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Abstract
We develop a generic data-driven method for es-
timator selection in off-policy policy evaluation
settings. We establish a strong performance guar-
antee for the method, showing that it is compet-
itive with the oracle estimator, up to a constant
factor. Via in-depth case studies in contextual ban-
dits and reinforcement learning, we demonstrate
the generality and applicability of the method. We
also perform comprehensive experiments, demon-
strating the empirical efficacy of our approach
and comparing with related approaches. In both
case studies, our method compares favorably with
existing methods.

1. Introduction
In practical scenarios where safety, reliability, or perfor-
mance is a concern, it is typically infeasible to directly
deploy a reinforcement learning (RL) algorithm, as it may
compromise these desiderata. This motivates research on
off-policy evaluation, where we use data collected by a (pre-
sumably safe) logging policy to estimate the performance of
a given target policy, without ever deploying it. These meth-
ods help determine if a policy is suitable for deployment at
minimal cost and, in addition, serve as the statistical founda-
tions of sample-efficient policy optimization algorithms. In
light of the fundamental role off-policy evaluation plays in
RL, it has been the subject of intense research over the last
several decades (Horvitz & Thompson, 1952; Dudı́k et al.,
2014; Swaminathan et al., 2017; Kallus & Zhou, 2018; Sut-
ton, 1988; Bradtke & Barto, 1996; Precup et al., 2000; Jiang
& Li, 2016; Thomas & Brunskill, 2016; Farajtabar et al.,
2018; Liu et al., 2018; Voloshin et al., 2019).

As many off-policy estimators have been developed, practi-
tioners face a new challenge of choosing the best estimator
for their application. This selection problem is critical to
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high quality estimation as has been demonstrated in recent
empirical studies (Voloshin et al., 2019). However, data-
driven estimator selection in these settings is fundamentally
different from hyperparameter optimization or model selec-
tion for supervised learning. In particular, cross validation
or bound minimization approaches fail because there is no
unbiased and low variance approach to compare estimators.
As such, the current best practice for estimator selection is
to leverage domain expertise or follow guidelines from the
literature (Voloshin et al., 2019).

Domain knowledge can suggest a particular form of estima-
tor, but a second selection problem arises, as many estima-
tors themselves have hyperparameters that must be tuned. In
most cases, these hyperparameters modulate a bias-variance
tradeoff, where at one extreme the estimator is unbiased but
has high variance, and at the other extreme the estimator has
low variance but potentially high bias. Hyperparameter se-
lection is critical to performance, but high-level prescriptive
guidelines are less informative for these low-level selection
problems. We seek a data-driven approach.

In this paper, we study the estimator-selection question for
off-policy evaluation. We provide a general technique, that
we call SLOPE, that applies to a broad family of estimators,
across several distinct problem settings. On the theoretical
side, we prove that the selection procedure is competitive
with oracle tuning, establishing an oracle inequality. To
demonstrate the generality of our approach, we study two
applications in detail: (1) bandwidth selection in contextual
bandits with continuous actions, and (2) horizon selection
for “partial importance weighting estimators” in RL. In
both examples, we prove that our theoretical results ap-
ply, and we provide a comprehensive empirical evaluation.
In the contextual bandits application, our selection proce-
dure is competitive with the skyline oracle tuning (which
is unimplementable in practice) and outperforms any fixed
parameter in aggregate across experimental conditions. In
the RL application, our approach substantially outperforms
standard baselines including MAGIC (Thomas & Brunskill,
2016), the only comparable estimator selection method.

A representative experimental result for the RL setting is dis-
played in Figure 1. Here we consider two different domains
from Voloshin et al. (2019) and compare our new estimator,
SLOPE, with well-known baselines. Our method selects
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Figure 1. Representative experiments with SLOPE. SLOPE is con-
sistently one of the best approaches, regardless of whether model-
based or importance-sampling based estimators are better.

a false horizon ⌘, uses an unbiased importance sampling
approach up to horizon ⌘, and then prematurely terminates
the episode with a value estimate from a parametric esti-
mator (in this case trained via Fitted Q iteration). Model
selection focuses on choosing the false horizon ⌘, which
yields parametric and trajectory-wise importance sampling
estimators as special cases (“Model” and “sampling” in the
figure). Our experiments show that regardless of which of
these approaches dominates, SLOPE is competitive with the
best approach. Moreover, it outperforms MAGIC, the only
other tuning procedure for this setting. Section 5 contains
more details and experiments.

At a technical level, the fundamental challenge with estima-
tor selection is that there is no unbiased and low-variance
approach for comparing parameter choices. This precludes
the use of cross validation and related approaches, as esti-
mating the error of a method is itself an off-policy evaluation
problem! Instead, adapting ideas from nonparametric statis-
tics (Lepski & Spokoiny, 1997; Mathé, 2006), our selection
procedure circumvents this error estimation problem by only
using variance estimates, which are easy to obtain. At a high
level, we use confidence bands for each estimator around
their (biased) expectation to find one that approximately bal-
ances bias and variance. This balancing corresponds to the
oracle choice, and so we obtain our performance guarantee.

