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Abstract

This paper investigates the intriguing question of
whether we can create learning algorithms that
automatically generate training data, learning en-
vironments, and curricula in order to help Al
agents rapidly learn. We show that such algo-
rithms are possible via Generative Teaching Net-
works (GTNs), a general approach that is, in the-
ory, applicable to supervised, unsupervised, and
reinforcement learning, although our experiments
only focus on the supervised case. GTNs are deep
neural networks that generate data and/or training
environments that a learner (e.g. a freshly initial-
ized neural network) trains on for a few SGD
steps before being tested on a target task. We then
differentiate through the entire learning process
via meta-gradients to update the GTN parameters
to improve performance on the target task. This
paper introduces GTNs, discusses their potential,
and showcases that they can substantially acceler-
ate learning. We also demonstrate a practical and
exciting application of GTNs: accelerating the
evaluation of candidate architectures for neural
architecture search (NAS). GTN-NAS improves
the NAS state of the art, finding higher perform-
ing architectures when controlling for the search
proposal mechanism. GTN-NAS also is compet-
itive with the overall state of the art approaches,
which achieve top performance while using or-
ders of magnitude less computation than typical
NAS methods. Speculating forward, GTNs may
represent a first step toward the ambitious goal of
algorithms that generate their own training data
and, in doing so, open a variety of interesting new
research questions and directions.
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1. Introduction and Related Work

Access to vast training data is now common in machine
learning. However, to effectively train neural networks
(NN5s) does not require using all available data. For exam-
ple, recent work in curriculum learning (Graves et al., 2017),
active learning (Konyushkova et al., 2017; Settles, 2010)
and core-set selection (Sener & Savarese, 2018; Tsang et al.,
2005) demonstrates that a surrogate dataset can be created
by intelligently sampling a subset of training data, and that
such surrogates enable competitive test performance with
less training effort. Being able to more rapidly determine
the performance of an architecture in this way could partic-
ularly benefit architecture search, where training thousands
or millions of candidate NN architectures on full datasets
can become prohibitively expensive. From this lens, related
work in learning-to-teach has shown promise. For example,
the learning to teach (L2T) (Fan et al., 2018) method ac-
celerates learning for a NN learner (hereafter, just learner)
through reinforcement learning, by learning how to subsam-
ple mini-batches of data.

A key insight in this paper is that the surrogate data need
not be drawn from the original data distribution (i.e. they
may not need to resemble the original data). For example,
humans can learn new skills from reading a book or can
prepare for a team game like soccer by practicing skills,
such as passing, dribbling, juggling, and shooting. This
paper investigates the question of whether we can train a
data-generating network that can produce synthetic data
that effectively and efficiently teaches a target task to a
learner. Related to the idea of generating data, Generative
Adversarial Networks (GANs) can produce impressive high-
resolution images (Brock et al., 2018; Goodfellow et al.,
2014), but they are incentivized to mimic real data (Good-
fellow et al., 2014), instead of being optimized to teach
learners more efficiently than real data.

Another approach for creating surrogate training data is
to treat the training data itself as a hyper-parameter of the
training process and learn it directly. Such learning can be
done through meta-gradients (also called hyper-gradients),
i.e. differentiating through the training process to optimize
a meta-objective. This approach was described in Maclau-
rin et al. (2015), where 10 synthetic training images were
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learned using meta-gradients such that when a network is
trained on these images, the network’s performance on the
MNIST validation dataset is maximized. In recent work
concurrent with our own, Wang et al. (2019b) scaled this
idea to learn 100 synthetic training examples. While the 100
synthetic examples were more effective for training than 100
original (real) MNIST training examples, we show that it is
difficult to scale this approach much further without the reg-
ularity across samples provided by a generative architecture
(Figure 5, green line).

