ConQUR: Mitigating Delusional Bias in Deep Q-learning

References

Anschel, O., Baram, N., and Shimkin, N. Averaged-dqn:
Variance reduction and stabilization for deep reinforce-
ment learning. arXiv:1611.01929,2017.

Bellemare, M., Dabney, W., and Munos, R. A distributional
perspective on reinforcement learning. In Proceedings

of the International Conference on Machine Learning
(ICML-17), pp. 449458, 2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation platform
for general agents. J. Artif. Int. Res., 47(1):253279, May
2013. ISSN 1076-9757.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A research framework for
deep reinforcement learning. arXiv:1812.06110
[cs.LGT, 2018.

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley,
K. O., and Clune, J. Improving exploration in evolution
strategies for deep reinforcement learning via a popula-

tion of novelty-seeking agents. arXiv:1712.06560,
2018.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503-556, 2005.

FauBler, S. and Schwenker, F. Neural network ensembles in
reinforcement learning. Neural Processing Letters, pp.
5569, 2015.

Gordon, G. Approximation Solutions to Markov Decision
Problems. PhD thesis, Carnegie Mellon University, 1999.

Gordon, G. J. Stable function approximation in dynamic
programming. In Proceedings of the Twelfth International
Conference on Machine Learning (ICML-95), pp. 261—
268, Lake Tahoe, 1995.

Guadarrama, S., Korattikara, A., Oscar Ramirez, P. C.,
Holly, E., Fishman, S., Wang, K., Gonina, E., Wu, N.,
Harris, C., Vanhoucke, V., and Brevdo, E. TF-Agents:
A library for reinforcement learning in tensorflow,
2018. URL https://github.com/tensorflow/
agents.

Hasselt, H. v., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence,
AAAT’ 16, pp. 2094-2100. AAAI Press, 2016.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. arXiv:1710.02298, 2017.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In 8th International Conference
on Learning Representations, Addis Ababa, Ethiopia,
2020.

Khadka, S. and Tumer, K. Evolution-guided policy gradient
in reinforcement learning. In Advances in Neural Informa-
tion Processing Systems 31 (NeurIPS-18), pp. 11961208,
Montreal, 2018.

Lu, T., Schuurmans, D., and Boutilier, C. Non-delusional
Q-learning and value iteration. In Advances in Neural
Information Processing Systems 31 (NeurIPS-18), pp.
99719981, Montreal, 2018.

Maei, H., Szepesvdri, C., Bhatnagar, S., and Sutton, R. To-
ward off-policy learning control wtih function approxima-
tion. In International Conference on Machine Learning,
pp. 719726, Haifa, Israel, 2010.

Melo, F. and Ribeiro, M. I. Q-learning with linear function
approximation. In Proceedings of the International Con-
ference on Computational Learning Theory (COLT), pp.
308-322, 2007.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness,
J., Bellemare, M., Graves, A., Riedmiller, M., Fidje-
land, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Science, 518:529—
533, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems
29 (NIPS-16), pp. 10541062, Barcelona, 2016.

Osband, 1., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. Advances in Neu-
ral Information Processing Systems 29 (NIPS-16), pp.
40334041, 2016.

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D.,
Budden, D., Barth-Maron, G., van Hasselt, H., Quan, J.,
Vecerik, M., Hessel, M., Munos, R., and Pietquin, O. Ob-
serve and look further: Achieving consistent performance
on atari. 2018. arXiv:1805.1159.

Riedmiller, M. Neural fitted q iteration—first experiences
with a data efficient neural reinforcement learning method.
In Proceedings of the 16th European Conference on Ma-
chine Learning, pp. 317-328, Porto, Portugal, 2005.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering


https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

ConQUR: Mitigating Delusional Bias in Deep Q-learning

atari, go, chess and shogi by planning with a learned
model. arxXiv:1911.08265 [cs.LG], 2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of Go with deep neural networks and tree search.
Nature, 529(7587):484-489, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 2018.

