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A. Non-autoregressive Transformers are Universal Approximators of Sequence-to-Sequence
Functions

A.1. Problem Definition

A non-autoregressive Transformer (Vaswani et al., 2017) a Transformer encoder and a non-autoregressive Transformer
decoder. More concretely, both encoder and decoder consist of two types of layers: the multi-head attention layer Attn and
the token-wise feed-forward layer FF, with both layers having a skip connection1 (He et al., 2016). The encoder block in
the non-autoregressive Transformer tenc maps an input X ∈ Rd×n consisting of d-dimensional embeddings of n tokens
to an output tenc(X) ∈ Rd×m. It consists of a self-attention layer and a feed-forward layer. The decoder block in the
non-autoregressive Transformer tdec maps an input Y ∈ Rd×m consisting of d-dimensional embeddings of m tokens and a
context X ∈ Rd×n consisting of d-dimensional embeddings of n tokens to an output tdec(X,Y ) ∈ Rd×m. It consists of a
self-attention layer, a encoder-decoder attention layer, and a feed-forward layer:

Attn(X,Y ) = Y +

h∑
i=1

W i
OW

i
VX · σ

[
(W i

QX)T (W i
KY )

]
, (1)

FF(Y ) = Y + W2 · ReLU(W1 · Y ), (2)
tenc(X) = FF(Attnenc−self(X,X)), (3)

tdec(X,Y ) = FF(Attnenc−dec(X,Attndec−self(Y ,Y ))), (4)

where W i
O ∈ Rd×k, W i

V ,W
i
K ,W

i
Q ∈ Rk×d, W2 ∈ Rd×r, and W1 ∈ Rr×d are learnable parameters. σ is the softmax

function. Following Yun et al. (2020), we also do not use layer normalization (Ba et al., 2016) in the setup of our analysis.

The family of the Transformer encoders is Rd×n → Rd×n functions and can be defined as:

T h,k,renc :=

h : Rd×n → Rd×n

∣∣∣∣∣∣∣
X0 = X

Xi = th,k,renc (Xi−1)

h(X) = XM

 , (5)

where th,k,renc denotes a Transformer encoder block defined by an attention layer with h heads of size k each, and a
feed-forward layer with r hidden nodes. M is the number of stacked blocks.

Similarly, the family of the non-autoregressive Transformer decoders is Rd×(n+m) → Rd×m functions and can be defined
as:

T h,k,rdec :=

h : Rd×(n+m) → Rd×m

∣∣∣∣∣∣∣
Y 0 = Y

Y i = th,k,rdec (X,Y i−1)

h(X,Y ) = Y N

 , (6)

where th,k,rdec denotes a Transformer decoder block defined by attention layers with h heads of size k each and a feed-forward
layer with r hidden nodes. N is the number of stacked blocks.

Finally, the family of non-autoregressive Transformers is Rd×n → Rd×m functions and can be defined as:

T h,k,r :=
{
g(X) = h2(h1(X + E1),E2)

∣∣∣ h1 ∈ T h,k,renc and h2 ∈ T h,k,rdec

}
, (7)

1The bias b is omitted for all matrix multiplication operations for brevity.
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where E1 ∈ Rd×n and E2 ∈ Rd×m are the trainable positional embeddings.

A.2. Transformer Encoders are Universal Approximators of Sequence-to-Sequence Functions (Yun et al., 2020)

Recently, Yun et al. (2020) show that the Transformer encoders equipped with positional embeddings are universal
approximators of all continuous Rd×n → Rd×n functions that map a compact domain in Rd×n to Rd×n.

We first describe the results in Yun et al. (2020). Let us start by defining the target function class Fenc, which consists of
all continuous sequence-to-sequence functions with compact support that map a compact domain in Rd×n to Rd×n. Here
continuity is defined with respect to any entry-wise `p norm, 1 ≤ p <∞. Given two functions f1, f2 : Rd×n → Rd×n, for
1 ≤ p <∞, we define a distance between them as

dp(f1, f2) :=

(∫
‖f1(X)− f2(X)‖ppdX

)1/p

. (8)

The Transformer encoders with positional embeddings is defined as:

T h,k,rP−enc :=
{
hPX = h(X + E)|h ∈ T h,k,renc and E ∈ Rd×n

}
, (9)

where E is learnable positional embeddings. The following result shows that a Transformer encoder with positional
embeddings with a constant number of heads h, head size k, and hidden layer of size r can approximate any function in
Fenc:
Theorem A.1. Let 1 ≤ p < ∞ and ε > 0, then for any given f ∈ Fenc, there exists a Transformer encoder h ∈ T 2,1,4

P−enc
such that we have dp(f, h) ≤ ε.

