
Adaptive Off-Policy Evaluation

A. Proofs
A.1. Proofs for Section 3

Proof of Theorem 3. The proof is similar to that of Corollary 1 in (Mathé, 2006). Define ˜i = max{i : B(i)  CNF(i)}. The
proof is composed of two steps: first we show that we are competitive with ˜i and then we show that ˜i is competitive with the
best index.

Competing with ˜i. Observe that since B is monotonically increasing, and CNF is monotonically decreasing, for i  ˜i we
have

B(i)  B(˜i)  CNF(˜i)  CNF(i).

Therefore, for i  ˜i
���ˆ✓i � ✓?

���  B(i) + CNF(i)  2CNF(i).

This implies that ✓? 2 Ii for all i  ˜i.

As a consequence, the definition of our chosen index ˆi implies that ˆi � ˜i, which in turn implies that I
˜i \ I

ˆi 6= ;. So, there
exists x 2 I

˜i \ I
ˆi such that |x� ˆ✓

˜i|  2CNF(˜i) and |x� ˆ✓
ˆi|  2CNF(ˆi). As we know that ✓? 2 I

˜i, we get

|ˆ✓
ˆi � ✓?|  |ˆ✓

ˆi � x|+ |x� ˆ✓
˜i|+ |ˆ✓

˜i � ✓?|  2CNF(ˆi) + 2CNF(˜i) + 2CNF(˜i)  6CNF(˜i). (5)

Comparing ˜i to i?. Define i? := argmini{B(i) + CNF(i)} which is the index we actually want to compete with in our
guarantee. If we compare ˜i with i?, then by the above argument we can translate to ˆi. For this, we consider two cases:

If i?  ˜i, then by definition of ˜i, we have

B(˜i) + CNF(˜i)  2CNF(˜i)  2CNF(i?)  2(CNF(i?) + B(i?)),

so we are a factor of 2 worse.

On the other hand, if i? > ˜i then by Assumption 2 and the optimality condition for ˜i

CNF(˜i)  CNF(˜i+ 1)  B(˜i+ 1)  B(i?).

This implies

B(˜i) + CNF(˜i)  (1 +

1/)B(i?).

As   1, this bound dominates the previous case, and together, with (5) we have
���ˆ✓

ˆi � ✓?
���  6⇥ CNF(˜i)  6(1 +

1/) min

i2[M]

{B(i) + CNF(i)} .

Proof of Corollary 4. For the MSE calculation, we simply need to translate from the high probability guarantee to the MSE,
which is not difficult under Assumption 1. In particular, fix � and let E be the event that all confidence bounds are valid,
which holds with probability 1� �, then we have

E(ˆ✓
ˆi � ✓?)2 = E(ˆ✓

ˆi � ✓?)21 {E}+ E(ˆ✓
ˆi � ✓?)21

�
¯E

 E(ˆ✓
ˆi � ✓?)21 {E}+R2�

 E1 {E}
✓
6(1 +

1/)E min

i2[M]

{B(i) + CNF(i; �)}
◆

2

+R2�

 72(1 +

1/)2 min

i2[M]

�
B(i)2 + CNF(i; �)2

+R2�.

Here in the first line we are introducing the event E and its complement. In the second, we use that ˆ✓i, ✓? 2 [0, R] almost
surely and that P[¯E]  � according to Assumption 1. In the third line, we apply Theorem 3, which holds under event E . The
final step uses the simplification that (a+ b)2  2a2 + 2b2.

Adaptive Off-Policy Evaluation

A.2. Proofs for Section 4

Proof of Theorem 5. Let us first verify that the confidence function specified in (2) satisfy Assumption 1. We will apply
Bernstein’s inequality, which requires variance and range bounds. For the variance, a single sample satisfies

Var

✓
K(|⇡

T

(x)� a|/h)r(a)
h⇥ ⇡

L

(a | x)
◆

 1

h
E

K(|⇡

T

(x)� a|/h)2
h⇥ ⇡2

L

(a | x) | a ⇠ ⇡
L

(· | x)
�
 1

2h
,

where we first use that the variance is upper bounded by the second moment, and then we use that ⇡
L

is uniform and the
boxcar kernel is at most 1/2. Finally, we use that by a change of variables K(·/h)/h integrates to 1. Note that we are using
that ⇡

T

2 [�
0

, 1� �
0

], as we are integrating over the support of ⇡
L

.