Szepesvari, C. and Smart, W. Interpolation-based Q-
learning. In Proceedings of the International Conference
on Machine Learning (ICML-04), pp. 100-107, 2004.

van Hasselt, H. Double g-learning. In Advances in Neural
Information Processing Systems 23 (NIPS-10), pp. 2613—
2621, Vancouver, BC, 2010.

Vapnik, V. N. Statistical Learning Theory. Wiley-
Interscience, September 1998.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M., and de Freitas, N. Dueling network architectures
for deep reinforcement learning. In Proceedings of the

International Conference on Machine Learning (ICML-
16), pp. 19952003, 2016.

Watkins, C. J. C. H. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, May 1989.

Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine
Learning, 8:279-292, 1992.



ConQUR: Mitigating Delusional Bias in Deep Q-learning

S1 as 59 ay 53 ay S4 as
R(s4,a2)

a prob. 1 —g¢q u " "
R(s1,a1) . ! !

ay prob. ¢

Figure 7: A simple MDP (Lu et al.| 2018).

A. Delusional Bias Example

We describe a simple MDP, taken directly from (Lu et al.|
2018]), to show concretely how delusional bias causes prob-
lems for Q-learning with function approximation. The MDP
in Fig. [/|illustrates the phenomenon: |Lu et al.|(2018) use
a linear approximator over a specific set of features in this
MDP to show that:

(a) No m € G(O) can express the optimal (unconstrained)
policy (which requires taking as at each state);

(b) The optimal feasible policy in G(©) takes a; at s and
as at s4 (achieving a value of 0.5).

(c) Online Q-learning (Eq.[I) with data generated using an
e-greedy behavior policy must converge to a fixed point
(under a range of rewards and discounts) corresponding
to a “compromise” admissible policy which takes a at
both s; and s4 (value of 0.3).

Q-learning fails to find a reasonable fixed-point because of
delusion. Consider the backups at (sq,a2) and (s3,az).
Suppose 0 assigns a “high” value to (ss,az), so that
Q4(s3,a2) > Qg(s3,a1) as required by mg-. They show
that any such 0 also accords a “high” value to (s2,as).
But Q(s2,a2) > Q4(s2,a1) is inconsistent the first re-
quirement. As such, any update that makes the Q-value of
(s2, az2) higher undercuts the justification for it to be higher
(i.e., makes the “max” value of its successor state (s3, as)
lower). This occurs not due to approximation error, but
the inability of Q-learning to find the value of the optimal
representable policy.

A.1. CONQUR on the Simple MDP

We ran CONQUR on the MDP in Fig. [/| to verify its ef-
fectiveness in removing delusional bias in this simplified
setting. We instantiate CONQUR with eight nodes, with
ten independent runs, each with a different random seed. In
all ten runs CONQUR converges to the optimal expressible
(delusion-free) greedy policy: it selects action 1 at states 1
and 2, and action 2 at states 3 and 4. This clearly improves
over Q-learning, which finds a sub-optimal policy (due to Q-
updates of infeasible action combinations) (Lu et al.} 2018).
This example shows the effectiveness of CONQUR in re-
moving delusional bias.

B. Consistency Penalization Experiments

Both DQN and DDQN uses a delayed version of the Q-
network Qg (s, a’) for label generation, but in a different
way. In DQN, Qg- (s',a’) is used for both value estimate
and action assignment opgn(s’) = argmax, Qp, (s',a’),
whereas in DDQN, Qg (', a’) is used only for value esti-
mate and the action assignment is computed from the current
network oppon(s’) = argmax,, Qg, (s, a’).

With respect to delusional bias, action assignment of DQN
is consistent for all batches after the latest network weight
transfer, as opgn(s’) is computed from the same Q4 (s, a’)
network. DDQN, on the other hand, could have very incon-
sistent assignments, since the action is computed from the
current network that is being updated at every step.

