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Figure 3. Comparison of the sample and communication complexities for a number of decentralized methods. Existing deterministic
methods enjoy lower sample complexity at smaller sample sizes, but such complexity scales linearly when the number of samples
increases. Stochastic methods generally suffer from high communication complexity. The proposed D-GET bridges the gap between
existing deterministic and stochastic methods, and achieves the optimal sample and communication complexities. Note that online
methods can also be applied for finite sum problems, thus the actual sample complexity of D-GET is the minimum rate of both cases.

A. Choices of Mixing Matrices
Note that many choices of mixing matrices satisfy the above condition. Here we give three commonly used mixing matrices
(Xiao & Boyd, 2004; Boyd et al., 2004), where di denotes the degree of node i, and dmax = maxi{di}:

• Metropolis-Hasting Weight

wij =

8
><

>:

1
1+max{di,dj} , if {i, j} 2 E ,

1�
P

{i,k}2E wik, if i = j,

0, otherwise.
(29)

• Maximum-Degree Weight

wij =

8
><

>:

1
dmax

, if {i, j} 2 E ,

1� di
dmax

, if i = j,

0, otherwise.
(30)

• Laplacian Weight

wij =

8
><

>:

� if {i, j} 2 E ,

1� �di, , if i = j,

0 otherwise.
(31)

If we use L to denote the graph Laplacian matrix, and �max, ¯
�min as the largest and second smallest eigenvalue, then

one of the common choices of � is 2
�max(L)+

¯
�min(L) .

B. Convergence Analysis
In the appendix, we provide a complete theoretical analysis on the convergence of the proposed D-GET algorithm.

Before we formally conduct the analysis, we note three simple facts about Algorithm 1.
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First, according to (9) and the definition (13a), the update rule of the average iterates can be expressed as:

x̄r = x̄r�1
� ↵ȳr�1

. (32)

Second, if the iteration r satisfies mod(r, q) = 0 (that is, when the outer iteration is executed), from (10) and (12) it is easy
to check that the following relations hold (given v0 = y0):

v̄r =
1

m

mX

i=1

rf
i(xr

i ) =
1

mn

mX

i=1

nX

k=1

rf
i
k(x

r
i ), (33)

ȳr = v̄r
, if mod(r, q) = 0. (34)

Third, if mod(r, q) 6= 0, we have the following relations:

v̄r =
1

m|S2|

mX

i=1

X

j2S2

⇥
rf

i
j(x

r
i )�rf

i
j(x

r�1
i )

⇤
+ v̄r�1

, (35)

ȳr = ȳr�1 + v̄r
� v̄r�1

, if mod(r, q) 6= 0. (36)

B.1. Proof of Lemma 1

Proof. Define E[·|Fr] as the expectation with respect to the random choice of sample j, conditioned on x0
, · · · ,xr,

v0
, · · · ,vr�1 and y0

, · · · ,yr�1.

First, we have the following identity (which holds true when mod(r, q) 6= 0)

E[v̄r
� v̄r�1

|Fr]
(35)
= E

2

4 1

m|S2|
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i )�rf
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i )

⇤ ����Fr

3
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⇥
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i(xr
i )�rf

i(xr�1
i )

⇤
. (37)

To see why the second equality holds, note that when xr
,yr�1

,vr�1 are known and fixed, the second expectation is taken
over the random selection of S2. The second equality follows because S2 is sampled from [n] uniformly with replacement,
and it is an unbiased estimate of the averaged gradient.

Second, it is straightforward to obtain the following equality,

�����ȳ
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(38)

where in the second equality, we add and subtract a term 1
m

Pm
i=1 rf

i(xr�1
i ).

The cross term in (38) can be eliminated if we take the conditional expectation conditioning on Fr. Since under Fr, we
have xr

,xr�1
,vr�1

,yr�1
, ȳr�1 are all known and fixed. Further applying (37) we have

E
"
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= 0. (39)
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Further taking the full expectation on (38) we have

E
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.