Related work. As mentioned, off-policy evaluation is a
vibrant research area with contributions from machine learn-
ing, econometrics, and statistics communities. Two set-
tings of particular interest are contextual bandits and gen-
eral RL. For the former, recent and classical references
include (Horvitz & Thompson, 1952; Dudı́k et al., 2014;
Hirano et al., 2003; Farajtabar et al., 2018; Su et al., 2020).
For the latter, please refer to Voloshin et al. (2019).

Parameter tuning is quite important for many off-policy eval-
uation methods. Munos et al. (2016) observe that methods
like RETRACE are fairly sensitive to the hyperparameter.
Similarly conclusions can be drawn from the experiments

of Su et al. (2019) in the contextual bandits context. Yet,
when tuning is required, most works resort to heuristics. For
example, in Kallus & Zhou (2018), a bandwidth hyperpa-
rameter is selected by performing an auxiliary nonparamet-
ric estimation task, while in Liu et al. (2018), it is selected
as the median of the distances between points. In both cases,
no theoretical guarantees are provided for such methods.

Indeed, despite the prevalence of hyperparameters in these
methods, we are only aware of two methods for estima-
tor selection: the MAGIC estimator (Thomas & Brunskill,
2016), and the bound minimization approach studied by Su
et al. (2020) (see also Wang et al. (2017)). Both ap-
proaches use MSE surrogates for estimator selection, where
MAGIC under-estimates the MSE and the latter uses an
over-estimate. The guarantees for both methods (asymp-
totic consistency, competitive with unbiased approaches)
are much weaker than our oracle inequality, and SLOPE
substantially outperforms MAGIC in experiments.

Our approach is based on Lepski’s principle for bandwidth
selection in nonparametric statistics (Lepski, 1992; Lepskii,
1991; 1993; Lepski & Spokoiny, 1997). In this seminal
work, Lepski studied nonparametric estimation problems
and developed a data-dependent bandwidth selection proce-
dure that achieves optimal adaptive guarantees, in settings
where procedures like cross validation do not apply (e.g., es-
timating a regression function at a single given point). Since
its introduction, Lepski’s methodology has been applied to
other statistics problems (Birgé, 2001; Mathé, 2006; Gold-
enshluger & Lepski, 2011; Kpotufe & Garg, 2013; Page
& Grünewälder, 2018), but its use in machine learning has
been limited. To our knowledge, Lepski’s principle has not
been used for off-policy evaluation, which is our focus.

2. Setup
We formulate the estimator selection problem generically,
where there is an abstract space Z and a distribution D
over Z . We would like to estimate some parameter ✓? :=

✓(D) 2 R, where ✓ is some known real-valued functional,
given access to z

1

, . . . , zn
iid⇠ D. Let ˆD denote the empirical

measure, that is the uniform measure over the points z
1:n.

To estimate ✓? we use a finite set of M estimators {✓i}Mi=1

,
where each ✓i : �(Z) ! R. Given the dataset, we form
the estimates ˆ✓i := ✓i( ˆD). Ideally, we would choose the
index that minimizes the absolute error with ✓?, that is
argmini2[M ]

���ˆ✓i � ✓?
���. Of course this oracle index depends

on the unknown parameter ✓?, so it cannot be computed
from the data. Instead we seek a data-driven approach for
selecting an index ˆi that approximately minimizes the error.

To fix ideas, in the RL context, we may think of ✓ as the
value of a target policy ⇡

T

and z
1:n as n trajectories col-
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lected by some logging policy ⇡
L

. The estimators {✓i}Mi=1

may be partial importance weighting estimators (Thomas
& Brunskill, 2016), that account for policy mismatch on
trajectory prefixes of different length. These estimators
modulate a bias variance tradeoff: importance weighting
short prefixes will have high bias but low variance, while
importance weighting the entire trajectory will be unbiased
but have high variance. We will develop this example in
detail in Section 5.

For performance guarantees, we decompose the absolute
error into two terms: the bias and the deviation. For this de-
composition, define ¯✓i := E[✓i( ˆD)] where the expectation
is over the random samples z

1:n. Then we have
���ˆ✓i � ✓?

��� 
��¯✓i � ✓?

��
+

���ˆ✓i � ¯✓i
��� =: BIAS(i) + DEV(i).

As DEV(i) involves statistical fluctuations only, it is
amenable to concentration arguments, so we will assume
access to a high probability upper bound. Namely, our
procedure uses a confidence function CNF that satisfies
DEV(i)  CNF(i) for all i 2 [M ] with high probability.
On the other hand, estimating the bias is much more chal-
lenging, so we do not assume that the estimator has access
to BIAS(i) or any sharp upper bound. Our goal is to select
an index ˆi achieving an oracle inequality of the form

���ˆ✓
ˆi � ✓?

