 iff S = T , otherwise 0.
- For |T | < k, this proves efficiency.
The remaining case is |T | ≥ k. For |S| < k, we have
IkS,π(uT ) = δSuT (∅). This is 0 from second lemma.

Finally, consider |S| = k. Here, we claim that IkS,π(uT ) =
1 iff S is same as the last k elements of T in the permutation
order π; otherwise it is 0.

Let Tk := {last k elements of T}}. Notice that if S = Tk,
then T ⊆ πS ∪S. Therefore, uT (S∪πS) = 1, but uT (S′∪
πS) = 0 for any subset S′ ⊂ S. Hence δSuT (πS) = 1.

To prove the other side, there are two cases:

(a) S has an element that is not in T : first lemma gives
IkS,π(uT ) = 0.
(b) S does not contain an element of Tk: then T 6⊆ S ∪ πS .
Second lemma implies IkS,π(uT ) = 0.

This proves the efficiency axiom for |T | ≥ k.

To prove the uniqueness, we investigate interactions for
unanimity functions. Recall that, a unanimity function pa-
rameterized by a set T ⊆ N is defined as FT (S) = 1 iff
S ⊇ T , and 0 otherwise. Thus unanimity functions are
a subset of Interaction functions used for the Interaction
Distribution Axiom.

Since the family of unanimity functions {FT }T⊆N,T 6=∅
forms a linear basis of GN , it is sufficient to show that
any interaction index that satisfies the axioms 1-5 assigns
specific values on unanimity functions. This is shown in the
next proposition.

Proposition 4. Consider the unanimity function FT defined
as FT (S) = 1 if T ⊆ S, otherwise 0. Let k be the order of
explanation. Let φ be an interaction index that satisfies the
axioms 1-5, then

φS(FT ) =


1 if S = T and |S| < k

0 if S 6= T and |S| < k
1

(t
k)

if S ⊆ T and |S| = k

0 |S| = k, but S 6⊆ T

(8)

Proof. Consider a unanimity function FT and an interac-
tion index φS that satisfies axioms 1-5. We want to derive
φS(FT ) using the axioms.

Start with the dummy axiom. If i 6∈ T , then i is a dummy
feature for FT . This implies that if S \ T 6= ∅, then
φS(FT ) = 0.

Consider |S| < k. The interaction distribution axiom states
that φS(FT ) = 0 if S ( T . Next we use the dummy axiom.
Note that, for all j 6∈ T , δjFT (S) = 0. Thus j is dummy
feature. The dummy axiom implies that φS(FT ) = 0 if
j ∈ S. Hence, φS(FT ) = 0 for all S such that |S \ T | > 0.

Using the efficiency axiom, we have
∑
S φS(FT ) =

FT (N) = 1. As we saw before, φS(FT ) = 0 if S 6= T .
Hence the sum reduces to φS(FS) = 1, when S = T .

Finally, consider the case where size of S is same as the
order of explanation, i.e. |S| = k. As we saw earlier,
φS(FT ) = 0 if S 6⊆ T . Using the efficiency axiom:∑
S⊆T φS(FT ) = 1. Furthermore, since k is the order

of explanation, the interaction index is defined to be 0 for
sets larger than k. Hence,

∑
S⊆T,|S|=k φS(FT ) = 1.

The symmetry axiom implies that each of these terms must
be equal. Hence φS(FT ) = 1

(t
k)

.

Proposition 4 shows that the interaction values for a una-
nimity function FT depend only on |T | and the order of
explanation k. Since unanimity functions form a basis of
GN , the interaction values extend in a unique way to all the
functions. Thus there is a unique method (Shapley-Taylor
indices) that satisfies the axioms 1-5.

3.3. Connection to Taylor series

In this section, we connect Shapley-Taylor indices to the
Taylor series of the multilinear extension.