We provide the sketch of the proof in Yun et al. (2020) here. Without loss of generality, we can assume that the compact
support of f is contained in [0, 1]d×n. The proof of Theorem A.1 can be achieved in the following three steps:

Step 1: Approximate Fenc with piece-wise constant functions. We first use (a variant of) the classical result that any
continuous function can be approximated up to arbitrary accuracy by piece-wise constant functions. For δ > 0, we define
the following class of piece-wise constant functions:

Fenc(δ) :=
{
f : X 7→

∑
L∈Gδ

AL1{X ∈ GL}
∣∣∣AL ∈ Rd×n

}
, (10)

where Gδ := {0, δ, . . . , 1− δ}d×n and, for a grid point L ∈ Gδ, SL :=
∏d
j=1

∏n
k=1[Lj,k, Lj,k + δ) ⊂ [0, 1]d×n denotes

the associated cube of width δ. Let f ∈ Fenc(δ) be such that dp(f, f) ≤ ε/3.

Step 2: Approximate Fenc(δ) with modified Transformer encoders. We then consider a slightly modified architecture
for Transformer networks, where the softmax operator σ[·] and ReLU(·) are replaced by the hardmax operator σH[·] and an
activation function φ ∈ Φ, respectively. Here, the set of allowed activations Φ consists of all piece-wise linear functions
with at most three pieces, where at least one piece is constant. Let T h,k,renc denote the function class corresponding to the
sequence-to-sequence functions defined by the modified Transformer encoders. The following result establishes that the
modified Transformer encoders in T 2,1,1

enc can closely approximate functions in Fenc(δ).

Proposition A.1. For each f ∈ Fenc(δ) and 1 ≤ p <∞, ∃ g ∈ T 2,1,1

enc such that dp(f, g) = O(δd/p).

Step 3: Approximate modified Transformer encoders with (original) Transformer encoders. Finally, we show that
g ∈ T 2,1,1

can be approximated by T 2,1,4. Let g ∈ T 2,1,4 be such that dp(g, g) ≤ ε/3.

Theorem A.1 now follows from these three steps, because we have

dp(f, g) ≤ dp(f, f) + dp(f, g) + dp(g, g) ≤ 2ε/3 +O(δd/p). (11)

Choosing δ small enough ensures that dp(f, g) ≤ ε.

A.3. Proof Sketch of Proposition A.1 (Yun et al., 2020)

Especially, the proof of Proposition A.1 is decomposed into three steps:
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Sub-step 1: Quantization by feed-forward layers Given an input X ∈ Rd×n, a series of feed-forward layers in the
modified Transformer encoder can quantize X to an element L on the extended grid G+

δ := {−δ−nd, 0, δ, . . . , 1− δ}d×n.

Sub-step 2: Contextual mapping by self-attention layers Next, a series of self-attention layers in the modified Trans-
former encoder can take the input L and implement a contextual mapping q : Gδ → Rn such that, for L and L′ that are not
permutation of each other, all the elements in q(L) and q(L′) are distinct.

Sub-step 3: Function value mapping by feed-forward layers Finally, a series of feed-forward layers in the modified
Transformer encoder can map elements of the contextual embedding q(L) to the desired output value of f ∈ Fenc at the
input X .

A.4. Non-autoregressive Transformers are Universal Approximators of Sequence-to-Sequence Functions

In this paper, we take a further step and show that the non-autoregressive Transformers are universal approximators of all
continuous Rd×n → Rd×m functions that map a compact domain in Rd×n to Rd×m, where n and m can be different.

We start with describing the formal form of Theorem 4.1 in the main text. In the non-autoregressive conditional sequence
generation problem, the target function class Fs2s becomes the set of all continuous sequence-to-sequence functions with
compact support that map a compact domain in Rd×n to Rd×m, where n and m can be different. Given two functions
f1, f2 : Rd×n → Rd×m, for 1 ≤ p <∞, similar to Eq. 8, we define a distance between them as

dp(f1, f2) :=

(∫
‖f1(X)− f2(X)‖ppdX

)1/p

. (12)

With the definition of non-autoregressive Transformers in Eq. 7, we have the following result:

Theorem A.2. Let 1 ≤ p < ∞ and ε > 0, then for any given f ∈ Fs2s, there exists a non-autoregressive Transformer
g ∈ T 2,1,4 such that we have dp(f, g) ≤ ε.