For the range, we have

sup

K(|⇡
T

(x)� a|/h)r(a)
h⇥ ⇡

L

(a | x)  1

2h
.

Therefore, Bernstein’s inequality gives that with probability 1� � we have

��� ˆVh(⇡T

)� E ˆVh(⇡T

)

��� 
r

log(2/�)

nh
+

log(2/�)

3nh
,

and the first claim follows by a union bound.

Monotonicity is also easy to verify with this definition of CNF. In particular, since hi = �hi+1

and � < 1, we immediately
have that

�CNF(i) = �

s
log(2M/�)

nhi
+ �

log(2M/�)

3nhi
= �

s
log(2M/�)

n�hi+1

+

log(2M/�)

3nhi+1

 CNF(i+ 1)

Clearly CNF(i+ 1)  CNF(i), and so Assumption 2 holds. This verifies that we may apply Theorem 3.

For the last claim, if the rewards are L-Lipschitz, then we claim we can set B(i) = Lhi. To see why, observe that

|EVh(⇡T

)� V (⇡
T

)| =
����E(x,r),a⇠⇡L(x)

K(|⇡
T

(x)� a|/h)r(a)
h

� r(⇡
T

(x))

����

=

����E(x,r)

Z

a0

1 {|⇡
T

(x)� a|  h} r(a)
2h

� r(⇡
T

(x))

����

=

����E(x,r)

Z

a0

1 {|⇡
T

(x)� a|  h} (r(a)� r(⇡
T

(x)))

2h

����  Lh.

Clearly this bias bound is monotonic. To apply Theorem 3, it is better to first simplify the confidence function. Observe that
as ✓?, ¯✓i 2 [0, 1], it is always better to clip the estimates ˆ✓i to lie in [0, 1]. This has no bearing on the bias and only improves
the deviation term, and in particular allows us to replace CNF(i) with min{CNF(i), 1}. This leads to a further simplification:

s
log(2M/�)

nhi
+

log(2M/�)

3nhi
 1)

s
log(2M/�)

nhi
+

log(2M/�)

3nhi
 4

3

s
log(2M/�)

nhi

Therefore we may replace CNF with this latter function and by Theorem 3 we guarantee that with probability at least 1� �

���ˆ✓
ˆi � ✓?

���  6(1 + ��1

)min

i

8
<

:Lhi +
4

3

s
log(2M/�)

nhi

9
=

; .

The optimal choice for h is h?
:=

✓
4

3L

q
log(2M/�)

n

◆
2/3

, which will in general not be in our set H. However, if we use this

choice for h, the error rate is O((L/n)1/3), and since we know that ✓? 2 [0, 1], if L > n then this error guarantee is trivial.

Adaptive Off-Policy Evaluation

In other words, the maximum value of L that we are interested in adapting to is L
max

= n. This will be useful in setting the
number of models to search over M .

To set M , we want to ensure that there exists some hi such that hi  h?  hi+1

. We first verify the first inequality, which
requires that

�
0

�M  h?
:=

4

3L

r
log(2M/�)

n

!
2/3

We will always take M � 2, which implies that log(2M/�) � 1. Then, since we are only interested in L  n, a sufficient
condition here is

�
0

�M  4

3

2/3

n�1) M � C�0 log(n)

log(1/�
0

)

,

where C�0 is a constant that only depends on �
0

. The upper bound h?  hi+1

is satisfied as soon as n is large enough,
provided that L � !(

p
log(log(n))/n), which we are assuming. Thus we know that there is i? such that hi?  h?  hi?/�,

and using this choice, we have

���ˆ✓
ˆi � ✓?

���  6(1 + ��1

)

8
<

:Lhi? +

4

3

s
log(2M/�)

nhi?