The multilinear extension of F is defined as follows:

f(x) =
∑
S⊆N

F (S)
∏
i∈S

xi
∏
i 6∈S

(1− xi) (9)

where xi ∈ [0, 1], i ∈ N . The multilinear extension has a
probabilistic interpretation: if feature i is set with probability
xi, then f(x) denotes the expected value of the function.
Let g(t) = f(t, t, . . . , t) for t ∈ [0, 1]. Then g(0) = F (∅)
and g(1) = F (N). For a set S ⊆ N , with |S| = j, define

∆Sf(x) :=
∂jf

∂xi1 . . . ∂xij
where S = {i1, . . . , ij}

Consider the (k − 1)th order Taylor expansion of g(·) at 0
with Lagrange remainder and the corresponding multivariate
expansion of each term in terms of ∆Sf(·):
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F (N)− F (∅) = g(1)− g(0)

=
g′(0)

1!
+ . . .+

g(k−1)(0)

(k − 1)!
+

∫ 1

t=0

(1− t)k−1

(k − 1)!
g(k)(t)dt

(10)

=
∑
j≤k−1

∑
|S|=j

∆Sf(0, . . . , 0)+

∑
|S|=k

∫ 1

t=0

k(1− t)k−1∆Sf(t, . . . , t)dt

Theorem 3. Let k be the order of explanation and j < k.
Then jth order Shapley-Taylor indices can be obtained from
the jth order terms in the Taylor series.

∆Sf(0, . . . , 0) = IkS(F ) where |S| < k

The kth order Shapley-Taylor indices can be obtained from
the Lagrange remainder term:∫ 1

t=0

k(1−t)k−1∆Sf(t, . . . , t)dt = IkS(F ) where |S| = k

We give the proof of the Theorem and Equation 10 in the
appendix. For k = 1, we see that the definition of Shapley-
Taylor indices in Equation 4 is exactly the Shapley value.
Furthermore, Theorem 3 reduces to the result by (18) (The-
orem 5) showing that the Shapley value can be obtained by
integrating the gradient of f along the diagonal line.

4. Comparison of Shapley interaction indices
and Shapley-Taylor indices

4.1. A Linear Model with Crosses

We illustrate the difference between Shapley-Taylor in-
dices and Shapley interaction indices using a function that
models linear regression with crosses. Consider the fol-
lowing function with 3 binary features: F (x1, x2, x3) :=
[x1] + [x2] + [x3] + c[x1] ∗ [x2] ∗ [x3]; [xi] is 1 if feature xi
is present in the input, and zero otherwise. The last term of
the function models a cross between the three features. This
is a very simple function; we would expect the main effects
to be 1 each, and the interaction effect of c to be divided
equally among the three pairs.

Indeed, this is what we see with the Shapley-Taylor indices.
The pairwise interaction terms for each of the three pairs is
c/3, and the total interaction effect matches the coefficient
of the cross term, c. The main effect terms for Shapley-
Taylor indices are 1 each, as expected.

In contrast, those for Shapley interaction indices are c/2
each, and the total interaction effect is 3c/2. Whether c is
negative or positive, Shapley interaction indices amplifies

the magnitude of interaction effect 6. While Shapley inter-
action indices does not directly define main effect terms,
a natural way to define them is to subtract the interaction
terms from the Shapley values: Φi,i = Φi − 1

2

∑
i 6=j Φi,j ,

where Φi is the ith Shapley value and Φi,j is the Shapley
interaction indices for {i, j}. With this definition, the main
effect terms and interaction terms satisfy the efficiency ax-
iom.

Using this definition, the main effect terms for Shapley
interaction indices are 1− c

3 each. When c is larger than 3,
the main effect term is negative, which does not match our
expectation about the function.

In general, we observe that Shapley interaction indices re-
turns inflated interaction values, possibly because it was
not designed to satisfy efficiency, and a consequence of this
is that the main effect terms, computed by subtracting the
inflated interaction terms from the Shapley value, can have
incorrect signs.

In general, there is no simple way to account for the amount
of inflation in Shapley interaction indices. The following
example shows that the size of the inflation varies with the
size of the cross-terms present in the model: For example,
for F (x1, . . . , xn) := [x1] ∗ . . . ∗ [xn], the total interaction
effect in Shapley-Taylor indices is 1, i.e., 1/

(
n
2

)
for each

pair), while that for Shapley interaction indices is n/2 (i.e.
1

n−1 for each pair). The inflation factor n/2 depends on the
size of the interaction.

4.2. The Majority Function

Next, we consider the majority function Fmaj over the set
of features N is defined by Fmaj(S) = 1 if |S| ≥ n/2 and
is 0 otherwise; here n = |N |.