Being able to very quickly train learners is particularly valu-
able for neural architecture search (NAS), which is exciting
for its potential to automatically discover high-performing
architectures, which otherwise must be undertaken through
time-consuming manual experimentation for new domains.
Many advances in NAS involve accelerating the evaluation
of candidate architectures by training a predictor of how
well a trained learner would perform, by extrapolating from
previously trained architectures (Baker et al., 2017; Liu
et al., 2018a; Luo et al., 2018). This approach is still expen-
sive because it requires many architectures to be trained and
evaluated to train the predictor. Other approaches acceler-
ate training by sharing training across architectures, either
through shared weights (e.g. as in ENAS; (Pham et al.,
2018)), or Graph HyperNetworks (Zhang et al., 2018).

We propose a scalable, novel, meta-learning approach for
creating synthetic data called Generative Teaching Networks
(GTNs). GTN training has two nested training loops: an in-
ner loop to train a learner network, and an outer-loop to train
a generator network that produces synthetic training data
for the learner network. Experiments presented in Section 3
demonstrate that the GTN approach produces synthetic data
that enables much faster learning, speeding up the training
of a NN by a factor of 9. Importantly, the synthetic data
in GTNs is not only agnostic to the weight initialization of
the learner network (as in Wang et al. (2019b)), but is also
agnostic to the learner’s architecture. As a result, GTNs are
a viable method for accelerating evaluation of candidate
architectures in NAS. Indeed, controlling for the search algo-
rithm (i.e. using GTN-produced synthetic data as a drop-in
replacement for real data when evaluating a candidate ar-
chitecture’s performance), GTN-NAS improves the NAS
state of the art by finding higher-performing architectures
than comparable methods like weight sharing (Pham et al.,
2018) and Graph HyperNetworks (Zhang et al., 2018); it
also is competitive with methods using more sophisticated
search algorithms and orders of magnitude more compu-
tation. It could also be combined with those methods to
provide further gains.

One promising aspect of GTNs is that they make very few
assumptions about the learner. In contrast, NAS techniques
based on shared training are viable only if the parameteriza-

tions of the learners are similar. For example, it is unclear
how weight-sharing or HyperNetworks could be applied to
architectural search spaces wherein layers could be either
convolutional or fully-connected, as there is no obvious way
for weights learned for one layer type to inform those of the
other. In contrast, GTNs are able to create training data that
can generalize between such diverse types of architectures.

GTNs also open up interesting new research questions and
applications to be explored by future work. Because they
can rapidly train new architectures, GTNs could be used to
create NNs on-demand that meet specific design constraints
(e.g. a given balance of performance, speed, and energy
usage) and/or have a specific subset of skills (e.g. perhaps
one needs to rapidly create a compact network capable of
three particular skills). Because GTNs can generate vir-
tually any learning environment, they also one day could
be a key to creating Al-generating algorithms, which seek
to bootstrap themselves from simple initial conditions to
powerful forms of Al by creating an open-ended stream of
challenges (learning opportunities) while learning to solve
them (Clune, 2019).

2. Methods

The main idea in GTNs is to train a data-generating network
such that a learner network trained on data it rapidly pro-
duces high accuracy in a target task. Unlike a GAN, here the
two networks cooperate (rather than compete) because their
interests are aligned towards having the learner perform
well on the target task when trained on data produced by the
GTN. The generator and the learner networks are trained
with meta-learning via nested optimization that consists of
inner and outer training loops (Figure 1). In the inner-loop,
the generator G(z,y) takes Gaussian noise (z) and a la-
bel (y) as input and outputs synthetic data (x). Optionally,
the generator could take only noise as input and produce
both data and labels as output (Appendix F). The learner
is then trained on this synthetic data for a fixed number of
inner-loop training steps with any optimizer, such as SGD or
Adam (Kingma & Ba, 2014): we use SGD with momentum
in this paper. SI Equation 1 defines the inner-loop SGD with
momentum update for the learner parameters ;. We sample
Z; (noise vectors input to the generator) from a unit-variance
Gaussian and y, labels for each generated sample) uniformly
from all available class labels. Note that both z; and y, are
batches of samples. We can also learn a curriculum directly
by additionally optimizing z; directly (instead of sampling
it randomly) and keeping y, fixed throughout all of training.