9
=

;  6(1 + ��1

)

(
Lh?

+

4

3

s
log(2M/�)

�nh?

)

 6(1 + ��1

) · c
1p
�
(L log(2M/�)/n)1/3  C�,�0(L log(log(n)/�)/n)1/3,

where C�,�0 is a constant that depends only on �, �
0

.

Note that if ⇡
L

is non-uniform, but satisfies infx,a ⇡L

(a | x) � p
min

, then very similar arguments apply. In particular, we
have that both variance and range are bounded by 1

2hpmin
, and some Bernstein’s inequality in this case yields

��� ˆVh(⇡T

)� E ˆVh(⇡T

)

��� 
s

log(2/�)

nhp
min

+

log(2/�)

3nhp
min

,

Monotonicity follows from the same calculation as before and the clipping trick yields a more interpretable final bound,
which holds with probability at least 1� �, of

���ˆ✓
ˆi � ✓?

���  6(1 + ��1

)min

i

(
Lhi +

4

3

s
log(2M/�)

nhipmin

)
.

The remaining calculation for M is analogous, since this bound is identical to the previous one with n replaced by np
min

.
Thus, we obtain a final bound of C�,�0(L log(log(n/�))/(np

min

))

1/3.

A.3. Proofs for Section 5

We first develop and state the more precise version of Theorem 6. We introduce the doubly robust version of the partial
importance weighting estimator. As it is the empirical average over n trajectories, here we will focus on a single trajectory
(x

1

, a
1

, r
1

, . . . , xH , aH , rH) sampled by following the logging policy ⇡
L

.

Define ˆV 0

DR

:= 0 and

ˆV H+1�h
DR

:=

ˆV (xh) + ph(rh + � ˆV H�t
DR

� ˆQ(xh, ah)), ph :=

⇡
T

(ah | xh)

⇡
L

(ah | xh)
.

where ˆQ is the direct model, trained via supervised learning, and ˆV (x) = Ea⇠⇡T(x)
ˆQ(x, a). The full horizon doubly-robust

estimator is ˆV
DR

:=

ˆV H
DR

. To define the ⌘-step partial estimator, let ˆV ⌘
DM

:= ⇢⌘ ˆQ(x⌘+1

,⇡
T

(x⌘+1

)), which is an estimate

Adaptive Off-Policy Evaluation

of E⇡T [V (x⌘+1

)]. Set ˆV H
DM

:= 0. Then for a false horizon ⌘, we define a similar recursion

ˆV H+1�h
⌘ :=

(
ˆV (xh) + ph(rh + �V H�h

⌘ � ˆQ(xh, ah)) if 1  h < ⌘

ˆV (xh) + ph(rh + � ˆV ⌘
DM

� ˆQ(xh, ah)) if h = ⌘.

The doubly robust variant of the ⌘-step partial importance weighted estimator is ˆV H
⌘ . We also define ˆV H

0

=

ˆV 0

DM

which
estimates E [V (x

1

)]. Observe that if in the definition of ˆV
DR

, we take ˆV , ˆQ ⌘ 0 then we obtain the estimator in (4).

Define � := log(2(H + 1)/�), V
max

:= (1� �)�1 and recall that p
max

:= maxx,a
⇡T(a|x)
⇡L(a|x) . Then define

B(i) :=
�H�i+1 � 1

1� �

CNF(i) :=

vuut6V 2

max

⇣
1 +

PH�i+1

h=1

�2(h�1)ph
max

⌘
�

n
+

6V
max

⇣
1 +

PH�i+1

h=1

�h�1ph
max

⌘
�

3n

With these definitions, we know state the theorem

Theorem 7 (Formal version of Theorem 6). In the episodic reinforcement learning setting with discount factor �, consider

the doubly robust partial importance weighting estimators

ˆ✓i := ˆV H
H�i+1

(⇡
T

) for i 2 {1, . . . , H + 1}. Then B and CNF are

valid and monotone, with  := (1 + �p
max

)

�1

.

Proof of Theorem 7. We now turn to the proof.