B.1. Training Methodology and Hyperparameters

We implement consistency penalty on top of the DQN and
DDQN algorithm by modifying the open-source TF-Agents
library (Guadarrama et al., 2018)). In particular, we modify
existing DgnAgent and DdgnAgent by adding a consis-
tency penalty term to the original TD loss.

We use TF-Agents implementation of DQN training on
Atari with the default hyperparameters, which are mostly
the same as that used in the original DQN paper (Mnih
et al.,[2015)). For conveniece to the reader, some important
hyperparameters are listed in Table[2] The reward is clipped
between [—1, 1] following the original DQN.

B.2. Evaluation Methodology

We empirically evaluate our modified DQN and DDQN
agents trained with consistency penalty on 15 Atari games.
Evaluation is run using the training and evaluation frame-
work for Atari provided in TF-Agents without any modifi-
cations.

B.3. Detailed Results

Fig. [8] shows the effects of varying A on both DQN and
DDQN. Table [3] summarizes the best penalties for each
game and their corresponding scores. Fig. [0 shows the
training curves of the best penalization constants. Finally,
Fig.|10[shows the training curves for a fixed penalization of
A = 0.5. The datapoints in each plot of the aforementioned
figures are obtained by averaging over window size of 30
steps, and within each window, we take the largest policy
value (and over ~2-5 multiple runs). This is done to reduce
visual clutter.
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Hyper-parameter

Value

Mini-batch size
Replay buffer capacity
Discount factor ~y
Optimizer

Learning rate
Convolution channel
Convolution filter size
Convolution stride

Fully-connected hidden units

Train exploration €,
Eval exploration €qyy

32

1 million transitions

0.99
RMSProp
0.00025
32,64, 64

(8 x 8),(4x4),(3x3)

4,2,1
512
0.01

0.001

Table 2: Hyperparameters for training DQN and DDQN with consistency penalty on Atari.

DQN | Apest | DQN(Apest) DDQN | Al | DDQN(A.)
Assault 2546.56 | 1.5 3451.07 2770.26 1 2985.74
Atlantis 995460.00 | 0.5 | 1003600.00 | 940080.00 | 1.5 999680.00
BattleZone 67500.00 2 55257.14 | 47025.00 2 48947.37
BeamRider 712490 | 0.5 7216.14 5926.59 | 0.5 6784.97
Boxing 86.76 | 0.5 90.01 82.80 | 0.5 91.29
Breakout 220.00 | 0.5 219.15 21425 | 0.5 242.73
Enduro 1206.22 | 0.5 1430.38 1160.44 1 1287.50
Gravitar 475.00 | 1.5 685.76 46294 | 1.5 679.33
JourneyEscape -1020.59 | 0.25 -696.47 -794.71 1 -692.35
MsPacman 4104.59 2 4072.12 3859.64 | 0.5 4008.91
NameThisGame 7230.71 1 9013.48 9618.18 | 0.5 10210.00
Qbert 13270.64 | 0.5 14111.11 13388.92 1 12884.74
Seaquest 5849.80 1 6123.72 | 12062.50 1 7969.77
Spacelnvaders 2389.22 | 0.5 2707.83 3007.72 | 0.5 4080.57
StarGunner 40393.75 | 0.5 55931.71 | 55957.89 | 0.5 60035.90
TimePilot 4205.83 7612.50 6654.44 2 7964.10
Tutankham 222.76 1 265.86 243.20 | 0.25 24717
VideoPinball 569502.19 | 0.25 | 552456.00 | 509373.50 | 0.25 562961.50
Zaxxon 5533.33 1 10520.00 7786.00 | 0.5 10333.33

Table 3: Consistency penalty ablation results on best penalty constants for DQN and DDQN, averaged over 5 random seeds.