���  CONST ⇥min

i
{B(i) + CNF(i)} , (1)

that holds with high probability where CONST is a univer-
sal constant and B(i) is a sharp upper bound on BIAS(i).1
This guarantee certifies that the selected estimator is com-
petitive with the error bound for the best estimator under
consideration.

We remark that the above guarantee is qualitatively similar,
but weaker than the ideal guarantee of competing with the
actual error of the best estimator (as opposed to the error
bound). In theory, this difference is negligible as the two
guarantees typically yield the same statistical conclusions
in terms of convergence rates. Empirically we will see that
(1) does yield strong practical performance.

3. General Development
To obtain an oracle inequality of the form in (1), we require
some benign assumptions. When we turn to the case studies,
we will verify that these assumptions hold for our estimators.

Validity and Monotonicity. The first basic property on
the bias and confidence functions is that they are valid in
the sense that they actually upper bound the corresponding
terms in the error decomposition.

1Some assumptions prevent us from setting B(i) = BIAS(i).

Assumption 1 (Validity). We assume

1. (Bias Validity)

��¯✓i � ✓?
��  B(i) for all i.

2. (Confidence Validity) With probability at least 1 � �,

|ˆ✓i � ¯✓i|  CNF(i) for all i.

Typically CNF can be constructed using straightforward con-
centration arguments such as Bernstein’s inequality. Impor-
tantly, CNF does not have to account for the bias, so the term
DEV that we must control is centered. We also note that
CNF need not be deterministic, for example it can be derived
from empirical Bernstein inequalities. We emphasize again
that the estimator does not have access to B(i).

We also require a monotonicity property on these functions.
Assumption 2 (Monotonicity). We assume that there exists

a constant  > 0 such that for all i 2 [M � 1]

1. B(i)  B(i+ 1).

2.  · CNF(i)  CNF(i+ 1)  CNF(i).

In words, the estimators should be ordered so that the bias is
monotonically increasing and the confidence is decreasing
but not too quickly, as parameterized by the constant .
This structure is quite natural when estimators navigate a
bias-variance tradeoff: when an estimator has low bias it
typically also has high variance and vice versa. It is also
straightforward to enforce a decay rate for CNF by selecting
the parameter set appropriately. We will see how to do this
in our case studies.

The SLOPE procedure. SLOPE is an acronym for “Selec-
tion by Lepski’s principle for Off-Policy Evaluation.” As
the name suggests, the approach is based on Lepski’s prin-
ciple (Lepski & Spokoiny, 1997) and is defined as follows.
We first define intervals

I(i) := [

ˆ✓i � 2CNF(i), ˆ✓i + 2CNF(i)],

and we then use the intersection of these intervals to select
an index ˆi. Specifically, the index we select is

ˆi := max

�
i 2 [M ] : \i

j=1

I(j) 6= ; .
In words, we select the largest index such that the intersec-
tion of all previous intervals is non-empty. See Figure 2 for
an illustration.

The intuition is to adopt an optimistic view of the bias func-
tion B(i). First observe that if B(i) = 0 then, by Assump-
tion 1, we must have ✓? 2 I(i). Reasoning optimistically, it
is possible that we have B(i) = 0 for all i  ˆi, since by the
definition of ˆi there exists a choice of ✓? that is consistent
with all intervals. As CNF(ˆi) is the smallest among these,
index ˆi intuitively has lower error than all previous indices.
On the other hand, it is not possible to have B(ˆi+ 1) = 0,
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ˆi = 3

2CNF(1)
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I(3) \3

i=1

I(i)

Figure 2. Illustration of SLOPE with M = 5. As \3
i=1I(i) is

non-empty but I(4) does not intersect with I(3), we select î = 3.

since there is no consistent choice for ✓? and the bias is
monotonically increasing. In fact, if ✓? 2 I

ˆi, then we must
actually have B(ˆi + 1) � CNF(ˆi + 1), since the intervals
have width 4CNF(·). Finally, since CNF(·) does not shrink
too quickly, all subsequent indices cannot be much better
than ˆi, the index we select. Of course, we may not have
✓? 2 I

ˆi, so this argument does not constitute a proof of
correctness, which is deferred to Appendix A.

Theoretical analysis. We now state the main guarantee.
Theorem 3. Under Assumption 1 and Assumption 2, we

have that with probability at least 1� �:

���ˆ✓
ˆi � ✓?

���  6(1 + �1

)min

i
{B(i) + CNF(i)} .

The theorem verifies that the index ˆi satisfies an oracle
inequality as in (1), with CONST = 6(1 + �1

). This is
the best guarantee one could hope for, up to the constant
factor and the caveat that we are competing with the error
bound instead of the error, which we have already discussed.
For off-policy evaluation, we are not aware of any other
approaches that achieve any form of oracle inequality. The
closest comparison is the bound minimization approach
of Su et al. (2020), which is provably competitive only with
unbiased indices (with B(i) = 0). However in finite sample,
these indices could have high variance and consequently
worse performance than some biased estimator. In this
sense, the SLOPE guarantee is much stronger.