Bias analysis. By repeatedly applying the tower property, the expectation for ˆV H
⌘ is

E
h
ˆV H
⌘

i
= E⇡L

h
ˆV (x

1

) + p
1

(r
1

+ � ˆV H�1

⌘ � ˆQ(x
1

, a
1

)

i

= Ex1

h
ˆV (x

1

) + Ea1⇠⇡L(x1),a2:H⇠⇡L

h
p
1

(r
1

+ � ˆV H�1

⌘ � ˆQ(x
1

, a
1

)) | x
1

ii

= Ex1

h
ˆV (x

1

) + Ea1⇠⇡T(x1),a2:H⇠⇡L

h
r
1

+ � ˆV H�1

⌘ � ˆQ(x
1

, a
1

) | x
1

ii

= Ex1,a1⇠⇡T(x1)
[r] + �Ex2⇠⇡T,a2:H⇠⇡L

h
ˆV H�1

⌘

i

= ...

= E⇡T

"
⌘X

h=1

�h�1r

#
+ �⌘Ex⌘+1⇠⇡T

h
ˆV ⌘
DM

i
.

Here, we use that p
1

is the one-step importance weight, so it changes the action distribution from ⇡
L

to ⇡
T

. We also use the
relationship between the direct models ˆQ and ˆV . Therefore, the bias is

���E
h
ˆV H
⌘

i
� V (⇡

T

)

��� = �⌘
��� ˆV ⌘

DM

� E⇡T [V (x⌘+1

)]

���  �⌘ � �H

1� �
=: B(H � ⌘ + 1) (6)

The first identity justifies are choice of ˆV ⌘
DM

which attempts to minimize this bias using the direct model. The inequality here
follows from the fact that rewards are in [0, 1], which implies that values at time ⌘ + 1 are in

h
0, 1��H�⌘

1��

i
. As � 2 (0, 1),

clearly we have that B(i) is monotonically increasing with i increasing. Thus this bias bound is valid.

Variance analysis. For the variance calculation, let Eh [·] ,Varh(·) denote expectation and variance conditional on all
randomness before time step h. Adapting Theorem 1 of Jiang & Li (2016) the variance for 1  h < ⌘ is given by the
recursive formula:

Var

h
(

ˆV H+1�h
⌘) = Var

h
(E
h
ˆV H+1�h
⌘ | xh

i
) + Eh [Var(ph�(xh, ah) | xh)] + Eh

⇥
p2h Var(rh)

⇤
+ Eh


�2p2h Var

h+1

(

ˆV H�h
⌘)

�
,

Adaptive Off-Policy Evaluation

where �(xh, ah) := ˆQ(xh, ah)�Q(xh, ah). For h = ⌘ it is identical, except that in the last term we use ˆV ⌘
DM

instead of
ˆV H�⌘
⌘ (which is not defined).

Unrolling the recursion, the full expression for the variance is

Var(

ˆV H
⌘) =

⌘X

h=1

E

�2(h�1)⇢2h�1

Var

h
(E
h
ˆV H+1�h
⌘ | xh

i
)

�

+

⌘X

h=1

E
h
�2(h�1)⇢2h�1

Eh [Var(ph�(xh, ah) | xh)]

i

+

⌘X

h=1

E
h
�2(h�1)⇢2h�1

Eh

⇥
p2h Var(rh)

⇤i

+ E

�2⌘⇢2⌘ Var

⌘+1

(

ˆV ⌘
DM

)

�
.