C. Full CONQUR Experiments

Our results use a frontier queue of size (F') 16 (these are the
top scoring leaf nodes which receive gradient updates and
rollout evaluations during training). To generate training
batches, we select the best node’s regressor according to our
scoring function, from which we generate training samples
(transitions) using e-greedy. Results are reported in Table
and training curves in Fig. We used Bellman error plus
consistency penalty as our scoring function. During the
training process, we also calibrated the scoring to account
for the depth difference between the leaf nodes at the frontier
versus the leaf nodes in the candidate pool. We calibrated
by taking the mean of the difference between scores of the
current nodes in the frontier with their parents. We scaled
this difference by multiplying with a constant of 2.5.

In our implementation, we initialized our Q-network with a
pre-trained DQN. We start with the expansion phase. During
this phase, each parent node splits into ¢ children nodes and
the Q-labels are generated using action assignments from
the Boltzmann sampling procedure, in order to create high
quality and diversified children. We start the dive phase
until the number of children generated is at least F'. In
particular, with F' = 16 configuration, we performed the
expansion phase at the zero-th and first iterations, and then
at every tenth iteration starting at iteration 10, then at 20,
and so on until ending at iteration 90. All other iterations
execute the “dive” phase. For every fifth iteration, Q-labels
are generated from action assignments sampled according
to the Boltzmann distribution. For all other iterations, Q-
labels are generated in the same fashion as the standard
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Figure 8: DQN and DDQN training curves for different penalty constant A. Shaded area shows 95% confidence interval over 5 random
seeds. Consistency penalty outperforms on 11 games: BattleZone, Gravitar, NameThisGame, Spacelnvaders, StarGunner, TimePilot,

Zaxxon, Tutankham, JourneyEscape, Atlantis and BeamRider.

Q-learning (taking the max Q-value). The generated Q-
labels along with the consistency penalty are then converted
into gradient updates that applies to one or more generated
children nodes.

C.1. Training Methodology and Hyperparameters

Each iteration consists of 10k transitions sampled from the
environment. Our entire training process has 100 iterations
which consumes 1M transitions or 4M frames. We used
RMSProp as the optimizer with a learning rate of 2.5x 1076,
One training iteration has 2.5k gradient updates and we used
a batch size of 32. We replace the target network with the
online network every fifth iteration and reward is clipped
between [—1,1]. We use a discount value of v = 0.99
and e-greedy with e = 0.01 for exploration. Details of
hyper-parameter settings can be found in Table 3} [6]

C.2. Evaluation Methodology

We empirically evaluate our algorithms on 59 Atari games
(Bellemare et al, [2013)), and followed the evaluation pro-
cedure as in [Hasselt et al.| (2016). We evaluate our agents
on every 10-th iteration (and also the initial and first itera-
tion) by suspending our training process. We evaluate on
500k frames, and we cap the length of the episodes for 108k
frames. We used e-greedy as the evaluation policy with
e = 0.001. We evaluated our algorithm under the no-op

starts regime—in this setting, we insert a random number of
“do-nothing” (or no-op) actions (up to 30) at the beginning
of each episode.

C.3. Detailed Results

Fig.[TT]shows training curves of CONQUR with 16 nodes
under different penalization strengths A € {1,10}. While
each game has its own optimal ), in general, we found that
A = 10 gave the best performance for most games. Each
plotted step of each training curve (including the baseline)
shows the best performing node’s policy value as evaluated
with full rollouts. Tabled]shows the summary of the highest
policy values achieved for all 59 games for CONQUR and
the baseline under 16 nodes. Both the baseline and CON-
QUR improve overall, but CONQUR’s advantage over the
baseline is amplified. These results all use a splitting factor
of ¢ = 4. (We show results with 8 nodes and a splitting
factor of 2 below.)
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Figure 9: DQN and DDQN training curves for the respective best A and baseline. Shaded area shows 95% confidence interval over 5

random seeds.

