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Abstract

Beyond machine learning’s success in the specific
tasks, research for learning multiple tasks simulta-
neously is referred to as multi-task learning. How-
ever, existing multi-task learning needs manual
definition of tasks and manual task annotation. A
crucial problem for advanced intelligence is how
to understand the human task concept using basic
input-output pairs. Without task definition, sam-
ples from multiple tasks are mixed together and
result in a confusing mapping challenge. We pro-
pose Confusing Supervised Learning (CSL) that
takes these confusing samples and extracts task
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concepts by differentiating between these samples.
We theoretically proved the feasibility of the CSL
framework and designed an iterative algorithm
to distinguish between tasks. The experiments
demonstrate that our CSL methods could achieve
a human-like task understanding without task la-
beling in multi-function regression problems and
multi-task recognition problems.

1. Introduction

Over the past few decades, machine learning research has
reached or even exceeded human-level performance on vari-
ous problems (Silver et al., 2016; He et al., 2015). However,
these learning machines are limited to a specific task in a
determined environment, which is referred to as “Narrow
AI” (Kurzweil, 2005). Beyond this paradigm, a type of intel-
ligent system that processes multiple tasks simultaneously is
referred to as a multi-task learning system (Caruana, 1997).
The systems learn from labeled data referring to multiple
tasks and give corresponding inferences from the input for
every task. For instance, as shown in Figure 1(a), the same
image corresponds to “Red”, “Apple,” and “Sweet” in dif-
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(b) Confusing Supervised Learning.

Figure 1. The learning paradigm of multi-task learning and confus-
ing supervised learning.

ferent classification tasks. Multi-task learning is prevalently
applied in various fields, such as computer vision (Meyerson
& Miikkulainen, 2018; Chen et al., 2018), natural language
processing (Liu et al., 2019; Collobert & Weston, 2008) and
reinforcement learning (Hessel et al., 2019).

Generally speaking, multi-task learning methods require
manual definition of tasks and annotation for task encod-
ing, as shown in Figure 1(a). When collecting a multi-task
dataset, we need to construct the task definition and make
the task annotations for every input-label sample. These
manual task annotations require enormous annotation cost
and constrain the generalization of multi-task machines.
Moreover, humans also face confusingly labeled data in the
real world, and they learn the high-level task understanding
for better analysis and decision, which is a critical process in
human recognition. Therefore, a novel, promising problem
is whether the machine could understand task concepts from
basic input-label pairs that contain neither task annotation
nor the sample allocation for tasks, shown in Figure 1(b).

Without task annotation, training samples from multiple
tasks are mixed together in a confusing manner, where the
same inputs have different outputs. Then, traditional super-
vised learning fails to learn with this data due to a confusing
mapping challenge. The traditional learning machine learns
a function to approximate the unknown, and certain map-
ping from input to output minimizes the risk functional.
However, the assumption of a single mapping function in
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Figure 2. Comparison of traditional supervised learning, latent variable learning, multi-task learning, multi-label learning, and confusing

supervised learning (CSL).

the basic theory (Vapnik, 2003) leads to unavoidable con-
fusion risk for our multi-task confusing data. As a result,
the machine could only learn the means of these multi-task
outputs, instead of the exact mapping relation for any task.
Our goal is to clarify these confusing supervised samples
and complete task understanding.

In order to understand the task concept, we took confusing
supervised data and proposed a novel learning method: Con-
fusing Supervised Learning (CSL). We found that proper
allocation for confusing samples could prevent conflicting
mapping relationships, which is consistent with the con-
cept of tasks in human cognition. Following this idea, we
constructed a CSL framework that contains two types of
function variables: (i) Deconfusing Function and (ii) Map-
ping Functions. The deconfusing function represents the
relationship between samples and tasks, which allocates
confusing data into multiple tasks. The mapping functions
represent the relationships from input to labels for each
task. With these two function variables, the risk functional
involves a reasonable upper-level sample allocation and
accurate lower-level multi-task input-label mappings.

To achieve our goal, the CSL method must deal with two
crucial difficulties: (i) whether it is feasible; and (ii) how
to learn with it. For the first problem, we proved that in
the CSL method, the expected risk functional minimiza-
tion can be approximated by minimizing the empirical risk,
and the optimal risk value could be reduced to zero. For
the second problem, we constructed a CSL-Net for repre-
senting variables of CSL. However, the one-hot constraint
of the outputs makes gradient back-propagation unfeasi-
ble. We transformed the CSL risk minimization into two
non-increasing optimization problems. By alternatively per-
forming training for these two optimizations, the iterative
learning algorithm can get the solutions for the CSL-Net.