For the variance bound, we do not attempt to obtain the sharpest bound possible. Instead, we use the following facts: (1)
rewards are in [0, 1], (2) all values, value estimates, and Q are at most (1� �)�1

=: V
max

, and (3) for a random variable X
that is bounded by B almost surely, we have Var(X)  B2. Using these facts in each term gives

Var(

ˆV H
⌘) 

⌘X

h=1

E
h
�2(h�1)⇢2h�1

V 2

max

i
+

⌘X

h=1

E
h
�2(h�1)⇢2hV

2

max

i
+

⌘X

h=1

E
h
�2(h�1)⇢2h

i
+ E

⇥
�2⌘⇢2⌘V

2

max

⇤

=

⌘+1X

h=1

E
h
�2(h�1)⇢2h�1

V 2

max

i
+

⌘X

h=1

E
h
�2(h�1)⇢2h(V

2

max

+ 1)

i

 3V 2

max

⌘X

h=1

E
h
�2(h�1)⇢2h

i
+ V 2

max

Here in the first line we use the three facts we stated above. In the second line we collect the terms. In the third line we note
that �2(h�1)⇢2h�1

 �2(h�2)⇢2h�1

since � 2 (0, 1), so we can re-index the first summation and group terms again.

To simplify further, let p
max

:= supx,a
⇡T(a|x)
⇡L(a|x) denote the largest importance weight and note that as Eh[ph] = 1, we have

⌘X

h=1

E
h
�2(h�1)⇢2h

i


⌘X

h=1

E
h
�2(h�1)p

max

⇢2h�1

Eh[wh]

i
 . . . 

⌘X

h=1

�2(h�1)ph
max

.

Therefore, our variance bound will be

Var(

ˆV H
⌘)  3V 2

max

1 +

⌘X

h=1

�2(h�1)ph
max

!
.

For the range, we obtain the recursion (for 1  h < ⌘):
��� ˆV H+1�h

⌘

���  V
max

+ p
max

(1 + V
max

) + p
max

�
��� ˆV H�h

⌘

��� ,

with the terminal condition
��� ˆV ⌘

DM

���  V
max

. A somewhat crude upper bound is

��� ˆV H
⌘

���  3V
max

1 +

⌘X

h=1

�h�1ph
max

!
,

which has a similar form to the variance expression.

Adaptive Off-Policy Evaluation

Therefore, Bernstein’s inequality reveals that with probability 1� �, we have that the n-trajectory empirical averages satisfy

��� ˆV H
⌘ � E ˆV H

⌘

��� 
s

6V 2

max

�
1 +

P⌘
h=1

�2(h�1)ph
max

�
log(2/�)

n
+

6V
max

�
1 +

P⌘
h=1

�h�1ph
max

�
log(2/�)

3n
. (7)

This bound is clearly seen to be montonically increasing in ⌘, which is montonically decreasing with i as required. The
reason is that when we increase ⌘ we add one additional non-negative term to both the variance and range expressions.

Finally, we must verify that the bound does not decrease too quickly. For this, we first verify the following elementary fact

Fact 8. Let z � 0 and t � 0 then

1 +

Pt
⌧=1

z⌧

1 +

Pt�1

⌧=1

z⌧
 1 + z.

Proof. Using the geometric series formula, we can rewrite

1 +

Pt
⌧=1

z⌧

1 +

Pt�1

⌧=1

z⌧
= 1 +

zt

1 +

Pt�1

⌧=1

z⌧
 1 + z.

Using the above fact, we can see that the variance bound decreases at rate (1 + �2p
max

) and the range bound decreases at
rate (1 + �p

max

). The range bound dominates here, since
p
1 + �2p

max


p

1 + �2p2
max

 1 + �p
max

Therefore, we may take the decay constant to be 1/(1 + �p
max

) to verify Assumption 2.

B. Details for continuous contextual bandits experiments
B.1. The simulation environment.

Here, we explain some of the important details of the simulation environment. The simulator is initialized with a dx
dimensional context space and action space [0, 1]d for some parameter d. For our experiments we simply take d = 1.
There is also a hidden parameter matrix �? ⇠ N (0, I) with �? 2 Rd⇥dx . In each round, contexts are sampled iid from
N (0, I), then the optimal action a?(x) := �(�?x), where �(z) = ez

ez+1

is the standard sigmoid, and the function is applied
component-wise. This optimal action a? is used in the design of the reward functions.

We consider two different reward functions called “absolute value” and “quadratic.” The first is simply `(a) := 1 �
min(L ka� a?(x)k

1

, 1), while the latter is `(a) := 1�min(L/4
Pd

j=1

(aj �a?j (x))
2, 1). Here L is the Lipschitz constant,

which is also a configurable.