The inner-loop loss function ¢;,,e; can be cross-entropy for
classification problems or mean squared error for regres-
sion problems. Note that the inner-loop objective does not
depend on the outer-loop objective and could even be pa-
rameterized and learned through meta-gradients with the
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rest of the system (Houthooft et al., 2018). In the outer-
loop, the learner O (i.e. the learner parameters trained on
synthetic data after the 1" inner-loop steps) is evaluated
on the real training data, which is used to compute the
outer-loop loss (aka meta-training loss). The gradient of the
meta-training loss with respect to the generator is computed
by backpropagating through the entire inner-loop learning
process. While computing the gradients for the generator
we also compute the gradients of hyperparameters of the
inner-loop SGD update rule (its learning rate and momen-
tum), which are updated after each outer-loop at no addi-
tional cost. To reduce memory requirements, we leverage
gradient-checkpointing (Griewank & Walther, 2000) when
computing meta-gradients. The computation and memory
complexity of our approach can be found in Appendix D.

Outer-loop
Inner-loop (4) Meta-loss
(1) Noise (2) Data Real
Generator |:{> Learner D Data
ﬁ} (3) SGD Step
| ¢
(5) Gradient of Meta-loss w.r.t. Generator

Figure 1. Generative Teaching Network (GTN) Method. The num-
bers in the figure reflect the order in which a GTN is executed.
Noise is fed as an input to the Generator (1), which uses it to
generate new data (2). The learner is trained (e.g. using SGD or
Adam) to perform well on the generated data (3). The trained
learner is then evaluated on the real training data in the outer-loop
to compute the outer-loop meta-loss (4). The gradients of the gen-
erator parameters are computed w.r.t. to the meta-loss to update
the generator (5).

A key motivation for this work is to generate synthetic data
that is learner agnostic, i.e. that generalizes across differ-
ent potential learner architectures and initializations. To
achieve this objective, at the beginning of each new outer-
loop training, we choose a new learner architecture accord-
ing to a predefined set and randomly initialize it (details in
Appendix A).

Meta-learning with Weight Normalization. Optimization
through meta-gradients is often unstable (Maclaurin et al.,
2015). We observed that this instability greatly complicates
training because of its hyperparameter sensitivity, and train-
ing quickly diverges if they are not well-set. Combining
the gradients from Evolution Strategies (Salimans et al.,
2017) and backpropagation using inverse variance weight-
ing (Fleiss, 1993; Metz et al., 2019) improved stability in
our experiments, but optimization still consistently diverged
whenever we increased the number of inner-loop optimiza-
tion steps. To mitigate this issue, we introduce applying

weight normalization (Salimans & Kingma, 2016) to sta-
bilize meta-gradient training by normalizing the generator
and learner weights. Instead of updating the weights (W)
directly, we parameterize them as W = ¢ - V/||V|| and
instead update the scalar g and vector V. Weight normal-
ization eliminates the need for (and cost of) calculating
ES gradients and combining them with backprop gradients,
simplifying and speeding up the algorithm.

We hypothesize that weight normalization will help stabilize
meta-gradient training more broadly, although future work
is required to test this hypothesis in meta-learning contexts
besides GTNs. The idea is that applying weight normal-
ization to meta-learning techniques is analogous to batch
normalization for deep networks (Ioffe & Szegedy, 2015).
Batch normalization normalizes the forward propagation of
activations in a long sequence of parameterized operations
(a deep NN). In meta-gradient training both the activations
and weights result from a long sequence of parameterized
operations and thus both should be normalized. Results in
section 3.1 support this hypothesis.

Learning a Curriculum with Generative Teaching Net-
works. Previous work has shown that a learned curriculum
can be more effective than training from uniformly sampled
data (Graves et al., 2017). A curriculum is usually encoded
with indexes to samples from a given dataset, rendering
it non-differentiable and thereby complicating the curricu-
lum’s optimization. With GTNs however, a curriculum
can be encoded as a series of input vectors to the genera-
tor (i.e. instead of sampling the z; inputs to the generator
from a Gaussian distribution, a sequence of z; inputs can
be learned). A curriculum can thus be learned by differ-
entiating through the generator to optimize this sequence
(in addition to the generator’s parameters). Experiments
confirm that GTNs more effectively teach learners when
optimizing such a curriculum (Section 3.2).