To verifty the advantages of our confusing supervised learn-

ing framework, we respectively constructed experiments
for function regression and image recognition with obfus-
cated multi-task data, Our experimental results show that
the CSL-Net can autonomously learn a human task concept
and multiple mappings for every task simultaneously. Com-
pared with multi-task learning with complete information,
the CSL-Net could achieve the same complete cognition
result from confusing data without task annotations.

2. Related Work

Multi-task Learning. Multi-task learning aims to learn
multiple tasks simultaneously and improves learning effi-
ciency and performance by sharing feature representations
(Caruana, 1997; Argyriou et al., 2007; Evgeniou & Pontil,
2004; Long et al., 2017). Multi-task learning is prevalent
in various fields including computer vision (Meyerson &
Miikkulainen, 2018; Chen et al., 2018; Kendall et al., 2018),
natural language processing(Hashimoto et al., 2017; Liu
et al., 2019) and reinforcement learning(Hessel et al., 2019;
Omidshafiei et al., 2017). In multi-task learning, the task to
which every sample belongs is known, as shown in Figure
2(b). With this task definition, the input-output mapping of
every task can be represented by a unified function. How-
ever, these task definitions are manually constructed, and
machines need manual task annotations to learn. Without
this annotation, our goal is to understand the task concept
from confusing input-label pairs.

Considering learning from confusing data samples, latent
variable learning and multi-label learning have some simi-
larities but differ essentially in statistical theory.

Latent Variable Learning. The mapping relations in latent
variable learning contain multiple distribution modules, and
learning methods need to distinguish samples from different
models (Kumar et al., 2010; Serban et al., 2017; Daumé 111
& Kumar, 2013). Latent variable learning focuses on mixed
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probability models, as shown in Figure 2(a). In essence, all
input-label pairs come from a unified distribution, and this
distribution is estimated by a mixture of multiple probability
models. However, multi-task confusing samples are from
different distributions. Due to the lack of task information,
statistically speaking, the estimation of mapping parameters
is insufficient for confusing samples shown in Figure 2(c).

Multi-label Learning. Multi-label learning considers situ-
ations where one object contains multiple semantic labels
simultaneously(Boutell et al., 2004; Durand et al., 2019;
Kazawa et al., 2005; Gopal & Yang, 2010). In this learning
problem, one input variable is assigned a set of proper labels
and the learning machine must judge which labels express
its semantics correctly(Tsoumakas & Katakis, 2009). Differ-
ent from our multi-task confusing data, multi-label learning
assumes that each label judgment is an independent learning
problem, which does not involve the semantic understanding
of tasks in multi-task learning.

3. Confusing Supervised Learning
3.1. Confusing Mapping Challenge

Our goal is to understand the task concept with confusing
multi-task data. However, traditional supervised learning
fails to learn from confusing data due to confusing multiple
mappings.

In the standard supervised learning problem, the learning
goal is to select an optimal function from a set of functions to
minimize the risk functional (Vapnik, 2003). Let the training
samples be (z,y), which is from an identical but unknown
mapping relationship y = f(x) (or p(y|x)). Without loss
of generality, let the risk measure for the samples be mean
square error (MSE), that is Ry = (y — g(z))?. Then the
expected risk functional is

R(g) = / (f(z) - g(x))*p(z) dz, 0

where p(z) is the prior distribution of input variable z.
Since the function f(x) (or distribution p(y|x)) is unknown,
the risk is estimated by data samples (z;,y;),i = 1,...,m
Then supervised learning methods minimize the empirical
risk

m

Re(g) =Y (vi — g(:))” 2)

i=1

to choose the optimal learning function for risk (1). Obvi-
ously, the theoretically optimal solution for risk functional is
g*(z) = f(x), with which the minimum risk can be reduced
to zero.

Now we consider the Confusing Supervised Learning
(CSL) problem. The samples also appear in the form of

(zi,9i),© = 1,...,m, but they come from a number of differ-
enttasks y = f;(z),j =1,...,n (or p;(ylz),j =1,...,n).
These samples are mixed together and it is unknown which
samples come from the same task f; (or p;(y|x)).