For policies, the uniform logging policy simply chooses a ⇠ Unif([0, 1]d) on each round. Other logging and target policies
are trained via regression on 10 vector-valued regression samples (x, a?(x) +N (0, 0.5 · I)) where x ⇠ N (0, I). We use
two different regression models: linear + sigmoid implemented in PyTorch, and a decision tree implemented in scikit-learn.
Both regression procedures yield deterministic policies, and in our experiments we take this policies to be ⇡

T

.

For ⇡
L

we implement two softening techniques following Farajtabar et al. (2018), called “friendly” and “adversarial,” and
both techniques take two parameters ↵,�. Both methods are defined for discrete action spaces, and to adapt to the continuous
setting we partition the continuous action space into m bins (for one-dimensional spaces). We round the deterministic action
chosen by the regression model to its associated bin, run the softening procedure to choose a (potentially different) bin,
and then sample an action uniformly from this bin. For higher dimensional action spaces, we discretize each dimension
individually, so the softening results in a product measure.

Friendly softening with discrete actions is implemented as follows. We sample U ⇠ Unif([�0.5, 0.5]) and then the updated
action is ⇡det,disc(x) with probability ↵ + �U and it is uniform over the remaining discrete actions with the remaining
probability. Here ⇡det,disc is the deterministic policy obtained by the regression model, discretized to one of the m bins.
Adversarial softening instead is uniform over all discrete actions with probability 1� (↵+ �U) and it is uniform over all

Adaptive Off-Policy Evaluation

but ⇡det,disc(x) with the remaining probability. In both cases, once we have a discrete action, we sample a continuous action
from the corresponding bin.

The simulator also supports two different kernel functions: Epanechnikov and boxcar. The boxcar kernel is given by
K(u) =

1

2

1{|u|  1}, while Epanechnikov is K(u) = 0.75 · (1 � u2

)1{|u|  1}. We address boundary bias by
normalizing the kernel appropriately, as opposed to forcing the target policy to choose actions in the interior. This issue is
also discussed in Kallus & Zhou (2018).

Finally, we also vary the number of logged samples and the Lipschitz constant of the loss functions.

B.2. Reproducibility Checklist

Data collection process. All data are synthetically generated as described above.

Dataset and Simulation Environment. We will make the simulation environment publicly available.

Excluded Data. No excluded data.

Training/Validation/Testing allocation. There is no training/validation/testing setup in off policy evaluation. Instead all
logged data are used for evaluation.

Hyper-parameters. Hyperparameters used in the experimental conditions are: n 2 10

1:5, h 2 {2�(1:7), L 2
{0.1, 0.3, 1, 3, 10}, in addition to the other configurable parameters (e.g., softening technique, kernel, logging policy,
target policy).

Evaluation runs. There are 1000 conditions, each with 30 replicates with different random seeds.

Description of experiments. For each condition, determined by logging policy, softening technique, target policy, sample
size, lipschitz constant, reward function, and kernel type, we generate n logged samples following ⇡

L

, and 100k samples
from ⇡

T

to estimate the ground truth V (⇡
T

). All fixed-bandwidth estimators and SLOPE are calculated based on the same
logged data. The MSE is estimated by averaging across the 30 replicates, each with different random seed.

For the learning curve in the right panel of Figure 3 the specific condition shown is: uniform logging policy, linear+sigmoid
target policy, L = 3, absolute value reward, boxcar kernel. MSE estimates are measured at n = {1, 3, 7}⇥10

1:3[{10, 000}.
We perform 100 replicates for this experiment.

Measure and Statistics. Results are shown in Figure 3. Statistics are based on empirical CDF calculated by aggregating
the 1000 conditions. Typically there are no error bars for such plots. Pairwise comparison is based on paired t-test over all
pair of methods and conditions, with significance level 0.05. The learning curve is based on 100 replicates, with error bar
corresponding to ±2 standard errors shown in the plots.

Computing infrastructure. Experiments were run on Microsoft Azure.