Accelerating NAS with Generative Teaching Networks.
Since GTNs can accelerate learner training, we propose
harnessing GTNs to accelerate NAS. Rather than evaluating
each architecture in a target task with a standard training
procedure, we propose evaluating architectures with a meta-
optimized training process (that generates synthetic data
in addition to optimizing inner-loop hyperparameters). We
show that doing so significantly reduces the cost of running
NAS (Section 3.4).

The goal of these experiments is to find a high-performing
CNN architecture for the CIFAR10 image-classification
task (Krizhevsky et al., 2009) with limited compute costs.
We use the same architecture search-space, training pro-
cedure, hyperparameters, and code from Neural Architec-
ture Optimization (Luo et al., 2018), a state-of-the-art NAS
method. The search space consists of the topology of two
cells: a reduction cell and a convolutional cell. Multiple
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copies of such cells are stacked according to a predefined
blueprint to form a full CNN architecture (see Luo et al.
(2018) for more details). The blueprint has two hyperpa-
rameters N and F’ that control how many times the convo-
lutional cell is repeated (depth) and the width of each layer,
respectively. Each cell contains B = 5 nodes. For each
node within a cell, the search algorithm has to choose two
inputs as well as two operations to apply to those inputs.
The inputs to a node can be previous nodes or the outputs of
the last two layers. There are 11 operations to choose from
(Appendix C).

Following Luo et al. (2018), we report the performance of
our best cell instantiated with N = 6, F' = 36 after the
resulting architecture is trained for a significant amount
of time (600 epochs). Since evaluating each architecture
in those settings (named final evaluation from now on) is
time consuming, Luo et al. (2018) uses a surrogate evalua-
tion (named search evaluation) to estimate the performance
of a given cell wherein a smaller version of the architec-
ture (N = 3, F' = 32) is trained for less epochs (100) on
real data. We further reduce the evaluation time of each
cell by replacing the training data in the search evalua-
tion with GTN synthetic data, thus reducing the training
time per evaluation by 300x (which we call GTN evalua-
tion). While we were able to train GTNs directly on the
complex architectures from the NAS search space, train-
ing was prohibitively slow. Instead, for these experiments,
we optimize our GTN ahead of time using proxy learn-
ers described in Appendix A.2, which are smaller fully-
convolutional networks (this meta-training took 8h on one
p6000 GPU). Interestingly, although we never train our
GTN on any NAS architectures, because of generalization,
synthetic data from GTNs were still effective for training
them. The code used in our experiments is available at
https://github.com/uber-research/gtn.

3. Results

We first demonstrate that weight normalization significantly
improves the stability of meta-learning, an independent con-
tribution of this paper (Section 3.1). We then show that
training with synthetic data is more effective when learning
such data jointly with a curriculum that orders its presenta-
tion to the learner (Section 3.2). We next show that GTNs
can generate a synthetic training set that enables more rapid
learning in a few SGD steps than real training data in two
supervised learning domains (MNIST and CIFAR10) and in
a reinforcement learning domain (cart-pole, Appendix H).
We then apply GTN-synthetic training data for neural ar-
chitecture search to find high performing architectures for
CIFAR10 with limited compute, outperforming comparable
methods like weight sharing (Pham et al., 2018) and Graph
HyperNetworks (Zhang et al., 2018) (Section 3.4).

We uniformly split the usual MNIST ftraining set into train-
ing (50k) and validation sets (10k). The training set was
used for inner-loop training (for the baseline) and to com-
pute meta-gradients for all the treatments. We used the
validation set for hyperparameter tuning and report accuracy
on the usual MNIST test set (10k images). We followed the
same procedure for CIFAR10, resulting in training, valida-
tion, and test sets with 45k, 5k, and 10k examples, respec-
tively. Unless otherwise specified, we ran each experiment
5 times and plot the mean and its 95% confidence inter-
vals from (n=1,000) bootstrapping. Appendix A describes
additional experimental details.