It is easy to check that the singleton terms for pairwise
Shapley-Taylor indices for a majority functions are uni-
formly zero (for n > 2). The pairwise terms are each equal
to reciprocal of the number of pairs, 2/(n·(n−1)), a simple
consequence of symmetry and efficiency. The analytical
conclusion from this is that majority functions are all about
interaction, and this is intuitively reasonable.

In contrast, the pairwise Shapley interaction indices are uni-
formly zero for every pair of features! This is unexpected;
one would imagine that in a three feature majority function
there would be non-zero interaction values for sets of size 2,
the size at which majority arises. The results from studying
pairwise Shapley interaction indices seems to suggest that
there is no pairwise interaction! However, Shapley inter-
action indices of larger interaction sizes do have non-zero
values. For instance, for a majority function with 3 features,

6If the function does not have crosses of size more than 2, the
two methods coincide in the interaction terms.
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the interaction value corresponding to all three features is
−2, a non-intuitive number. The pattern becomes even more
confusing for majority functions of more features.

Figure 2 (page 8) shows the sum of the Shapley interaction
indices (in log scale) for all subsets of features for majority
functions as number of features increases. This displays
two non-intuitive characteristics. First, the total interaction
diverges (recall the plot is in log scale) despite the fact
that the function value being shared among the features
is constant (1). Second, the sign of the total interaction
alternates. In fact, for a function of a fixed size, every non-
singleton interaction value has the same sign. (So the sign
alternation is not due to cancellation across the interactions.)
There is no intuitive reason for this sign alternation.

This discussion highlights the value of the Shapley-Taylor
indices interaction distribution approach over that of Shap-
ley interaction indices. To study interactions using Shapley
interaction indices, one has to compare 2n quantities, and
even then the results appear unstable. In contrast, studying
O(n2) quantities using the pairwise Shapley-Taylor indices
gives us some insight into the functions behavior, no matter
what the size of the set of interacting elements.

5. Applications
We study three tasks. The first scores sentences of text for
sentiment. The model is a convolutional neural network
from (11) trained over movie reviews7. The second is a
random forest regression model built to predict house prices.
We use the Boston house price dataset ((10)). The dataset
has 12 numerical features and one binary feature.8 The
third model, called QANet (32), solves reading comprehen-
sion, i.e., identifying a span from a context paragraph as an
answer to a question; it uses the SQuAD dataset ((20)). 9

5.1. Insights

For the sentiment task, we ran Shapley-Taylor indices across
a hundred test examples and identified word pairs with large
interactions. Table 1 shows some of the interesting interac-
tions we found.

The first example captures negation. The second example

7To ablate a word, we zero out the embedding for that word.
8There are 506 data points. We split the data into 385 training

and 121 test examples. We used scikit-learn to train a ran-
dom forest model. When we ablate a feature, we replace it by its
training-data mean.

9We use Equation 6 to compute the Shapley-Taylor indices.
However, the computational efficiency is O(2n), where n is the
number of features. For the sentiment analysis and question an-
swering tasks, n is large enough for this to be prohibitive. So
we first use an attribution technique (Integrated Gradients (28))
to identify a small subset of influential features and then study
interactions among that subset.

Example sentence (interaction between bolded
words)

interaction ef-
fect

Aficionados of the whodunit won’t be disap-
pointed

0.778

Watching these eccentrics is both inspiring and
pure joy

0.1

A crisp psychological drama (and) a fascinating
little thriller

0.48

With three excellent principal singers, a youth-
ful and good-looking diva . . .

-0.224

Australian actor/director John Polson and . . .
make a terrific effort . . .

-0.545

Table 1: Examples of different types of interactions. The
interaction effect is the fraction of total change.

shows intensification; the effect of ’inspiring’ is amplified by
the ’both’ that precedes it. The third example demonstrates
a kind of intensification that would not typically appear
in grammar texts; ’crisp’ is intensified because it appears
at the beginning of the review, which is captured by the
interaction with ’A’, whose main effect is nearly zero. The
fourth examples shows complementarity; the interaction
effect is of opposite sign to the main effects. The final
example shows that sentiment expressed in third person is
suppressed. This is natural because reviews are first-person
artifacts.

For the random forest regression task, we found that most of
the influential pairwise feature interactions are substitutes;
e.g. when the predicted price is lower than the average price,
the main effects are negative, but the pair-wise interaction
values are positive. We think this is because the features are
correlated. We show a plot of main effects vs interaction
effects of pairs of features in Figure 1.