While our main result gives a high probability absolute error
bound, it is common in the off-policy evaluation literature
to instead provide bounds on the mean squared error. Via
a simple translation from the high-probability guarantee,
we can obtain a MSE bound here as well. For this result,
we use the notation CNF(i; �) to highlight the fact that the
confidence bounds hold with probability 1� �.
Corollary 4 (MSE bound). In addition to Assumption 1

and Assumption 2, assume that ✓?, ˆ✓i 2 [0, R] a.s., 8i, and

that CNF is deterministic.

2
Then for any � > 0,

E(ˆ✓
ˆi � ✓?)2  C/2

min

i

�
B(i)2 + CNF(i; �)2

 
+R2�,

2The restriction to deterministic confidence functions can easily
be removed with another concentration argument.

where C > 0 is a universal constant.

3

We state this bound for completeness but remark that it
is typically loose in constant factors because it is proven
through a high probability guarantee. In particular, we typi-
cally require CNF(i) >

p
VAR(i) to satisfy Assumption 1,

which is already loose in comparison with a more direct
MSE bound. Unfortunately, Lepski’s principle cannot pro-
vide direct MSE bounds without estimating the MSE itself,
which is precisely the problem we would like to avoid. On
the other hand, the high probability guarantee provided
by Theorem 3 is typically more practically meaningful.

4. Application 1: continuous contextual
bandits

For our first application, we consider a contextual bandit
setting with continuous action space, following Kallus &
Zhou (2018). Let X be a context space and A = [0, 1]
be a univariate real-valued action space. There is a dis-
tribution P over context-reward pairs, which is supported
on (X ,A ! [0, 1]). We have a stochastic logging pol-
icy ⇡

L

: X ! �(A) which induces the distribution D
by generating tuples {(xi, ai, ri(ai),⇡L

(ai))}ni=1

, where
(xi, ri) ⇠ P , ai ⇠ ⇡

L

(xi), only ri(ai) is observed, and
⇡
L

(ai) denotes the density value. This is a bandit setting as
the distribution P specifies rewards for all actions, but only
the reward for the chosen action is available for estimation.

For off-policy evaluation, we would like to estimate the
value of some target policy ⇡

T

, which is given by V (⇡
T

) :=

E
(x,r)⇠P,a⇠⇡T(x) [r(a)]. Of course, we do not have sample

access to P and must resort to the logged tuples generated
by ⇡

L

. A standard off-policy estimator in this setting is

ˆVh(⇡T

) :=

1

nh

nX

i=1

K(|⇡
T

(xi)� ai|/h)ri(ai)
⇡
L

(ai)
,

where K : R
+

! R is a kernel function (e.g., the boxcar
kernel K(u) = 1

2

1{u  1}). This estimator has appeared
in recent work (Kallus & Zhou, 2018; Krishnamurthy et al.,
2019). The key parameter is the bandwidth h, which mod-
ulates a bias-variance tradeoff, where smaller bandwidths
have lower bias but higher variance.

4.1. Theory

For a simplified exposition, we instantiate our general frame-
work when (1) ⇡

L

is the uniform logging policy, (2) K is the
boxcar kernel, and (3) we assume that ⇡

T

(x) 2 [�
0

, 1� �
0

]

for all x. These simplifying assumptions help clarify the
results, but they are not fundamentally limiting.

Fix � 2 (0, 1) and let H := {�
0

�M�i
: 1  i  M}

3We have not attempted to optimize the constant, which can
can be extracted from our proof in Appendix A.
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denote a geometrically spaced grid of M bandwidth values.
Let ˆ✓i := ˆVhi(⇡T

). For the confidence term, in Appendix A,
we show that we can set

CNF(i) :=

s
2 log(2M/�)

nhi
+

2 log(2M/�)

3nhi
(2)

and this satisfies Assumption 1. With this form, it is not
hard to see that the second part of Assumption 2 is also
satisfied, and so we obtain the following result.
Theorem 5. Consider the setting above with uniform ⇡

L

,

boxcar kernel, and H as defined above. Let B be any

valid and monotone bias function, and define CNF as in (2).
Then Assumption 1 and Assumption 2 are satisfied with

 = �, so the guarantee in Theorem 3 applies.

In particular, if �, �
0

are constants and rewards are L-

Lipschitz, for !(
p
log(log(n))/n)  L  O(n), then

���ˆ✓
ˆi � ✓?

���  O

 ✓
L log(log(n)/�)

n

◆
1/3
!

with probability at least 1 � �, without knowledge of the
Lipschitz constant L.

For the second statement, we remark that if the Lipschitz
constant were known, the best error rate achievable is
O((L log(1/�)/n)1/3). Thus, SLOPE incurs almost no
price for adaptation. We also note that it is typically impos-
sible to know this parameter in practice.

It is technical but not difficult to derive a more general result,
relaxing many of the simplifying assumptions we have made.
To this end, we provide a guarantee for non-uniform ⇡

L

in
the appendix. We do not pursue other extensions here, as
the necessary techniques are well-understood (c.f., Kallus
& Zhou (2018); Krishnamurthy et al. (2019)).