3.1. Improving Stability with Weight Normalization

To demonstrate the effectiveness of weight normalization
for stabilizing and robustifying meta-optimization, we com-
pare the results of running hyperparameter optimization for
GTNs with and without weight normalization on MNIST.
Figure 2 shows the distribution of the final performance
obtained for 20 runs during hyperparameter tuning, which
reflects how sensitive the algorithms are to hyperparame-
ter settings. Overall, weight normalization substantially
improved robustness to hyperparameters and final learner
performance, supporting the initial hypothesis.

1.2

1.0

0.8

0.6

0.4

Validation Loss

0.2

0.0

Without WN With WN

Figure 2. GTN stability with Weight Normalization. Weight nor-
malization improves meta-gradient training of GTNs, and makes
the method much more robust to different hyperparameter settings.
Each boxplot reports the final loss of 20 runs obtained during
hyperparameter optimization with Bayesian Optimization (lower
is better).

3.2. Improving GTNs with a Curriculum

We experimentally evaluate four different variants of GTNs,
each with increasing control over the ordering of the z codes
input to the generator, and thus the order of the inputs pro-
vided to the learner. The first variant (called GTN - No
Curriculum), trains a generator to output synthetic training
data by sampling the noise vector z for each sample inde-
pendently from a Gaussian distribution. In the next three
GTN variants, the generator is provided with a fixed set
of input samples (instead of a noise vector). These input
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samples are learned along with the generator parameters
during GTN training. The second GTN variant (called GTN
- All Shuffled) learns a fixed set of 4,096 input samples that
are presented in a random order without replacement (thus
learning controls the data, but not the order in which they are
presented). The third variant (called GTN - Shuffled Batch)
learns 32 batches of 128 samples each (so learning con-
trols which samples coexist within a batch), but the order
in which the batches are presented is randomized (with-
out replacement). Finally, the fourth variant (called GTN
- Full Curriculum) learns a deterministic sequence of 32
batches of 128 samples, giving learning full control. Learn-
ing such a curriculum incurs no additional computational
expense, as learning the z; tensor is computationally negligi-
ble and avoids the cost of repeatedly sampling new Gaussian
z codes. We plot the test accuracy of a learner (with random
initial weights and architecture) as a function of outer-loop
iterations for all four variants in Figure 3. Although GTNs
- No curriculum can seemingly generate endless data (see
Appendix G), it performs worse than the other three vari-
ants with a fixed set of generator inputs. Overall, training
the GTN with exact ordering of input samples (GTN - Full
Curriculum) outperforms all other variants.

While curriculum learning usually refers to training on easy
tasks first and increasing their difficulty over time, our cur-
riculum goes beyond presenting tasks in a certain order.
Specifically, GTN - Full Curriculum learns both the order in
which to present samples and the specific group of samples
to present at the same time. The ability to learn a full cur-
riculum improves GTN performance. For that reason, we
adopt that approach for all GTN experiments.

1.000
0.975
>
O
© 0.950 W
>
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< —— No Curriculum
':]m')l 0.900 —— All Shuffled
= 0.675 —— Shuffled Batch
' —— Full Curriculum
0.850

0 500 1000 1500
Outer-loop Iterations

2000

Figure 3. Comparison between GTNs with different types of cur-
ricula. The GTN method with the most control over how samples
are presented performs the best.

3.3. GTNs for Supervised Learning

To explore whether GTNs can generate training data that
helps networks learn rapidly, we compare to 3 treatments
for MNIST classification. 1) Real Data - Training learners
with random mini-batches of real data, as is ubiquitous
in SGD. 2) Dataset Distillation - Training learners with
synthetic data, where training examples are directly encoded
as tensors optimized by the meta-objective, as in Wang et al.
(2019b). 3) GTN - Our method where the training data
presented to the learner is generated by a neural network.
Note that all three methods meta-optimize the inner-loop
hyperparameters (i.e. the learning rate and momentum of
SGD) as part of the meta-optimization.