For the reading comprehension task, previous analyses
(cf. (16)) focused on whether the model ignored important
question words. These analyses did not identify which para-
graph words did the important question words match with.
Our analysis identifies this. See the examples in Figure 3.

6. Discussion
In this section, we discuss issues of computational efficiency
of Shapley-Taylor indices and future directions.

6.1. Computational Efficiency

The exact computation of Shapley-Taylor indices can be
done using the formulas from Section 2 (Equations 5 and
6). Both the equations involve evaluating an exponential
number of terms. This is similar to the exact computation
of Shapley Values. To address this drawback, sampling-
based approximations ((15)) have been used. The same
method works for Shapley-Taylor indices. The basic idea is
to evaluate Equation 5 over a sample of permutations.
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Figure 1: A plot of main effects of pairs of features vs interaction
effect for the pair. Negative slope indicates substitutes.

Figure 2: The sum of Shapley interaction indices (in log scale) for
all subsets of features for majority functions as a function of the
number of features.

Figure 3: First example shows a match between percentage in
question to percent in the context. Second example shows total
touchdowns matching between the question and the context.

In our applications (Section 5), we used a different approx-
imate method — first use a feature importance method to
compute a subset of important features and compute feature
importance over this subset.

Finally, it is possible that an approach like Kernel SHAP
(cf. (14)) based on Kernelizing the Equation 6 can work. We
leave this as a future direction to explore.

6.2. Continuous Extension

In this paper, we introduced Shapley-Taylor indices as a
method to define interactions for functions over binary fea-
tures. We also showed that the Shapley-Taylor indices are
equivalent to the Taylor series terms of the multilinear ex-
tension of the original function (Theorem 3). This raises
the question whether we can use the Taylor series to define
interactions for continuous functions. For instance, pair-
wise interactions could be defined in terms of integral of the
Hessian. This amounts to a generalization of the Integrated
Gradients method cf. (28).

The main open question whether we can establish an equiv-
alent of the Interaction distribution axiom to prove unique-
ness of such a method. Another open question is about
practical application – how well the method would work
if the Hessian is not well-defined (e.g. due to presence of
ReLUs).
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7. Appendix
7.1. Proof of Theorem 1

Proof. For a set T ⊆ N , define the Möbius coefficients as:

a(T ) =
∑
S⊆T

(−1)t−sF (S), T ⊆ N

Decomposition of any function F into unanimity functions
can be written in terms of a(T )’s as follows:

F (S) =
∑
T⊆N

a(T )uT (S)

Using the linearity axiom, we can extend IkS from unanimity
functions to F as follows:

IkS(v) =
∑
T⊆N

a(T )IkS(uT )

Using the Shapley-Taylor indices for unanimity functions
from Proposition 4, we get:

IkS(v) =
∑

T⊆N,S⊆T

a(T )
1(
t
k

)
=

∑
W⊆N\S

a(W ∪ S)
1(

w+k
k

) where W = T \ S

=
∑

W⊆N\S

∑
U⊆W

(−1)u−wδSF (U)
1(

w+k
k

)
(using Lemma 2 below)

=
∑

U⊆N\S

δSF (U)
∑

W⊇U,W⊆N\S

(−1)u−w(
w+k
k

)

Now we analyze the inner sum. We use the following iden-
tity:

(
w+k
k

)
= 1/(k · B(w + 1, k)), where B() is the Beta

function.

∑
U⊆W⊆N\S

(−1)u−w(
w+k
k

)
=

∑
W⊇U,W⊆N\S

(−1)u−wk ·B(w + 1, k)

= k

n−k∑
w=u

(
n− k − u
w − u

)
(−1)u−wB(w + 1, k)

= k

n−k∑
w=u

(
n− k − u
w − u

)
(−1)u−w

∫ 1

0

xw(1− x)k−1dx

= k

∫ 1

0

n−k∑
w=u

(
n− k − u
w − u

)
(−1)u−wxw(1− x)k−1dx

(exchanging sum & integral)

= k

∫ 1

0

xu(1− x)k−1
n−k−u∑
w′

(
n− k − u

w′

)
(−1)w

′
xw

′
dx

(setting w′ = w − u)

= k

∫ 1

0

xu(1− x)k−1(1− x)n−k−udx

= kB(u+ 1, n− u) (definition of Beta function)

=
k

n

1(
n−1
u

)
We use this expression for the inner sum in the above equa-
tion to get:

IkS(v) =
k

n

∑
U⊆N\S

δSF (U)
1(
n−1
u

)
This finishes the proof.