The proof of Theorem A.2 can be done in a similar way as Theorem A.1. Especially, the step 1 and step 3 in the proof of
Theorem A.1 can be seamlessly used here. We refer the readers to Yun et al. (2020) for the detailed proof of these two steps.

The step 2 in the proof Theorem A.2 is a bit different. Basically, we need to prove the following result:

Proposition A.2. For each f ∈ F s2s(δ) and 1 ≤ p <∞, ∃ g ∈ T 2,1,1
such that dp(f, g) = O(δd/p).

whereF s2s(δ) and T 2,1,1
are defined in a similar way asFenc(δ) and T 2,1,1

enc , respectively. Similar to the proof of Proposition
A.1, the proof of Proposition A.2 can be decomposed into three steps:

Sub-step 1∗: Quantization by feed-forward layers in the encoder Given an input X ∈ Rd×n, a series of feed-forward
layers in the encoder of the modified non-autoregressive Transformer can quantize X to an element L on the extended grid
G+
δ := {−δ−nd, 0, δ, . . . , 1− δ}d×n.

Sub-step 2∗: Contextual mapping by attention layers in the encoder and the decoder Next, a series of attention
layers in the encoder and decoder of the modified non-autoregressive Transformer can take the input L and implement a
contextual mapping q : Gδ → Rm such that, for L and L′ that are not permutation of each other, all the elements in q(L)
and q(L′) are distinct.

Sub-step 3∗: Function value mapping by feed-forward layers in the decoder Finally, a series of feed-forward layers
in the decoder of the modified non-autoregressive Transformer can map elements of the contextual embedding q(L) to the
desired output value of f ∈ F s2s at the input X .

Since Sub-step 1∗ and Sub-step 3∗ are exactly the same as Sub-step 1 and Sub-step 3 in the proof of Proposition A.1, we
only provide the proof of Sub-step 2∗. We refer the readers to Yun et al. (2020) for the detailed proof of these two sub-steps.
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A.5. Proof of Sub-step 2∗ in Proposition A.2

Without loss of generality, we can assume that the compact support of f is contained in [0, 1]d×n. Following Yun et al.
(2020), we choose

E1 =


0 1 2 · · · n− 1
0 1 2 · · · n− 1
...

...
...

...
0 1 2 · · · n− 1

 .
and

E2 =


0 1 2 · · · m− 1
0 1 2 · · · m− 1
...

...
...

...
0 1 2 · · · m− 1

 .
By Sub-step 1∗, we quantize any input X + E1 to its quantized version with the feed-forward layers in the Transformer
encoder. We call this quantized version L:

L ∈ [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [n− 1 : δ : n− δ]d.

We do not need to quantize E2 in our Sub-step 1∗ with the feed-forward layers in the Transformer decoder because E2 is
already quantized.

As done in Lemma 6 in Yun et al. (2020), we define u := (1, δ−1, . . . , δ−d+1) and lj := uTL:,j , for all j ∈ [n]. Next,
following the construction in Appendix C.2 in Yun et al. (2020), with n(1/δ)d self-attention layers in the Transformer
encoder, we can get l̃1 < l̃2 < · · · < l̃n such that the map from L to l̃n is one-to-one. In addition, l̃n is bounded by
nδ−(n+1)d.

Finally, in a similar way as Appendix B.5.1 in Yun et al. (2020), we add an extra encoder-decoder attention layer with
attention part nδ−(n+1)d−1Ψ(·; 0). This layer shifts all the layers in the Transformer decoder by nδ−(n+1)d−1 l̃n. We define
the output of this layer as gc(L). In this way, we ensure that different contexts L are mapped to distinct numbers in uT gc(L),
thus implementing a contextual mapping.

B. Proof of Proposition 5.1
We prove this proposition by contradiction. Assuming that the k-th likely label in position i is chosen by the CRF algorithm
and k > 3, we consider the following two cases:

Case 1: i = 0 is the first position or i = n − 1 is the last position. Without loss of generality, we can assume i = 0.
The first and second labels in the current decoding is denoted by l∗0 and l∗1 . We also denote the top 2 labels in position 0 as
l0,1 and l0,2. If l0,1 = l∗1 , we can set l∗0 to be l0,2, which construct a label sequence with higher likelihood in the CRF model.
Otherwise, we can set l∗0 to be l0,1. In both cases, k > 3 is not the optimal solution.

Case 2: i is the neither the first position nor the last position. We denote the labels on the position before and after i
as l∗i−1 and l∗i+1. We denote the j-th likely label on the position i as li,j . In this case, we will always find such a j ≤ 3 that
li,j 6= l∗i−1 and li,j 6= l∗i+1. Therefore, k > 3 is still not the optimal solution.