4.2. Experiments

We empirically evaluate using SLOPE for bandwidth se-
lection in a synthetic environment for continuous action
contextual bandits. We summarize the experiments and
findings here with detailed description in Appendix B.4

The environment. We use a highly configurable synthetic
environment, which allows for action spaces of arbitrary
dimension, varying reward function, reward smoothness,
kernel, target, and logging policies. In our experiments,
we focus on A = [0, 1]. We vary all other parameters, as
summarized in Table 1.

The simulator prespecifies a mapping x 7! a?(x) which is
the global maxima for the reward function. We train de-
terministic policies by regressing from the context to this

4Code for this section is publicly available at https://
github.com/VowpalWabbit/slope-experiments.

Reward fn 2 {quadratic, absolute value}
Lipschitz const 2 {0.1, 0.3, 1, 3, 10}
Kernel 2 {boxcar, Epanechnikov}

⇡
T

2 {linear, tree}
⇡
L

2 {linear, tree}
Randomization 2 {uniform, friendly, adversarial}

Samples 2 {10i : i 2 {1, 2, 3, 4, 5}}
Table 1. Contextual Bandit experimental conditions.

global maxima. For the logging policy, we use two “soft-
ening” approaches for randomization, following Farajtabar
et al. (2018). We use two regression models (linear, decision
tree), and two softenings in addition to uniform logging, for
a total of 5 logging and 2 target policies.

Methods. We consider 7 different choices of geometri-
cally spaced bandwidths H := {2�i

: i 2 [7]}. We evaluate
the performance of these fixed bandwidths in comparison
with SLOPE, which selects from H. For SLOPE, we simplify
the implementation by replacing the confidence function
in (2), with twice the empirical standard deviation of the cor-
responding estimate. This approximation is a valid asymp-
totic confidence interval and is typically sharper than (2), so
we expect it to yield better practical performance. We also
manually enforce monotonicity of this confidence function.

We are not aware of other viable baselines for this setting.
In particular, the heuristic method of Kallus & Zhou (2018)
is too computationally intensive to use at our scale.

Experiment setup. We have 1000 conditions determined
by: logging policy, target policy, reward functional form,
reward smoothness, kernel, and number of samples n. For
each condition, we first obtain a Monte Carlo estimate of
the ground truth V (⇡

T

) by collecting 100k samples from
⇡
T

. Then we collect n trajectories from ⇡
L

and evaluate the
squared error of each method (

ˆV � V (⇡
T

))

2. We perform
30 replicates of each condition with different random seeds
and calculate the correspond mean squared error (MSE) for
each method: MSE :=

1

30

P
30

i=1

(

ˆVi � V (⇡
T

))

2 where ˆVi

is the estimate on the ith replicate.

Results. The left panel of Figure 3 aggregates results via
the empirical CDF of the normalized MSE, where we nor-
malize by the worst MSE in each condition. The point (x, y)
indicates that on y-fraction of conditions the method has
normalized MSE at most x, so better methods lie in the
top-left quadrant. We see that SLOPE is the top performer
in comparison with the fixed bandwidths.

In the center panel, we record the results of pairwise compar-
isons between all methods. Entry (i, j) of this array is the
fraction of conditions where method i is significantly better
than method j (using a paired t-test with significance level
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Figure 3. Experimental results for contextual bandits with continuous actions. Left: CDF of normalized MSE across all 480 conditions.
Normalization is by the worst MSE for that condition. Middle: Pairwise comparison matrix, entry Pi,j counts the fraction of conditions
where method i is statistically significantly better than method j, so larger numbers in the rows (or smaller numbers in the columns) is
better. Right: asymptotic behavior of SLOPE selecting between two bandwidths.

0.05). Better methods have smaller numbers in their col-
umn, which means they are typically not significantly worse
than other methods. The final row summarizes the results by
averaging each column. In this aggregation, SLOPE also out-
performs each individual fixed bandwidth, demonstrating
the advantage in data-dependent estimator selection.

Finally, in the right panel, we demonstrate the behavior of
SLOPE in a single condition as n increases. Here SLOPE is
only selecting between two bandwidths H := {1/4, 1/32}.
When n is small, the small bandwidth has high variance but
as n increases, the bias of the larger bandwidth dominates.
SLOPE effectively navigates this tradeoff, tracking h = 1/4
when n is small, and switching to h = 1/32 as n increases.

Summary. SLOPE is the top performer when compared
with fixed bandwidths in our experiments. This is intuitive
as we do not expect a single fixed bandwidth to perform
well across all conditions. On the other hand, we are not
aware of other approaches for bandwidth selection in this
setting, and our experiments confirm that SLOPE is a viable
and practically effective approach.