For such confusing data, the existing supervised learn-
ing methods face the theoretically unavoidable confusion
mapping challenge, as shown in Figure 2(a). Specifi-
cally, the confusing samples can be expressed as p(z,y) =
P(f;) - pj(y|lx)p(x), where P(f;) is the prior probability
of tasks f; and p;(y|z) is the posterior probability of y with
z in the task j. When using traditional supervised learning
methods, the risk functional is

/Zf] 2)2p(f;) pla) dz. ()

Confusing Multiple Mappings

Then we calculate the theoretical extreme value of this risk
functional. The optimal solution g*(x) is that

x) = Zp(fj)fj(x) = f(a). 4)

This result means that the learned function is the mean of
all ground-truth functions instead of every specific func-
tion which we need. Also, at this time, the minimum risk
R(g*) > 0, which means the existing supervised learning
paradigm fails to learn the confusing supervised data and
lead to an unavoidable confusion risk. How to overcome this
confusion mapping challenge similar to human cognition is
essential for confusing supervised learning.

3.2. Learning Functions and Risk Functional of CSL

In order to achieve the goal of CSL, we built a novel learning
framework. We found that, in human cognition, confusing
data are first allocated into different groups. After making a
reasonable allocation, all samples in the same group could
be represented by a unified mapping function without con-
flicting outputs for the same input. We think this allocation
is the basic understanding of tasks that makes confusing risk
reduced to zero.

Following this idea, we introduce two types of learning func-
tions: (1) Deconfusing Function represents the allocation
of which samples come from the same task; and (2) Map-
ping Function represents the mapping relation from input to
output of every learned task.

Concretely, for the mapping function, a family of learning
functions {gx, k = 1, ..., 1} is introduced to represent multi-
ple ground-truth mappings {f;,j = 1, ...,n} contained in
confusing samples. The deconfusing function is defined as
h(z,y, gr). This function is an indicator function to deter-
mine whether the sample (z,y) is assigned to the task g.
With these two types of function variables, we modify the
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risk functional. As MSE loss is still used (other losses also
can be applied), the risk functional of the CSL framework
is defined as

R(g,h) =
/ Z (fi(@) = gel2))? hia, £;(). ge) p(f;)p(x) d
—_———
Mappmg Deconfusing Function
Function

)

As the probability term in risk functional is unknown, we
instead estimate empirical risk with data samples that

=3 |y — gr(@) - ki, yisgr). (6)

i=1 k=1

Compared with traditional supervised learning methods, the
CSL framework has two differences. The first is that the
mapping expression changes from one function to multiple
functions. The second is the introduction of a deconfusing
function. In risk measurement, the risk metric of every
sample affects only the assigned learning task.

3.3. Discussion of Existence and Uniqueness

Intuitively, the expressive capability of the CSL framework
is stronger than traditional supervised learning. Here we
prove that this framework is sufficient to overcome the con-
fusion risk in the CSL problem. We have the following
theorem.

Theorem 1 (Existence of Solution). With the confusing
supervised learning framework, there is an optimal solution

h*(x’fj(x)agk)zl[j:k]v (7N

gr(x) = fr(x), k=1,...n, (8)

that makes the expected risk function of the CSL problem
zero.

Proof. This is a constructive conclusion. We can obtain the
result by directly taking a direct solution (7) and deconfusing
function h into risk functional (5). O]

Although this representation is sufficient for confusing data,
there are some meaningless solutions in all optimal risk so-
lutions. For instance, we exchange the mapping results from
a local input & of two tasks in optimal solutions g*(Z) that
9;(2) = g;(#) and g}(%) = g; (%) while the mappings of
other tasks and other inputs are kept. This is also an optimal,
however meaningless, risk solution. Therefore, necessity
constraints are needed to avoid meaningless trivial solu-
tions. Fortunately, when implemented with neural networks
(consisting of continuous operation modules), the mapping

function contains a continuous tendency itself, which results
in a set of meaningful solutions. In more complex cases, we
can further add more necessity constraints for developing a
better task understanding.

3.4. Determine the Number of Tasks

In our CSL framework, the form of learning functions dif-
fers with different task numbers. Since the task number
for ground-truth is unknown, a crucial problem is the deter-
mination of the number of tasks when understanding task
concepts using confusing supervised data. We refer to the
analysis of generalization error in statistical learning theory
and use the principle of structural risk minimization to de-
termine the number of learned tasks in the CSL framework.

The following theorem demonstrates that the method of
empirical risk minimization is valid in the CSL framework.

Theorem 2 (Error Bound of CSL). With probability at
least 1 — n simultaneously with finite VC dimension T of
CSL learning framework, the inequality

Be(m) 4R ()
+ <1+ 1+ Bg(m)> )

R(a) < Re(a)

holds true, where « is the total parameters of learning
function g, h, B is the upper bound of one sample’s risk, and

A T(ln 22 +1) — 11177/4
m

g(m) =

(10)

Proof. Note the samples as z = (z,y), and note samples
under the task j as z() = (z, f;(z)). The set of learning
functions gy (z) and h(z, gi) are given by parametric form
{gr(x;0),0 € ©} and {h(z, gk; @), ¢ € ®}. Let the whole
learning parameters « be o = (6, ¢). We mark the risk of
one sample as

Q(z,k;a) = (y — gi (2:0)) h(x,y, k; ¢).