‘We emphasize that producing state-of-the-art (SOTA) per-
formance (e.g. on MNIST or CIFAR) when training with
GTN-generated data is not important for GTNs. Because
the ultimate aim for GTNs is to accelerate NAS (Section
3.4), what matters is how well and inexpensively we can
identify architectures that achieve high asymptotic accuracy
when later trained on the full (real) training set. A means
to that end is being able to train architectures rapidly, i.e.
with very few SGD steps, because doing so allows NAS to
rapidly identify promising architectures. We are thus inter-
ested in “few-step accuracy” (i.e. accuracy after a few—e.g.
32 or 128-SGD steps). Besides, there are many reasons not
to expect SOTA performance with GTNs (Appendix B).

Figure 4 shows that the GTN treatment significantly out-
performs the other ones (p < 0.01) and trains a learner to
be much more accurate when in the few-step performance
regime. Specifically, for each treatment the figure shows
the test performance of a learner following 32 inner-loop
training steps with a batch size of 128. We would not expect
training on synthetic data to produce higher accuracy than
unlimited SGD steps on real data, but here the performance
gain comes because GTNs can compress the real training
data by producing synthetic data that enables learners to
learn more quickly than on real data. For example, the orig-
inal dataset might contain many similar images, where only
a few of them would be sufficient for training (and GTN
can produce just these few). GTN could also combine many
different things that need to be learned about images into
one image.

Figure 5 shows the few-step performance of a learner from
each treatment after 2000 total outer-loop iterations (~1
hour on a p6000 GPU). For reference, Dataset Distilla-
tion (Wang et al., 2019b) reported 79.5% accuracy for a
randomly initialized network (using 100 synthetic images
vs. our 4,096) and L2T (Fan et al., 2018) reported needing
300x more training iterations to achieve > 98% MNIST
accuracy. Surprisingly, although recognizable as digits and
effective for training, GTN-generated images (Figure 6)
were not visually realistic (see Discussion).
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Figure 4. MNIST test set few-step accuracy across outer-loop it-
erations for different sources of inner-loop training data. The
inner-loop consists of 32 SGD steps and the outer-loop optimizes
MNIST validation accuracy. Our method (GTN) outperforms the
two controls (dataset distillation and samples from real data).

3.4. Architecture Search with GTNs

‘We next test the benefits of GTN for NAS (GTN-NAS) in
CIFARI10, a domain where NAS has previously shown sig-
nificant improvements over the best architectures produced
by armies of human scientists. Figure 7 shows the few-
step training accuracy of a learner trained with either GTN-
synthetic data or real (CIFAR10) data over meta-training
iterations. After 8h of meta-training, training with GTN-
generated data was significantly faster than with real data,
as in MNIST.

To explore the potential for GTN-NAS to accelerate CI-
FARI10 architecture search, we investigated the Spearman
rank correlation (across architectures sampled from the NAS
search space) between accelerated GTN-trained network per-
formance (GTN evaluation) and the usual more expensive
performance metric used during NAS (search evaluation).
A correlation plot is shown in Figure 9; note that a strong
correlation implies we can train architectures using GTN
evaluation as an inexpensive surrogate. We find that GTN
evaluation enables predicting the performance of an archi-
tecture efficiently. The rank-correlation between 128 steps
of training with GTN-synthetic data vs. 100 epochs of real
data is 0.3606. The correlation improves to 0.5582 when
considering the top 50% of architectures recommended by
GTN evaluation scores, which is important because those
are the ones that search would select. This improved corre-
lation is slightly stronger than that from 3 epochs of training
with real data (0.5235), a ~ 9% cost-reduction per trained
model.
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Figure 5. For the final meta-training iteration, across inner-loop
training, accuracy on the MNIST test set when inner-loop training
on different data sources.