5. Application 2: reinforcement learning
Our second application is multi-step reinforcement learning
(RL). We consider episodic RL where the agent interacts
with the environment in episodes of length H . Let X be
a state space and A a finite action space. In each episode,
a trajectory ⌧ := (x

1

, a
1

, r
1

, x
2

, a
2

, r
2

, . . . , xH , aH , rH)

is generated where (1) x
1

2 X is drawn from a start-
ing distribution P

0

, (2) rewards rh 2 R and next state
xh+1

2 X are drawn from a system descriptor (rh, xh+1

) ⇠
P
+

(xh, ah) for each h (with the obvious definition for
time H), and (3) actions a

1

, . . . , aH 2 A are chosen
by the agent. A policy ⇡ : X 7! �(A) chooses a
(possibly stochastic) action in each state and has value
V (⇡) := E

hPH
h=1

�h�1rh | a
1:H ⇠ ⇡

i
, where � 2 (0, 1)

Environment GW MC Graph PO-Graph
Horizon 25 250 16 16

MDP Yes Yes Yes No
Sto Env Both No Yes Yes
Sto Rew No No Both Both

Sparse Rew No No Both Both
Model class Tabular NN Tabular Tabular

Samples 2

7:9

2

8:10

2

7:10

2

7:10

# of policies 5 4 2 2
Table 2. RL Environment Details

is a discount factor. For normalization, we assume that
rewards are in [0, 1] almost surely.

For off-policy evaluation, we have a dataset of n trajec-
tories {(xi,1, ai,1, ri,1, . . . , xi,H , ai,H , ri,H)}ni=1

generated
by following some logging policy ⇡

L

, and we would like
to estimate V (⇡

T

) for some other target policy. The impor-
tance weighting approach is also standard here, and perhaps
the simplest estimator is

ˆV
IPS

(⇡
T

) :=

1

n

nX

i=1

HX

h=1

�h�1⇢i,hri,h, (3)

where ⇢i,h :=

Qh
h0

=1

⇡T(ai,h0 |xi,h0 )

⇡L(ai,h0 |xi,h0 )
is the step-wise impor-

tance weight. This estimator is provably unbiased under
very general conditions, but it suffers from high variance
due to the H-step product of density ratios.5 An alternative
approach is to directly model the value function using super-
vised learning, as in a regression based dynamic program-
ming algorithm like Fitted Q Evaluation (Riedmiller, 2005;
Szepesvári & Munos, 2005). While these “direct modeling”
approaches have very low variance, they are typically highly
biased because they rely on supervised learning models that
cannot capture the complexity of the environment. Thus

5We note that there are variants with improved variance. As
our estimator selection question is somewhat orthogonal, we focus
on the simplest estimator.
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they lie on the other extreme of the bias-variance spectrum.

To navigate this tradeoff, Thomas & Brunskill (2016) pro-
pose a family of partial importance weighting estima-

tors. To instantiate this family, we first train a direct
model ˆV

DM

: X ⇥ [H] ! R to approximate (x, h) 7!
E⇡

hPH
h0

=h �
h0�hrh0 | xh = x

i
, for example via Fitted Q

Evaluation. Then, the estimator is

ˆV⌘(⇡T

) :=

1

n

nX

i=1

⌘X

h=1

�h�1⇢i,hri,h (4)

+

1

n

nX

i=1

�⌘⇢i,⌘ ˆVDM

(xi,⌘+1

, ⌘ + 1),

The estimator has a parameter ⌘ that governs a false horizon

for the importance weighting component. Specifically, we
only importance weight the rewards up until time step ⌘ and
we complete the trajectory with the predictions from a direct
modeling approach. The model selection question here
centers around choosing the false horizon ⌘ at which point
we truncate the unbiased importance weighted estimator.

5.1. Theory

We instantiate our general estimator selection framework in
this setting. Let ˆ✓i := ˆVH�i+1

(⇡
T

) for i 2 {1, . . . , H +1}.
Intuitively, we expect that the variance of ˆ✓i is large for small
i, since the estimator involves a product of many density
ratios. Indeed, in the appendix, we derive a confidence
bound and prove that it verifies our assumptions. The bound
is quite complicated so we do not display it here, but we
refer the interested reader to (7) in Appendix A. The bound
is a Bernstein-type bound which incorporates both variance
and range information. We bound these as

Variance( ˆV⌘(⇡T

))  3V 2

max

(1 +

⌘X

h=1

�2(h�1)ph
max

)

Range( ˆV⌘(⇡T

))  3V
max

(1 +

⌘X

h=1

�h�1ph
max

),

where V
max

:= (1� �)�1 is the range of the value function
and p

max

:= supx,a
⇡T(a|x)
⇡L(a|x) is the maximum importance

weight, which should be finite. Equipped with these bounds,
we can apply Bernstein’s inequality to obtain a valid confi-
dence interval.6 Moreover, it is not hard to show that this
confidence interval is monotonic with  := (1 + �p

max

)

�1.
This yields the following theorem.
Theorem 6 (Informal). Consider the episodic RL setting

with

ˆ✓i := ˆVH�i+1

(⇡
T

) defined in (4). Let B be any valid

and monotone bias function. Then with CNF(i) as in (7) in

6This yields a relatively concise deviation bound, but we note
that it is not the sharpest possible.

the appendix, Assumption 1 and Assumption 2 with  :=

(1 + �p
max

)

�1

hold, so Theorem 3 applies.