Then we rewrite the expected risk functional that

(1)

l

/ ZZQ (2D k;a)P (f)}p(z(j))dz(j).

2 j=1k=1

Also, the empirical functional is rewritten as

Z (23, k; )

Mg

=1 k=1
:ii[i}w,kam) P(s,)
i=1 k=1 j=1
:i[ Y EZ:Q(zgj),k;a)P(fj)}.
=1 k=1j=1
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Figure 3. Training Process of the CSL-Net.

Mark that Q(2);a) = SO7_, 2221 Q(2Y), k; o). From
the conclusion of the risk bound in statistical learning theory,
we can get the result of the theorem. O

The above theorem proof explains that the risk functional
minimization of CSL has the same form of error bounds
as in statistical learning theory. Therefore, the structural
risk minimization principle is also valid; that is, the larger
the VC dimension of the learning functions are, the larger
generalization error will be, even leading to overfitting of
finite training samples. In the CSL framework, an important
factor affecting the VC dimension is the assumed number
of tasks. A small task number means a low VC dimension,
which results in a high training risk and even fails to solve
the confusion mapping challenge. On the other hand, a large
number of tasks bring high VC dimensions, which leads
to a small confidence interval. Therefore, the principle of
determining the task is to choose the minimum number of
tasks that makes the training risk as small as possible, which
leads to the smallest guaranteed risk (9).

4. CSL-Net

In this section, we consider another crucial issue: how to
implement and train a network for CSL.

4.1. The Structure of CSL-Net

This goal of the training algorithm is minimizing the empir-
ical risk functional that

)% bz, yk; k). (12)

We used two neural networks, deconfusing-net and mapping-
net, to implement two learning function variables in empir-
ical risk. The mapping-net corresponded to functions set
i, k = 1,...,n. It is a multi-branch network and the output
of every branch represents the mapping function yx, = gx ()
in one certain task. The deconfusing function i was im-
plemented by deconfusing-net, whose input is a complete
sample (z,y) and the output is an n-dimension one-hot vec-
tor. The output of deconfusing-net determined which task

mapping g, the input sample (z, y) should be assigned to.
With these two nets, we could represent the risk functional,
and the whole structure is named CSL-Net.

However, there is a core difficulty in that the risk func-
tional with this structure cannot be optimized by gradi-
ent back-propagation. To ensure the physical meaning of
deconfusing-net, the training of the deconfusing-net is un-
der the constraint of a one-hot output. A one-hot output
is a discontinuous function that cannot use gradient back-
propagation. When using Softmax for approximation, the
training makes the deconfusing-net output into a non-one-
hot form. Such a combined output does not meet the mean-
ing of sample assignment, resulting in meaningless trivial
solutions. Therefore, we needed to design a novel training
algorithm that can perform gradient back-propagation for
two learning nets under the constraint of one-hot output.

4.2. Iterative Deconfusing Algorithm

For solving this training difficulty, we transformed the joint
optimization problem of two networks into a pair of uni-
variable optimization problems for two networks. In each
single-network optimization step, we fixed the parameters
of one network and updated the parameters of another. With
one network’s parameters unchanged, we rewrote the opti-
mization problem as an equivalent form for another network
such that the new problems can be solved by a gradient de-
scent method of neural networks. We alternately performed
the solving processes of this pair of equivalent optimization
problems, thus progressively getting the solution of the origi-
nal objective optimization (12). Now we showed the specific
training algorithm of deconfusing-net and mapping-net.

Training of Mapping-Net. In the training of mapping-net,
we maintained the parameters from deconfusing-net. When
the function £ is determined, the way of minimizing the
original risk (12) is to train every mapping function g;, with
the assigned samples (z¥, y¥), as shown on the left side of
Figure 3. Then the optimization problem of mapping-net
becomes the following:

Z|yz _gk)

M2, k=1,..n. (13)

mln Lmap gk
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This optimization problem can be solved by updating the
mapping-net with a back-propagation algorithm.