Since each j 2 S2 is sampled from [n] uniformly, we have the following conditional expectation:
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Then the second term of RHS of (40) can be further bounded through following (where E[·] is the full expectation)
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�����
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r
i )�rf

i
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r�1
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#

(iv)


L
2

m|S2|
Ekxr

� xr�1
k
2
, (42)

In step (i) of the above relation, we use the fact that for two random variables ui, uj which are independent conditioning on
F , the following holds

E[hu`, uji] = EFE[hu`, uji | F ] = EF hE[u` | F ],E[uj | F ]i. (43)

Plugging uj as below and u` similarly,

uj =
1

m

mX

i=1
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i
j(x

r
i )�

1

m

mX

i=1
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i
j(x

r�1
i )�

1
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i=1
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k=1
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i
k(x

r
i ) +

1
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mX

i=1

nX

k=1

rf
i
k(xi

r�1) (44)

and note that (41) holds true, we can show that the cross terms in the step before (i) can all be eliminated. In step (ii)
of (42), we use the property that Ekwj � E(wj)k2  Ekwjk

2 and Ekwjk
2 = Ekwkk

2 with wj := 1
m

Pm
i=1 rf

i
j(x

r
i ) �

1
m

Pm
i=1 rf

i
j(x

r�1
i ); in (iii) we use the Jensen’s inequality, and the last inequality (iv) follows Assumption 1.

Therefore, by combining (40) and (42), we have for all (nr � 1)q + 1  r  nrq � 1,
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+
L
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Next, note that we have the following bound on Ekxr
� xr�1

k
2 for all r � 1:

Ekxr
� xr�1

k
2 (9)
= EkWxr�1

� ↵yr�1
� xr�1

k
2

(i)
 2EkWxr�1

� xr�1
k
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k
2
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k
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k
2 + 4↵2Ek1ȳr�1

k
2
, 8 r � 1 (46)

where in (i) we apply the Cauchy-Schwarz inequality, (ii) follows that W1 = 1 from Assumption 2, and (iii) applies the
fact kW � Ik  kWk+ kIk  2 (due to Assumption 2 and the Cauchy-Schwarz inequality).

Telescoping the above inequality (45) over the nr-th inner loop, that is from (nr � 1)q + 1 to r, we obtain the following
series of inequalities
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where in (i) we change the index in the summation, and add three non-negative terms (one for each sum). This concludes
the first part of this lemma.

Next we show that (15) holds true. First, by using the same argument as in (37), we can obtain the following

E[vr
� vr�1

|Fr]
(10)
= E

2

4 1

|S2|

X

j2S2

⇥
rfj(x

r)�rfj(x
r�1)

⇤ ����Fr

3

5 = rf(xr)�rf(xr�1).

By using the above fact, and that conditioning on Fr, xr
,xr�1 and vr�1, we obtain the following:
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� vr�1
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Then it is straightforward to obtain following:
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,
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where (i) and (ii) follow the similar arguments as in (42).

Telescoping the above inequality over r from (nr � 1)q + 1 to r, we obtain that

Ekvr
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k
2
.

This completes the proof of the second part of this lemma.

B.2. Proof of Lemma 2

Proof. We first establish the relation of function values between the iterates. According to the gradient Lipschitz continuity
(Assumption 1), we have
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, ȳr
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kȳr

k
2

(iii)
 f(x̄r) +

↵

2
krf(x̄r)� ȳr
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where we simply plug in the iterates (32) in (i), add and subtract a term ȳr in (ii), and apply the Cauchy-Schwarz inequality
in (iii) and (iv).

Then the third term can be further quantified as below,
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where in (i) we use the Jensen’s inequality and in (ii) we use the Lipschitz Assumption 1.

Taking expectation on both sides and combining with (14) in Lemma 1, we have
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where in the last inequality we use the definition of ✏1 in (16).
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Next, telescoping over one inner loop, that is r from (nr � 1)q to r, we have
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where (i) follows the fact that, for any sequence {a
i
}, and an index r  nrq � 1, we have
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Then utilizing the fact that
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we have
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which completes the proof.

B.3. Proof of Lemma 3

Proof. First, using the Assumption 2 on W, we can obtain the contraction property of the iterates disagreement, i.e.,
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k. (50)

To see why the inequality holds true, note that 1T (xr
�1x̄r) = 0, that is, xr

�1x̄r is orthogonal 1, which is the eigenvector
corresponding to the largest eigenvalue of W. Combining with the fact that |

¯
�max(W)| = ⌘ < 1, we obtain the above

inequality.

Then applying the definition of x iterates (9) and the Cauchy-Schwartz inequality, we have
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,

where � is some constant parameter to be tuned later. Then, taking expectation on the both sides of the above inequality we
are able to obtain (18).
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Similarly, we have
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where in the last inequality we also use kI� 1
m11T

k < 1.