C. Details for reinforcement learning experiments
C.1. Experiment Details

Environment Description. We provide brief environment description below. More details can be found in Thomas &
Brunskill (2016); Voloshin et al. (2019); Brockman et al. (2016).

• Mountain car is a classical benchmark from OpenAI Gym. We make the same modification as Voloshin et al. (2019).
The domain has 2-dimensional state space (position and velocity) and one-dimensional action {left,nothing,right}. The
reward is r = �1 for each timestep before reaching the goal. The initial state has position uniformly distributed in the
discrete set {�0.4,�0.5,�0.6} with velocity 0. The horizon is set to be H = 250 and there is an absorbing state at
(0.5, 0). The domain has deterministic dynamics, as well as deterministic, dense reward.

• Graph and Graph-POMDP are adopted from Voloshin et al. (2019). The Graph domain has horizon 16, state space
{0, 1, 2, · · · , 31} and action space {0, 1}. The initial state is x

0

= 0, and we have the state-independent stochastic
transition model with P(xt+1

= 2t + 1|a = 0) = 0.75, P(xt+1

= 2t + 2|a = 0) = 0.25, P(xt+1

= 2t + 1|a =

1) = 0.25, P(xt+1

= 2t + 2|a = 1) = 0.75. In the dense reward configuration, we have r(xt, at, xt+1

) = 2(xt+1

mod 2)� 1 8t  T . The sparse reward setting has r(xt, at, xt+1

) = 0 8t < T � 1 with reward only at the last time

Adaptive Off-Policy Evaluation

step, according to the dense reward function. We also consider a stochastic reward setting, where we change the reward
to be r(xt, at, xt+1

) ⇠ N (2(xt+1

mod 2)� 1, 1). Graph-POMDP is a modified version of Graph where states are
grouped into 6 groups. Only the group information is observed, so the states are aliased.

• Gridworld is also from Voloshin et al. (2019). The state space is an 8⇥ 8 grid with four actions [up, down, left, right].
The initial state distribution is uniform over the left column and top row, while the goal is in the bottom right corner.
The horizon length is 25. The states belongs to four categories: Field, Hole, Goal, Others. The reward at Field is -0.005,
Hole is -0.5, Goal is 1 and Others is -0.01. The exact map can be found in Voloshin et al. (2019).

• Hybrid Domain is from Thomas & Brunskill (2016). It is a composition of two other domains from the same study,
called ModelWin and ModelFail. The ModelFail domain has horizon 2, four states {s

0

, s
1

, s
2

, sa} and two actions
{0, 1}. The agent starts at s

0

, goes to s
1

with reward 1 if a = 0, and goes to s
2

with reward if a = 1. Then it transitions
to the absorbing state sa. This environment has partial observability so that {s

0

, s
1

, s
2

} are aliased together.
In the hybrid domain the absorbing state sa is replaced with a new state s

1

in the ModelWin domain. This domain has
four states {s

1

, s
2

, s
3

, sa}. The action space is {0, 1}. The agent starts from s
1

. Upon taking action a = 0, it goes to
s
2

with probability 0.6 and receives reward 1, and goes to s
3

with probability 0.4 and reward -1. If a = 1, it does the
opposite. From s

2

and s
3

the agent deterministically transitions to s
1

with 0 reward. do a deterministic transition back
to s

1

with 0 reward. The horizon here is 20 and x
20

= sa. The states are fully observable.

Models. Instead of experiment with all possible approaches for direct modeling, which is quite burdensome, we follow the
high-level guidelines provided in Table 3 of Voloshin et al. (2019)’s paper: for Graph, PO-Graph, and Mountain Car we use
FQE because these environments are stochastic and have severe mismatch between logging and target policy. In contrast,
Gridworld has moderate policy mismatch, so we use Q⇡

(�). For the Hybrid domain, we use a simple maximum-likelihood
approximate model to predict the full transition operator and rewards, and plan in the model to estimate the value function.