C. Illustration of Different Decoding Approaches
Fig. 1 shows how the proposed optimal de-duplicated decoding method solves the sub-optimal decoding problem of the post
de-duplication method.

D. Model Settings
The Non-Autoregressive Transformer model (NAT) is developed using the general encoder-decoder framework which is the
same as the Autoregressive Transformer (AT) model. Fig. 2 shows the architectures of NAT and AT. We use a simplified
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Figure 1. Illustration of different decoding methods. Darker boxes represent higher likelihood. The argmax decoding method produces
“An approach appraoch” as the result, which contains word duplication. The empirical post de-duplication method can solve the word
duplication problem, but after collapsing, the length of the target sequence is changed. This will cause a discrepancy between the predicted
target length and the actual sequence length and thus make the final output sub-optimal. The proposed Optimal De-Duplicated (ODD)
decoding can produce the optimal prediction in the CRF framework. Note that OOD decoding only needs to consider the top-3 labels for
each position in the forward-backward algorithm, which is very efficient.

version of the NAT model in Gu et al. (2017), that is, we do not copy the source embeddings as the input of the Transformer
decoder and do not use the positional attention proposed in Gu et al. (2017). The input to our Transformer decoder is simply
the padding symbols. More details about the description about the architectures can be found in Vaswani et al. (2017); Gu
et al. (2017).

We use four model settings in our experiments, including toy, small, base, and large. The detailed configurations of
these four model settings can be found in Tab. 1.

E. Analysis of Training Examples for the NAR Model
In Tab. 2, we present randomly picked examples from the training data for the NAR model on the WMT14 De-En task. We
can find that the proposed EM algorithm constantly changes the training examples for the NAR model.

F. Analysis of Translation Results
In Tab. 3, we present randomly picked translation outputs from the test set of WMT14 De-En. We have the following
observations:

• The proposed OOD decoding method preserves the original predicted length of tokens, which avoid the sub-optimal
problem of the post de-duplication method.

• The proposed EM algorithm can effectively jointly optimize both the AR model and the NAR model. During EM
iterations, the multi-modality in the AR models is reduced, while the translation quality of the NAR models is improved.

Table 1. Transformer model settings
encoder-layer decoder-layer hidden-size filter-size num-heads

toy 3 3 256 1024 4
small 5 5 256 1024 4
base 6 6 512 2048 8
large 6 6 1024 4096 16
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Figure 2. The architectures of Autoregressive Transformer and Non-autoregressive Transformer used in this paper.
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Source , um den Korb zu verkleinern ( bis 75 % ) und in die Ecke zu schieben .
Ground Truth to resize the fragment ( by 75 % ) and move it to the lower right corner .
Iteration 0 to reduce the basket ( up to 75 % ) and move it to the corner .
Iteration 1 to reduce the basket ( up to 75 % ) and push it into the corner .
Iteration 2 to reduce the basket ( up to 75 % ) and put it into the corner .

Source In den Interviews betonten viele Männer , dass ihre Erwerbsabweichung ihre Karriere behindere
.

Ground Truth In the interviews , many men emphasized that their employment deviation has hindered their
careers .

Iteration 0 In the interviews , many men emphasized that their divorce in employment hinders their careers .
Iteration 1 In the interviews , many men stressed that their deviation from employment hindered their

careers .
Iteration 2 In the interviews , many men stressed that their deviation in employment hinders their careers .

Source Um einen Pferd gesund und munter zu halten , müssen Sie seine physischen Bedürfnisse beachten
.

Ground Truth To keep your horse well , healthy and content you must satisfy its physical needs .
Iteration 0 In order to keep a horse healthy and healthy , you must take into account its physical needs .
Iteration 1 In order to keep a horse healthy and cheerful , you must take into account its physical needs .
Iteration 2 In order to keep a horse healthy and cheerful , you must take into account your physical needs .

Source Der Effekt von &apos; Eiskältefalle &apos; wird nun bei erlittenem Schaden abgebrochen .
Ground Truth Freezing Trap now breaks on damage .
Iteration 0 Ice Cat Trap effect will now be discarded if damage is dealt .
Iteration 1 The effect of Ice Cage Trap will now be aborted in case of damage suffered .
Iteration 2 The effect of ice cold trap is now aborted in the event of damage suffered .

Source Wir haben in der Europäischen Union Möglichkeiten , wirksam gegen die Arbeitslosigkeit
vorzugehen und zwar so , daß man da , wo es am nötigsten ist , auch etwas davon spürt .