After taking expectation on the both sides of the above inequality and combining the following inequalities, the proof for
(19) is complete.

To further bound the term kvr+1
� vr

k
2, consider that we have (nr � 1)q  r  nrq � 1, that is r is taken within one

inner loop. We will divide the analysis into two cases.

Case 1) For all (nr � 1)q  r  nrq � 2, we have mod(r + 1, q) 6= 0 and the following is straightforward:
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where in (i) we use the Jensen’s inequality and in (ii) we use Assumption 1.

Case 2) If r = nrq � 1, we have mod(r + 1, q) = 0. Therefore,
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k
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where in (i) we use the Cauchy-Schwarz inequality; in (ii) we apply (15) from Lemma 1, Assumption 1, and Ekvr
�

rf(xr)k2  ✏2 for all mod(r, q) = 0.

Next, telescoping kvr+1
� vr

k
2 over r from (nr � 1)q to r. Since r  nrq � 1, we have at most one follows (52) and all

the rest follow (51). Therefore, we obtain
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Through a similar step as (49), the following is obvious
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By combining (46), i.e.,
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, 8 r � 0,

we complete the proof.
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B.4. Proof of Lemma 4

Proof. We first introduce an intermediate function P(xr) to facilitate the analysis,

P(xr) := Ekxr
� 1x̄r

k
2 + ↵Ekyr

� 1ȳr
k
2
.

Obviously, we have H(xr) = E[f(x̄r)] + 1
mP(xr).

By applying (18) and (19) in Lemma 3 we have
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Next, summing over the iteration from 0 to r we obtain
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If we further pick q = |S2|, then Lemma 2 becomes
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Similarly, equation (21) of Lemma 3 becomes
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Therefore, combine (53), (54) and (55), we have
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This completes the proof.
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B.5. Proof of Theorem 1

Proof. To begin with, we notice that by applying the update rule from Algorithm 1, then for all mod(r, q) = 0, the following
holds true
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�rf(xr)k2

(10)
= 0, (56)

Ekȳr
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which implies ✏1 = ✏2 = 0 for Lemma 2, Lemma 3, and Lemma 4.

Next, if we further pick � such that 1� (1 + �)⌘2 > 0 and choose 0 < ↵ < min{K1,K2,K3}, we can rewrite Lemma 4
as below
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where C1 > 0, C2 > 0, C3 > 0.

Therefore the upper bound of the optimality gap can be quantified as the following

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2


2

T

TX

t=0

Ekȳt
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where we use the Cauchy-Schwarz inequality.

Applying (14) from Lemma 1 with Ekȳ(nr�1)q
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1
m

Pm
i=1 rf

i(xi
(nr�1)q)k2 = 0, telescoping over r from 0 to T (follows

similar reasoning as (48) and (49)), and using the choice of |S2| = q =
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n, we have
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k
2 + 4↵2

L
2

rX

t=0

Ekȳt
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Combining the above two inequalities we can obtain
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Further combining with (58), we have
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and the last inequality follows from
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This completes the proof.



Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization

B.6. Proof of Corollary 1

Proof. If we pick T = bC0 ·
Ef(x0)�

¯
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✏ , then we can obtain following from Theorem 1

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2

 C0 ·
Ef(x0)�

¯
f

T
 ✏.

Therefore, the total samples needed will be the sum of outer loop complexity (dT
q e times full (n) gradient evaluations per

node) plus inner loop complexity (T times |S2| gradient evaluations per node), by letting q = |S2| =
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n, we conclude that
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This completes the proof.

B.7. Proof of Corollary 2

Proof. In previous proof of Theorem 1 and Corollary 1 we already show the convergence respect to both gradient size and
consensus error
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To show our results also holds true when the gradient metric is evaluated at the average of the output x̄ = 1
m

Pm
i=1 xi, we

only need following relations (by using Jensens inequality).
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where in (i) we use the Cauchy-Swahitz inequality, in (ii) we use the Jensen’s inequality to move the average outside the
Euclidean norm, and the last inequality uses the Assumption 1. The proof is complete by further combining (59) in Theorem
1 and similar reasoning in Corollary 1.