Architecture search methods are composed of several semi-
independent components, such as the choice of search space,
search algorithm, and proxy evaluation of candidate archi-
tectures. GTNs are proposed as an improvement to this
last component, i.e. as a new way to quickly evaluate a
new architecture. Thus we test our method under the stan-
dard search space for CIFAR10, using a simple form of
search (random search) for which there are previous bench-
mark results. In particular, we ran an architecture search
experiment where we evaluated 800 randomly generated
architectures trained with GTN-synthetic data. We present
the performance after final evaluation of the best architec-
ture found in Table 1. This experimental setting is similar
to that of Zhang et al. (2018). Highlighting the potential of
GTNs as an improved proxy evaluation for architectures, we
achieve state-of-the-art results when controlling for search
algorithm (the choice of which is orthogonal to our con-
tribution). While it is an apples-to-oranges comparison,
GTN-NAS is competitive even with methods that use more
advanced search techniques than random search to propose
architectures (Appendix E). GTN is compatible with such
techniques, and would likely improve their performance, an
interesting area of future work. Furthermore, because of the
NAS search space, the modules GTN found can be used to
create even larger networks. A further test of whether GTNs
predictions generalize is if such larger networks would con-
tinue performing better than architectures generated by the
real-data control, similarly scaled. We tried F=128 and
show it indeed does perform better (Table 1), suggesting
additional gains can be had by searching post-hoc for the
correct F and N settings.
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Table 1. Performance of different architecture search methods. Our results report mean & SD of 5 evaluations of the same architecture
with different initializations. It is common to report scores with and without Cutout (DeVries & Taylor, 2017), a data augmentation
technique used during training. We found better architectures compared to other methods that reduce architecture evaluation speed and
were tested with random search (Random Search+WS and Random Search+GHN). Increasing the width of the architecture found (F=128)
further improves performance. Because each NAS method finds a different architecture, the number of parameters differs. Each method

ran once.

Model Error(%) #params GPU Days
Random Search + GHN (Zhang et al., 2018) 4.34+0.1 5.1M 0.42
Random Search + Weight Sharing (Luo et al., 2018) 3.92 3.9M 0.25
Random Search + Real Data (baseline) 3.88 £ 0.08 12.4M 10
Random Search + GTN (ours) 3.84 + 0.06 8.2M 0.67
Random Search + Real Data + Cutout (baseline) 3.02 £0.03 12.4M 10
Random Search + GTN + Cutout (ours) 2.92 + 0.06 8.2M 0.67
Random Search + Real Data + Cutout (F=128) (baseline) 2.51 +0.13 151.7M 10
Random Search + GTN + Cutout (F=128) (ours) 242 +0.03 979M 0.67
0.7
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Figure 6. 100 random samples from the trained GTN. Samples are
often recognizable as digits, but are not realistic (see Discussion). 20 40 60 80 100 120

Each column contains samples from a different digit class, and each
row is taken from different inner-loop iterations (evenly spaced
from the 32 total iterations, with early iterations at the top). We
noticed that images tend to look realistic towards the last 10% of
the curricula regardless of the number of inner-loop steps.

4. Discussion, future work, and conclusion

The results presented here suggest potential future applica-
tions and extensions of GTNs. Given the ability of GTNs
to rapidly train new models, they are particularly useful
when training many independent models is required (as we
showed for NAS). Another such application would be to
teach networks on demand to realize particular trade-offs
between e.g. accuracy, inference time, and memory require-
ments. While to address a range of such trade-offs would
ordinarily require training many models ahead of time and
selecting amongst them (Elsken et al., 2019), GTNs could
instead rapidly train a new network only when a particular
trade-off is needed. Similarly, agents with unique combina-
tions of skills could be created on demand when needed.