C.4. Additional Results: CONQUR with 8 Nodes

As an additional study of CONQUR, we present results of
the running our method using 8 nodes (rather than the 16
used above), and compare it to a multi-DQN baseline that
also uses 8 “nodes” (i.e., 8 separate DQN runs). We use
a splitting factor ¢ = 2 for CONQUR. Table [/| shows the
average scores for each game using CONQUR and the base-
line with 8 nodes. Unsurprisingly, CONQUR with 8 nodes
does not perform as well as CONQUR with 16 nodes; but
as in the 16-node case, CONQUR outperforms the baseline
when each uses 8 nodes. More importantly, the average im-
provement of 24.5% for CONQUR with 16 nodes over the
corresponding baseline exceeds the 19.6% improvement of
CONQUR in the 8-node case. This is a strong indication that
increasing the number of nodes increases the performance
gap relative to the corresponding multi-DQN baseline; this
implies that a good search heuristic is critical to effectively
navigate the search space (as compared to randomly selected
nodes) with a greater number of candidate hypothesesm

C.5. Additional Results: CONQUR Training of Entire
Q-Network from Scratch

We present results of running our method using 2 nodes with
full network training from scratch, and compare it to a multi-

1OAverage score improvements exclude games where the base-
line score is zero.

DOQN baseline that also uses 2 “nodes” (i.e., 2 separate DQN
runs). We use a configurationof c=1,m =4, F =2, { =
1 for CONQUR. Table[8]shows the average scores for each
game using CONQUR and the baseline with 2 nodes, 9 of
11 games show at least 32% gain over the baseline, the other
2 are about the same as baseline.
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Figure 11: Training curves on 16 nodes with up to 30 no-op starts. Shading shows 95% confidence interval over 5 random seeds.
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CONQUR(Apest) (16 nodes) | Baseline (16 nodes) | Checkpoint
AirRaid 10613.01 9656.21 6916.88
Alien 3253.18 2713.05 2556.64
Amidar 555.75 446.88 203.08
Assault 2007.81 2019.99 1932.55
Asterix 5483.41 4649.52 2373.44
Asteroids 1249.13 1196.56 701.96
Atlantis 958932.00 931416.00 | 902216.00
BankHeist 1002.59 965.34 872.91
BattleZone 31860.30 32571.80 26559.70
BeamRider 9009.14 9052.38 6344.91
Berzerk 671.95 664.69 525.06
Bowling 38.36 39.79 25.04
Boxing 81.37 81.26 80.89
Breakout 372.31 359.17 286.83
Carnival 4889.19 4860.66 4708.14
Centipede 4025.57 2408.23 758.21
ChopperCommand 7818.22 6643.07 2991.00
CrazyClimber 134974.00 119194.00 63181.14
DemonAttack 11874.80 11445.20 7564.14
DoubleDunk -14.04 -15.25 -16.66
ElevatorAction 24.67 28.67 0.00
Enduro 879.84 835.11 556.97
FishingDerby 16.28 13.22 6.92
Freeway 32.65 32.63 32.52
Frostbite 289.25 230.29 166.44
Gopher 11959.20 9084.00 4879.02
Gravitar 489.22 446.64 394.46
Hero 20827.00 20765.70 20616.30
IceHockey -3.15 -3.55 -8.59
Jamesbond 710.78 681.05 624.36
JourneyEscape 902.22 1437.06 -947.18
Kangaroo 11017.65 10743.10 10584.20
Krull 9556.53 9487.49 3998.90
MontezumaRevenge 0.00 0.00 0.00
MsPacman 544431 5487.12 4160.50
NameThisGame 9104.40 8445.43 5524.73
Phoenix 5325.33 5430.49 4801.18
Pitfall 0.00 0.00 -4.00
Pong 21.00 21.00 20.95
Pooyan 5898.46 5728.05 4393.09
PrivateEye 100.00 100.00 100.00
Qbert 13812.40 15189.00 8625.88
Riverraid 15895.10 15370.10 11364.90
RoadRunner 50820.40 47481.10 45073.25
Robotank 62.74 57.66 53.08
Seaquest 3046.34 2691.88 1060.77
Skiing -13638.80 -14908.21 -29897.07
Solaris 1991.33 1202.89 285.46
Spacelnvaders 3556.10 3520.96 2895.30
StarGunner 55679.27 55176.90 51490.60
Tennis 0.00 0.00 0.00
TimePilot 6698.88 7327.71 3806.54
Tutankham 252.51 220.90 36.07
UpNDown 31258.84 34455.20 5956.24
Venture 37.37 3.64 0.00
VideoPinball 423012.59 383105.41 268476.04
WizardOfWor 8154.73 4782.11 2012.24
YarsRevenge 26188.24 26330.31 25000.36
Zaxxon 11723.20 11589.90 5334.44