A more precise statement is provided in Appendix A, and
we highlight some salient details here. First, our analy-
sis actually applies to a doubly-robust variant of the es-
timator ˆV⌘, in the spirit of (Jiang & Li, 2016). Second,
B(i) := �H�i+1��H

1�� is valid and monotone, and can be used
to obtain a concrete error bound. However, the oracle in-
equality yields a stronger conclusion, since it applies for
any valid and monotone bias function. This universality is
particularly important when using the doubly robust variant,
since it is typically not possible to sharply bound the bias.

The closest comparison is MAGIC (Thomas & Brunskill,
2016), which is strongly consistent in our setting. However,
it does not satisfy any oracle inequality and is dominated by
SLOPE in experiments.

5.2. Experiments

We evaluate SLOPE in RL environments spanning 106 dif-
ferent experimental conditions. We also compare with previ-
ously proposed estimators and assess robustness under var-
ious conditions. Our experiments closely follow the setup
of Voloshin et al. (2019). Here we provide an overview of
the experimental setup and highlight the salient differences
from theirs. All experimental details are in Appendix C.7

The environments. We use four RL environments: Moun-
tain Car, Gridworld, Graph, and Graph-POMDP (abbrevi-
ated MC, GW, Graph, and PO-Graph). All four environ-
ments are from Voloshin et al. (2019), and they provide a
broad array of environmental conditions, varying in terms
of horizon length, partial observability, stochasticity in dy-
namics, stochasticity in reward, reward sparsity, whether
function approximation is required, and overlap between
logging and target policies. Logging and target policies are
from Voloshin et al. (2019). A summary of the environments
and their salient characteristics is displayed in Table 2.

Methods. We compare four estimators: the direct model
(DM), a self-normalized doubly robust estimator (WDR),
(c) MAGIC, and (d) SLOPE. All four methods use the same
direct model, which we train either by Fitted Q Evaluation
or by Q⇡

(�) (Munos et al., 2016), following the guidelines
in Voloshin et al. (2019). The doubly robust estimator is the
most competitive estimator in the family of full-trajectory
importance weighting. It is similar to (3), except that the
direct model is used as a control variate and the normalizing
constant n is replaced with the sum of importance weights.
MAGIC, as we have alluded to, is the only other estimator

7Code for this section is available at https://github.
com/clvoloshin/OPE-tools.
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Figure 4. Left: Cumulative distribution function of the normalized MSE for all conditions, Middle: Pairwise comparison matrix P for the
methods, over all conditions. Element Pij denotes the percentage of times that method i outperforms method j. The last row shows the
column average for each method, the lower the better. Right: Learning Curve for the Hybrid domain.

selection procedure we are aware of for this setting. It aggre-
gates partial importance weighting estimators to optimize a
surrogate for the MSE. For SLOPE, we use twice the empiri-
cal standard deviation as the confidence function, which is
asymptotically valid and easier to compute.

We do not consider other baselines for two reasons. First,
DM, WDR, and MAGIC span the broad estimator categories
(importance weighted, direct, hybrid) within which essen-
tially all estimators fall. Secondly, many other estimators
have hyperparameters that must be tuned, and we believe
SLOPE will also be beneficial when used in these contexts.

Experiment Setup. We have 106 experimental conditions
determined by environment, stochasticity of dynamics and
reward, reward sparsity, logging policy, target policy, and
number of trajectories n. For each condition, we calculate
the MSE for each method by averaging over 100 replicates.

Results. In the left panel of Figure 4, as in Section 4.2,
we first visualize the aggregate results via the cumulative
distribution function (CDF) of the normalized MSE in each
condition (normalizing by the worst performing method
in each condition). As a reminder, the figure reads as fol-
lows: for each x value, the corresponding y value is the
fraction of conditions where the estimator has normalized
MSE at most x. In this aggregation, we see that WDR
has the worst performance, largely due to intolerably high
variance. MAGIC and DM are competitive with each other
with MAGIC having a slight edge. SLOPE appears to have
the best aggregate performance; for the most part its CDF
dominates the others.

In the central panel, we display an array of statistical com-
parisons between pairs of methods. As before, entry (i, j)
of this array is computed by counting the fraction of con-
ditions where method i beats j in a statistically significant
manner (we use paired t-test on the MSE with significance

level 0.05). The column-wise averages are also displayed.

In this aggregation, we see clearly that SLOPE dominates
the three other methods. First, SLOPE has column average
that is smaller than the other methods. More importantly,
SLOPE is favorable when compared with each other method
individually. For example, SLOPE is (statistically) signifi-
cantly worse than MAGIC on 16% of the conditions, but it is
significantly better on 25%. Thus, this visualization clearly
demonstrates that SLOPE is the best performing method in
aggregate across our experimental conditions.