B.8. Proof of Lemma 5

Proof. First recall the definition of E[·|Fr] in Lemma 1, which is the expectation with respect to the random choice of
sample ⇠, conditioning on x0

, · · · ,xr, v0
, · · · ,vr�1 and y0

, · · · ,yr�1.
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Let us define a random variable u⇠ as below and u` similarly,

u⇠ =
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Note that u⇠ and u` are independent random variables conditioning on F . Further, we have the following from Assumption
3
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Therefore we have

E[hu⇠, u`i] = EFE[hu⇠, u`i | F ] = EF hE[u⇠ | F ],E[u` | F ]i = 0. (66)

Following the update rule from Algorithm 2, we have the following relations for all mod(r, q) = 0
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where in (i) we take out the constant |S1|; in (ii) we eliminate the cross terms via (66); in (iii) we use the fact that the
following term

Ek 1

m

mX

i=1

rf
i
⇠(x

r
i )�

1

m

mX

i=1

rf
i(xr

i )k
2 (67)

are equal across different samples ⇠; in (iv) we use the Jensen’s inequality, and the last inequality follows the Assumption 4.
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This completes the proof.
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B.9. Proof of Theorem 2

Proof. Note that it is easy to check that Lemma 1, Lemma 2, Lemma 3 and Lemma 4 still hold true. And the quantity ✏1

and ✏2 can be determined by Lemma 5, i.e., ✏1 = �2

|S1| and ✏2 = m�2

|S1| . Therefore, Lemma 4 can be rewritten as below if we
follow Algorithm 2,
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Therefore the upper bound of the optimality gap can be derived in a similar way as Theorem 1,
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Further combining (68) we have
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After picking |S1| =
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✏ , we complete the proof.

B.10. Proof of Corollary 2

Proof. If we pick the following constants for Algorithm 2:
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Therefore we have that the per-node sample evaluations are given as
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This completes the proof.
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C. Experiment Details
In this section, we provide more implementation details and results to our experiments.

C.1. Objective Functions

First, two types of classical smooth non-convex problems are used in our simulation for evaluating the performance of the
compared algorithms: a) decentralized logistic regression with a non-convex regularizer and b) non-convex robust linear
regression, the detailed objective functions are stated as the following:

a) Decentralized logistic regression with non-convex regularizer

The problem is stated as follows
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where vi
j 2 Rd

, 8i, j denote the features of node i and sample j, yi
j 2 {+1,�1}, 8i denote the labels of node i and sample

j, and the loss function is defined as the cross-entropy loss
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. (70)

The regularization parameter for non-convex term is set to ↵ = 0.01 in our simulation.

b) Non-convex robust linear regression

The problem is stated as follows

min
x2Rnd

f(x) :=
1

m

mX

i=1

1

n

nX

j=1

`(yi
j � xT

i v
i
j), (71)

where vi
j 2 Rd denotes the features of node i and sample j, yi 2 {+1,�1} denotes the labels of node i and sample j, and

the loss function is defined as the following

`(u) := log

✓
u
2

2
+ 1

◆
. (72)

C.2. Additional Simulations

Next, we provide additional experimental results on the above mentioned decentralized logistic regression and robust linear
regression problems. In particular, we demonstrate the performance of the algorithms in terms of the loss function as stated
in (69) and (71) and the optimality gap defined in (4). For all algorithms considered, we set their learning rates to be 0.01.
For each experiment, we initialize all the algorithms at the same point generated randomly from the normal distribution.
Also, we choose a fixed mini-batch size 64 and set the epoch length q to be n/64 such that all algorithms pass over the entire
dataset once in each epoch.

The simulation results in terms of both sample complexity and the communication complexity averaged over 10 realizations
on the a9a dataset (n = 32561, d = 123) are shown in Figure 4 and Figure 5, and the performance on the w8a dataset
(n = 49749, d = 300) are reported in Figure 6 and Figure 7. It can be observed that the proposed D-GET could achieve
much faster convergence in terms of sample complexity, while matches the communication complexity as the deterministic
algorithms, as claimed in Theorem 1 and 2.
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Figure 4. Logistic regression on the a9a dataset over the path graph
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(b) Loss Function vs Communication Complexity

Figure 5. Robust linear regression on the a9a datatset over the path graph
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(d) Optimality Gap vs Communication Complexity

Figure 6. Logistic regression on the w8a dataset over the path graph
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Figure 7. Robust linear regression on the w8a dataset over the path graph