Table 4: Summary of scores with e-greedy (¢ = 0.001) evaluation with up to 30 no-op starts. We ran CONQUR with 16 nodes and with
A € {1,10}. We report the scores of the best Apes: for each game. For most games, Apest is 10. Scores averaged over 5 random seeds.
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Hyperparameters Description Value
Dive levels d to run We run d levels of diving phase after each expansion 9
phase
Boltzmann Iteration Every module this number of iteration/level, Q- 5
labels are generated from Boltzmann distribution
in order to create diversified node.
Online network target net- | Iteration (Frequency) at which the online network 5
work swap frequency parameters swap with the target network
Evaluation frequency Iteration (Frequency) at which we perform rollout 10
operation (testing with the environment).
Learning Rate Learning rate for the optimizer. 2.5 x 1076
Optimizer Optimizer for training the neural network. RMSprop
Iteration training data transi- | For each iteration, we generate this number of tran- 10k
tion size sitions and use it as training data.
Training step frequency For each iteration, we perform (iteration training 4
data transition size / training step frequency) number
of gradient updates.
Mini-batch size Size of the mini batch data used to train the Q- 32
network.
Etrain e-greedy policy for exploration during training. 0.01
Eeval e-greedy policy for evaluating Q-regressors. 0.001
Training calibration parame- | Calibration to adjust the difference between the 2.5A
ter nodes from the candidate pool m which didn’t se-
lected during both the expansion nor the dive phases.
The calibration is performed based on the average
difference between the frontier nodes and their par-
ents. We denote this difference as A.
Temperature 7 Temperature parameter for Boltzmann sampling. 1
Adaptively multiplied or divided by a factor of 1.5
or 4 respectively.
Discount factor vy Discount factor during the training process. 0.99
Table 5: Common Hyperparameters for CONQUR training and evaluation.
Hyperparameters Description Value
Splitting factor ¢ Number of children created from a parent node 4
Candidate pool size m Pool of candidate leaf nodes for selection into the 46
dive or expansion phase
Maximum frontier nodes /' | Maximum number of child leaf nodes for the dive 16
phase
Top nodes to expand /¢ Select the top ¢ nodes from the candidate pool for 4
the expansion phase.