The next Lemma provides a relation between the Möbius
coefficients a(T ) and the discrete derivatives.

Lemma 2. Möbius coefficients and discrete derivatives are
related by following relation:

a(T ∪ S) =
∑
W⊆T

(−1)t−wδSF (W )

for S and T such that S ∩ T = ∅.
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Proof. For two sets, S and T with S ∩ T = ∅:

a(T ∪ S) =
∑

W ′⊆T∪S

(−1)t+s−w
′
F (W ′)

=
∑
W⊆T

∑
U⊆S

(−1)t+s−w−uF (U ∪W )

(where W = W ′ ∩ T and U = W ′ ∩ S)

=
∑
W⊆T

(−1)t−w
∑
U⊆S

(−1)s−uF (U ∪W )

=
∑
W⊆T

(−1)t−wδSF (W )

7.2. Proof of Theorem 3

Proof. Recall that g(t) = f(t, . . . , t) for t ∈ [0, 1]. First,
we derive the multivariate expression in Equation 10.

g(j)(0)

j!
=

∑
S⊆N,|S|=j

∆Sf(0, . . . , 0)

Consider the expansion of g(j)(0):

g(j)(0)

j!
=

1

j!

∑
i1

∑
i2

· · ·
∑
ij

∂jf(0, . . . , 0)

∂xi1 . . . ∂xij

Notice that f is a multilinear function. Therefore, only the
mixed partial terms survive. Furthermore, all j! mixed par-
tials wrt xi1 , . . . , xij are identical. Hence, we can simplify
the above equation to:

g(j)(0)

j!
=

∑
i1<i2<...<ij

∂jf(0, . . . , 0)

∂xi1 . . . ∂xij

=
∑

S⊆N,|S|=j

∆Sf(0, . . . , 0)

Similarly, consider the multivariate Lagrange remainder
term in Equation 10:∫ 1

t=0

(1− t)k−1

(k − 1)!
g(k)(t)dt

As before, in the derivative of g, only the mixed partial
terms are left:

g(k)(t)

k!
=

∑
S⊆N,|S|=k

∆Sf(t, . . . , t)

We use this expression in Lagrange remainder term and
interchanging the order of integral and summation. Note
that there is an extra factor of k that survives on the right
side.

∫ 1

t=0

(1− t)k−1

(k − 1)!
g(k)(t)dt =

∑
S⊆N,|S|=k

∫ 1

t=0

k(1− t)k−1∆Sf(t, . . . , t)dt (11)

For the rest of the proof of the theorem, we consider the
special case unanimity functions uW for a set W ⊆ N and
the corresponding multilinear extension:

fW (x) =
∏
i∈W

xi (12)

We prove the theorem for the unanimity functions. Since
unanimity functions form the basis, the general case follows
from linearity axiom.

Recall that a set S ⊆ N , |S| = j:

∆SfW (x) :=
∂jfW

∂xi1 . . . ∂xij
where S = {i1, . . . , ij}

Using Equation 12, we get

∆SfW (x) =
∏

i∈W\S

xi iff S ⊆W

= 1 when S = W and 0 otherwise.

Hence ∆SfW (0) = 1 iff S = W and 0 otherwise. This
gives us:

∆SfW (0, . . . , 0) = IkS(uW ) (13)

This proves the result for j < k.

Next we analyze the Lagrange Remainder term. Consider
a set S ⊆ N, |S| = k. We use Eqaution 12 to evaluate
∆SfW (t, . . . , t) using the fact that ∆SfW (·) = 0 if S 6⊆
W :
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∫ 1

t=0

k(1− t)k−1∆SfW (t, . . . , t)dt (14)

=

∫ 1

t=0

k(1− t)k−1
 ∏
i∈W\S

t

 dt

=

∫ 1

t=0

k(1− t)k−1
(
tw−k

)
dt |W | = w and |S| = k

= k

∫ 1

t=0

tw−k(1− t)k−1dt

= k ·B(w + 1, k) B(·, ·) is the Beta function

= 1/

(
w

k

)
= IkS(uW ) from Equation 8

This finishes the proof for the remainder term.