Policy. For Gridworld and Mountain Car, we use ✏-Greedy polices as logging and target policies. To derive these,
we first train a base policy using value iteration and then we take ⇡(a?|x) = 1 � ✏ and ⇡(a | x) = ✏/(|A| � 1) for
a 6= a?(x), where a?(x) = argmax

ˆQ(x, a) for the learned ˆQ function. In Gridworld, we take the following policy pairs:
[(1, 0.1), (0.6, 0.1), (0.2, 0.1), (0.1, 0.2), (0.1, 0.6)], where the first argument is the ✏ parameter for . For Mountain Car
domain, we take the following policy pairs: [(0.1, 0), (1, 0), (1, 0.1), (0.1, 1)] where the first argument is the parameter for
⇡
L

and the second is for ⇡
T

. For the Graph and Graph-POMDP domain, both logging and target policies are static polices
with probability p going left (marked as a = 0) and probability 1� p going right (marked as a = 1), i.e., ⇡(a = 0|x) = p
and ⇡(a = 1|x) = 1 � p 8x. In both environments, we vary p of the logging policy to be 0.2 and 0.6, while setting p
for target policy to be 0.8. For the Hybrid domain, we use the same policy as Thomas & Brunskill (2016). For the first
ModelFail part, ⇡

L

(a = 0) = 0.88 and ⇡
L

(a = 1) = 0.12, while the target policy does the opposite. For the second
ModelWin part, ⇡

L

(a = 0|s
1

) = 0.73 and ⇡
L

(a = 1|s
1

) = 0.27, and the target policy does the opposite. For both policies,
they select actions uniformly when s 2 {s

2

, s
3

}.

Other parameters. For both the Graph and Graph-POMDP, we use � = 0.98 and N 2 2

7:10. For Gridworld,
� = 0.99 and N 2 2

7:9. For Mountain Car, � = 0.96 and N 2 2

8:10. For Hybrid, � = 0.99 and N 2
{10, 20, 50, · · · , 10000, 20000, 50000}. Each condition is averaged over 100 replicates.

C.2. Reproducibility Checklist

Data collection process. All data are synthetically generated as described above.

Dataset and Simulation Environment. The Mountain Car environment is downloadable from OpenAI (Brockman
et al., 2016). Graph, Graph-POMDP, Gridworld, and the Hybrid domain are available at https://github.com/
clvoloshin/OPE-tools, which is the supporting code for Voloshin et al. (2019).

Excluded Data. No excluded data.

Training/Validation/Testing allocation. There is no training/validation/testing setup in off policy evaluation. Instead all
logged data are used for evaluation.

Hyper-parameters. Hyperparameters (apart from those optimized by SLOPE) are optimized followng the guidelines
of Voloshin et al. (2019). For MountainCar, the direct model is trained using a 2-layer fully connected neural network with
hidden units 64 and 32. The batch size is 32 and convergence is set to be 1e � 4, network weights are initialized with

Adaptive Off-Policy Evaluation

truncated Normal(0, 0.1). For tabular models, convergence of Graph and Graph-POMDP is 1e� 5 and Gridworld is 4e� 4.

Evaluation runs. All conditions have 100 replicates with different random seeds.

Description of experiments. For each condition, determined by the choice of environment, stochastic/deterministic reward,
sparse/dense reward, stochastic/deterministic transition model, logging policy ⇡

L

, target policy ⇡
T

and sample size N . We
generate N logged trajectories following ⇡

L

, and 10000 samples from ⇡
T

to compute the ground truth V (⇡
T

). All baselines
and SLOPE are calculated based on the same logged data. The MSE is estimated by averaging across the 100 replicates,
each with different random seed.

Measure and Statistics. Results are shown in Figure 4. Statistics are based on empirical CDF calculated by aggregating
the 106 conditions. Typically there are no error bars in ECDF plots. Pairwise comparison is based on paired t-test over all
pair of methods over all conditions. Each test has significance level 0.05. Learning curve is based on Hybrid domain with
128 replicates, with error bar corresponding to ±2 standard errors shown in the plots.

Computing infrastructure. RL experiments were conducted in a Linux compute cluster.