Table 6: Hyperparameters for CONQUR (16 nodes) training and evaluation.
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Percentage improvement of ConQUR(A = 10) over initial checkpoint
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Figure 12: Improvement CONQUR(A = 10) with 16 nodes achieves over the initial checkpoint Q-network. Score averaged over 5 random
seeds.
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CONQUR (Apest) (8 nodes) | Baseline (8 nodes) | Checkpoint
AirRaid 10647.80 9050.86 6885.72
Alien 3341.36 3207.5.05 2556.64
Amidar 577.45 573.55 202.74
Assault 1892.02 1976.80 1873.05
Asterix 5026.24 4935.21 2373.44
Asteroids 1194.90 1170.11 704.38
Atlantis 949012.00 932668.00 | 902216.00
BankHeist 909.61 924.75 871.91
BattleZone 32139.90 30983.10 26558.70
BeamRider 8613.98 8109.63 6397.49
Berzerk 659.64 634.83 524.76
Bowling 30.07 25.29 25.04
Boxing 81.78 81.48 80.29
Breakout 350.11 362.98 286.14
Carnival 4862.30 4800.83 4708.23
Centipede 2747.89 2608.78 757.51
ChopperCommand 7188.25 6737.21 2641.71
CrazyClimber 131675.00 122424.00 63181.11
DemonAttack 11346.20 10947.90 8022.08
DoubleDunk -13.57 -15.35 -16.66
ElevatorAction 28.00 21.33 0.00
Enduro 849.07 811.58 556.56
FishingDerby 13.34 11.56 7.15
Freeway 32.60 32.60 32.52
Frostbite 296.57 220.81 165.01
Gopher 9999.61 8013.34 4879.13
Gravitar 475.03 480.64 394.46
Hero 20803.60 20774.80 20598.40
IceHockey -3.23 -4.78 -8.63
Jamesbond 664.98 669.54 626.53
JourneyEscape -462.64 391.44 -947.18
Kangaroo 10974.00 10733.60 10584.20
Krull 9503.62 9538.22 4039.78
MontezumaRevenge 1.46 0.00 0.00
MsPacman 5066.17 5227.84 4160.50
NameThisGame 9181.30 8410.29 5529.50
Phoenix 5307.46 5227.84 4801.18
Pitfall 0.00 0.00 -4.00
Pong 21.00 20.99 20.95
Pooyan 5778.99 5184.14 4393.09
PrivateEye 100.00 100.00 100.00
Qbert 11953.40 13965.80 8625.88
Riverraid 15614.40 14812.40 11253.30
RoadRunner 49864.80 46302.20 45073.25
Robotank 61.92 56.90 53.08
Seaquest 2647.82 2560.61 1034.83
Skiing -14058.90 -14079.80 -29896.80
Solaris 1956.24 1182.59 291.70
Spacelnvaders 3436.16 3292.68 2895.30
StarGunner 55479.00 54207.30 51419.60
Tennis 0.00 0.00 0.00
TimePilot 6717.62 6799.19 3806.22
Tutankham 242.03 229.23 36.00
UpNDown 22544.60 23331.20 5956.21
Venture 1541 1.50 0.00
VideoPinball 382110.59 390540.41 209620.0
WizardOfWor 5750.05 3632.17 2011.77
YarsRevenge 25631.10 25396.70 25319.20
Zaxxon 10751.80 11156.20 5186.01

Table 7: Summary of scores, averaged over 5 random seeds, with e-greedy (¢ = 0.001) evaluation with up to 30 no-op starts. As a side
study, we ran CONQUR with 8 nodes and with A € {1,10}. We report the scores of the best Apest for each game. For most games, Apes: is
10. The 8 nodes configuration follows the same as in Table exceptthat c = 2,m = 38, F = §,{ = 2.
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ConQUR (Apest) Baseline Initial
AirRaid 3595.03 335498 | 323.80
Berzerk 668.86 505.90 | 215.74
Bowling 49.19 34.55 0.42
ChopperCommand 1117.17 1152.53 555
Freeway 10.30 5.82 0.00
Jamesbond 82.15 74.36 50.16
Kangaroo 469.98 311.07 3.24
PrivateEye 996.09 20.57 -86.15
Robotank 15.56 11.74 6.36
Solaris 2345.47 1684.93 | 1202.35
VideoPinball 227390.17 | 143394.81 | 4051.15

Table 8: Summary of scores, averaged over 5 random seeds. As a side study, we ranCONQUR with 2 nodes and training from scratch. We
report the score of the best Ayest for each game. For most games, Apest is 10. The 2 nodes configuration is identical to that of Table
exceptwithc=1m=4,F =2{(=1.