Ground Truth We have the opportunity , in the EU , to do something that will have a positive effect on
unemployment , characterised by taking action where there is the greatest need .

Iteration 0 We in the European Union have the means to combat unemployment effectively , in such a way
that we feel something of it where it is most necessary .

Iteration 1 We in the European Union have opportunities to take effective action against unemployment , in
such a way that we can feel something about it where it is most necessary .

Iteration 2 We in the European Union have opportunities to take effective action against unemployment , in
such a way that we also feel something of it where it is most necessary .

Source In der Altstadt sind die Gassen so eng und verwinkelt , dass ein Auto nur mühsam vorankommt .
Ground Truth Kaneo Settlement - Start the walk to Kaneo from St. Sophia church .
Iteration 0 In the old town , the streets are so narrow and winding that a car can only progress with difficulty

.
Iteration 1 In the old town , the streets are so narrow and winding that a car is progressing hard .
Iteration 2 In the old town , the streets are so narrow and winding that a car is only progressing laboriously .

Source Sie müssen sich nur einmal die weltweit steigende Anzahl und Häufigkeit von Naturkatastrophen
ansehen , um die Folgen der Klimaveränderung zu erkennen .

Ground Truth They only need to look at the increasing number and frequency of natural disasters worldwide to
see its impact .

Iteration 0 You only have to look at the increasing number and frequency of natural disasters worldwide to
see the consequences of climate change .

Iteration 1 They only have to look at the increasing number and frequency of natural disasters around the
world to see the consequences of climate change .

Iteration 2 They only have to look at the increasing number and frequency of natural disasters around the
world in order to identify the consequences of climate change .

Table 2. Examples in the training data for the NAR model on the WMT14 De-En task.
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Source Sie ist die Tochter von Peter Tunks , einem ehemaligen Spieler der australischen
Rubgy @-@ Liga , der sich an das Außenministerium in Canberra mit der Bitte
um Hilfe für seine Tochter gewandt hat .

Ground Truth She is the daughter of former Australian league player Peter Tunks , who has
appealed to the Department of Foreign Affairs in Canberra to assist his daughter
.

AR model - Iter 0 She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League , who has addressed to the Ministry of Foreign Affairs in Canberra asking
for help for his daughter .

AR model - Iter 2 She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League who addressed the Ministry of Foreign Affairs in Canberra asking for
help for his daughter .

NAR model - Iter 0 She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League , who addressed the Ministry of Foreign Affairs Canberberra asking help
help his daughter .

NAR model - Iter 0 w/ post de-duplication She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League , who addressed the Ministry of Foreign Affairs Canberra asking help
his daughter .

NAR model - Iter 2 She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League ague who addressed the Ministry of Foreign Affairs in Canberra ra asking
for help to his daughter .

NAR model - Iter 2 w/ post de-duplication She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League ague who addressed the Ministry of Foreign Affairs in Canberra asking
for help to his daughter .

NAR model - Iter 2 w/ ODD decoding She is the daughter of Peter Tunks , a former player of the Australian Rubgy
League ague who addressed the Ministry of Foreign Affairs in Canberra for
asking for help to his daughter .

Source In australischen Berichten war zu lesen , dass sie in der Zwischenzeit im Ferienort
Krabi in Südthailand Urlaub macht .

Ground Truth Reports in Australia said that in the meantime , she was holidaying at the resort
area of Krabi in Southern Thailand .

AR model - Iter 0 In Australian reports it was read that in the meantime it is making a holiday in
the holiday resort of Krabi in South thailand .

AR model - Iter 2 Australian reports read that , in the meantime , it is a holiday in the resort of
Krabi in southern Thailand .

NAR model - Iter 0 Australian reports have that , in the meantime , they is a holiday holiday southern
southern in the Krabi of Krabi .

NAR model - Iter 0 w/ post de-duplication Australian reports have that , in the meantime , they is a holiday southern in the
Krabi of Krabi .

NAR model - Iter 2 Australian reports read that , in the meantime , it is a holiday holiday the resort
of Kraresort in southern Thailand .

NAR model - Iter 2 w/ post de-duplication Australian reports read that , in the meantime , it is a holiday the resort of
Kraresort in southern Thailand .

NAR model - Iter 2 w/ ODD decoding Australian reports read that , in the meantime , it is a holiday in the resort of
Kraresort in southern Thailand .

Table 3. Examples of translation outputs on the WMT14 De-En task. We do not apply rescoring to the NAR model’s outputs.