Interesting questions are raised by the lack of similarity
between the synthetic GTN data and real MNIST and CI-
FARI10 data. That unrealistic and/or unrecognizable images

Inner-loop Iterations

Figure 7. CIFAR10 training set performance of the final learner
(after 1,700 meta-optimization steps) across inner-loop learning
iterations.

can meaningfully affect NNs is reminiscent of the finding
that deep neural networks are easily fooled by unrecogniz-
able images (Nguyen et al., 2015). It is possible that if
neural network architectures were functionally more similar
to human brains, GTNs’ synthetic data might more resemble
real data. However, an alternate (speculative) hypothesis
is that the human brain might also be able to rapidly learn
an arbitrary skill by being shown unnatural, unrecognizable
data (recalling the novel Snow Crash).

The improved stability of training GTNs from weight nor-
malization naturally suggests the hypothesis that weight
normalization might similarly stabilize, and thus meaning-
fully improve, any techniques based on meta-gradients (e.g.
MAML (Finn et al., 2017), learned optimizers (Metz et al.,
2019), and learned update rules (Metz et al., 2018)). In fu-
ture work, we will more deeply investigate how consistently,
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Figure 8. Samples generated by GTN to teach CIFARI10 are un-
recognizable, despite being effective for training. Each column
contains a different class, and each row is taken from the same
inner-loop iteration (evenly spaced from all 128 iterations, early
iterations at the top).

and to what degree, this hypothesis holds.

Both weight sharing and GHNs can be combined with GTNs
by using the shared weights or HyperNetwork for initial-
ization of proposed learners and then fine-tuning on GTN-
produced data. GTNs could also be combined with more
intelligent ways to propose which architecture to sample
next such as NAO (Luo et al., 2018). Many other extensions
would also be interesting to consider. GTNs could be trained
for unsupervised learning, for example by training a useful
embedding function. Additionally, they could be used to sta-
bilize GAN training and prevent mode collapse (Appendix I
shows encouraging initial results). One particularly promis-
ing extension is to introduce a closed-loop curriculum (i.e.
one that responds dynamically to the performance of the
learner throughout training), which we believe could sig-
nificantly improve performance. For example, a recurrent
GTN that is conditioned on previous learner outputs could
adapt its samples to be appropriately easier or more difficult
depending on an agent’s learning progress, similar in spirit
to the approach of a human tutor. Such closed-loop teaching
can improve learning (Fan et al., 2018).

An additional interesting direction is having GTNs generate
training environments for RL agents. Appendix H shows
this works for the simple RL task of CartPole. That could
be either for a predefined target task, or could be combined
with more open-ended algorithms that attempt to continu-
ously generate new, different, interesting tasks that foster
learning (Clune, 2019; Wang et al., 2019a). Because GTNs
can encode any possible environment, they (or something
similar) may be necessary to have truly unconstrained, open-
ended algorithms (Stanley et al., 2017). If techniques could
be invented to coax GTNs to produce recognizable, human-
meaningful training environments, the technique could also
produce interesting virtual worlds for us to learn in, play in,
or explore.
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Figure 9. Correlation between performance prediction using GTN-
data vs. Real Data. When considering the top half of architectures
(as ranked by GTN evaluation), correlation between GTN eval-
uation and search evaluation is strong (0.5582 rank-correlation),
suggesting that GTN-NAS has potential to uncover high perform-
ing architectures at a significantly lower cost. Architectures shown
are uniformly sampled from the NAS search space. The top 10%
of architectures according to the GTN evaluation (blue squares)—
those likely to be selected by GTN-NAS-have high true asymptotic
accuracy.

This paper introduces a new method called Generative
Teaching Networks, wherein data generators are trained to
produce effective training data through meta-learning. We
have shown that such an approach can produce supervised
datasets that yield better few-step accuracy than an equiv-
alent amount of real training data, and generalize across
architectures and random initializations. We leverage such
efficient training data to create a fast NAS method that gener-
ates state-of-the-art architectures (controlling for the search
algorithm). While GTNs may be of particular interest to the
field of architecture search (where the computational cost
to evaluate candidate architectures often limits the scope of
its application), we believe that GTNs open up an intriguing
and challenging line of research into a variety of algorithms
that learn to generate their own training data.
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