Before turning to the final panel of Figure 4, we recall Fig-
ure 1, where we display results for two specific conditions.
Here, we see that SLOPE outperforms or is statistically in-
distinguishable from the best baseline, regardless of whether
direct modeling is better than importance weighting! We are
not aware of any selection method that enjoys this property.

Learning curves. The final panel of Figure 4 visualizes
the performance of the four methods as the sample size in-
creases. Here we consider the Hybrid domain from Thomas
& Brunskill (2016), which is designed specifically to study
the performance of partial importance weighting estimators.
The domain has horizon 22, with partial observability in
the first two steps, but full observability afterwards. Thus
a (tabular) direct model is biased since it is not expressive
enough for the first two time steps, but ˆV

2

(⇡
T

) is a great
estimator since the direct model is near-perfect afterwards.

The right panel of Figure 4 displays the MSE for each
method as we vary the number of trajectories, n (we perform
128 replicates and plot bars at ±2 standard errors). We see
that when n is small, DM dominates, but its performance
does not improve as n increases due to bias. Both WDR and
MAGIC catch up as n increases, but SLOPE is consistently
competitive or better across all values of n, outperforming
the baselines by a large margin. Indeed, this is because
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SLOPE almost always chooses the optimal false horizon
index of ⌘ = 2 (e.g., 90% of the replicates when n = 500).

Summary. Our experiments show that SLOPE is competi-
tive, if not the best, off-policy evaluation procedure among
SLOPE, MAGIC, DM, and WDR. We emphasize that SLOPE
is not an estimator, but a selection procedure that in princi-
ple can select hyperparameters for many estimator families.
Our experiments with the partial importance weighting fam-
ily are quite convincing, and we believe this demonstrates
the potential for SLOPE when used with other estimator
families for off-policy evaluation in RL.8

6. Discussion
In summary, this paper presents a new approach for estima-
tor selection in off-policy evaluation, called SLOPE. The
approach applies quite broadly; in particular, by appropri-
ately spacing hyperparameters, many common estimator
families can be shown to satisfy the assumptions for SLOPE.
To demonstrate this, we provide concrete instantiations in
two important applications. Our theory yields, to our knowl-
edge, the first oracle-inequalities for off-policy evaluation
in RL. Our experiments demonstrate strong empirical per-
formance, suggesting that SLOPE may be useful in many
off-policy evaluation contexts.
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Birgé, L. An alternative point of view on lepski’s method.

Lecture Notes-Monograph Series, 2001.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine learn-

ing, 1996.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv:1606.01540, 2016.

Dudı́k, M., Erhan, D., Langford, J., and Li, L. Doubly robust
policy evaluation and optimization. Statistical Science,
2014.
8In settings where straightforward empirical variance estimates

are not available, the bootstrap may provide an alternative ap-
proach for constructing the CNF function. Experimenting with
such estimators is a natural future direction.

Farajtabar, M., Chow, Y., and Ghavamzadeh, M. More ro-
bust doubly robust off-policy evaluation. In International

Conference on Machine Learning, 2018.

Goldenshluger, A. and Lepski, O. V. Bandwidth selection in
kernel density estimation: oracle inequalities and adaptive
minimax optimality. The Annals of Statistics, 2011.

Hirano, K., Imbens, G. W., and Ridder, G. Efficient esti-
mation of average treatment effects using the estimated
propensity score. Econometrica, 2003.

Horvitz, D. G. and Thompson, D. J. A generalization of sam-
pling without replacement from a finite universe. Journal

of the American Statistical Association, 1952.

Jiang, N. and Li, L. Doubly robust off-policy value evalua-
tion for reinforcement learning. In International Confer-

ence on Machine Learning, 2016.

Kallus, N. and Zhou, A. Policy evaluation and optimization
with continuous treatments. In Artificial Intelligence and

Statistics, 2018.

Kpotufe, S. and Garg, V. Adaptivity to local smoothness and
dimension in kernel regression. In Advances in Neural

Information Processing Systems, 2013.

Krishnamurthy, A., Langford, J., Slivkins, A., and Zhang,
C. Contextual bandits with continuous actions: Smooth-
ing, zooming, and adapting. In Conference on Learning

Theory, 2019.

Lepski, O. V. Asymptotically minimax adaptive estimation.
i: Upper bounds. optimally adaptive estimates. Theory of

Probability & Its Applications, 1992.

Lepski, O. V. and Spokoiny, V. G. Optimal pointwise adap-
tive methods in nonparametric estimation. The Annals of

Statistics, 1997.

Lepskii, O. V. On a problem of adaptive estimation in gaus-
sian white noise. Theory of Probability & Its Applications,
1991.

Lepskii, O. V. Asymptotically minimax adaptive estimation.
ii. schemes without optimal adaptation: Adaptive estima-
tors. Theory of Probability & Its Applications, 1993.

Liu, Q., Li, L., Tang, Z., and Zhou, D. Breaking the curse
of horizon: Infinite-horizon off-policy estimation. In Ad-

vances in Neural Information Processing Systems, 2018.
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