Training of Deconfusing-Net. In the training of
deconfusing-net, the parameters of the mapping-net were
fixed. Since deconfusing-net outputs a one-hot vector, the
original risk form (12) cannot be used to train directly. We
found that, to minimize the original risk, every data sample
(z,y) should be assigned to the function g where gy ()
is closest to y among all functions gx, k = 1, ..., n. There-
fore, during this training phase, mapping-net provided a
temporary training object for deconfusing-net, that is,

h(z;,y;) = argmk'}n lys — gr(x:)|* (14)
Then the deconfusing-net optimization became
m}jnLdec(h) =Y |h(@i,y) = bl y) . (15
i=1

This process is shown on the right side of Figure 3. Obvi-
ously, this optimization problem can be solved by updating
the subject-net with a back-propagation algorithm.

5. Experiment
5.1. Setup

We constructed a series of benchmarks for the CSL prob-
lem which includes function regression tasks and pattern
recognition tasks.

Function Regression Tasks: For the traditional regression
tasks, every input x corresponds to an output y, which are as-
sociated with a certain function y = f(z). In the multi-task
problem, there are multiple functions { f;,7 = 1, ...,n}. Ev-
ery sample (x;,y;) is generated with one randomly selected
mapping relationship y = f;(z). Then we received a set of
confusing data samples (z;,y;),? = 1, ..., m, where every
sample’s corresponding task is unknown. The goal was to
correctly determine task concept and sample allocation, as
well as represent multi-task mapping function f;.

Pattern Recognition Task: Pattern recognition tasks re-
quire the machine to learn classification capabilities, which
predicts observed input x to the correct class label. In the
CSL problem, there are multiple classification tasks for all
inputs. Every observed sample only represents the classifi-
cation result of one task, and which task the sample comes
from is unknown. The goal is to understand the concept of
multiple classification tasks from these confusing samples.
Therefore, we built two datasets, Colorful-Mnist and Kaggle
Fashion Product to evaluate learning methods in this CSL
recognition problems.

(1) Colorful-Mnist: We extended the MNIST dataset (Le-
Cun et al., 1998) by adding random color in all images and

Colorful-MNIST
. Red Seven Pink
Four Nine

Kaggle Fashion Product

) .

8] Green

Apparel Men Blue
. Four Yellow Cyan &
Blue Two White
. E Women Footwear Black

Candidate Labels:
Blue, Cyan, Eight, Five, Four, Green, Nine,
One, Pink, Purple, Red, Seven, Six, Three, Two,
White, Yellow, Zero

(a) Colorful MNIST Dataset (b) Kaggle Fashion Product Dataset

Figure 4. Data samples of two recognition experiments.

Candidate Labels:
Accessories, Apparel, Black, Blue, Footwear,
Men, White, Women

obtained 0-9 digital images in 8 different colors, shown in
Figure 4(a). Every confusing sample (x, y) contains one of
the correct descriptions of input = from 18 candidate labels.
From a human’s perspective, ground-truth relations should
be two criteria: color classification and number classifica-
tion.

(2) Kaggle Fashion Product: We used a fashion dataset on
Kaggle(Arslan et al., 2019) to construct a CSL recognition
tasks for general objects, as shown in Figure 4(b). This
dataset contains 9 basic candidate labels from 3 criteria. In
human cognition, these labels could be divided into three
criteria: gender, main category and main color.

5.2. Metrics of Confusing Supervised Learning

In order to quantitatively evaluate the performance of con-
fusing supervised learning, we adopted human cognition as
a performance ground-truth and built two metrics, which are
Task Prediction Accuracy and Label Predictions Accuracy.

Task Prediction Accuracy. These metrics evaluate the task
understanding from confusing data, by which we can infer
the task conception from given samples. We let learned
machines predict the learned task for confusing test samples
and compared results to the human cognition ground-truth.
Since the results of exchanged tasks’ order are equivalent,
we used the task prediction closest to humans’ as the evalu-
ation result, which is defined as:

m

1 5
ar(j) = max — ;I[h(ﬂcnyi; fr), h(z, vis f3)]. (16)

h is the task cognition of humans. The higher task prediction
accuracy means closer cognition to humans’.

Label Prediction Accuracy. Besides learning mapping al-
location like humans, machines also need to accurately ap-
proximate every mapping function, so as to provide all
corresponding labels. Therefore, we tested the prediction
of test inputs under human high-level allocation rules. Ev-
ery mapping contains its ground-truth output, and machines
should predict the correct output close to the ground-truth.
Considering the exchange equivalence, we define the fol-
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Figure 5. Results on two confusing functions.
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5.3. Results of Function Regression Tasks

In this experiment, we constructed the cases of two and
three confusing functions and evaluated the performance of
traditional supervised learning methods and CSL methods.
The ground-truth multiple functions and confusing samples
are shown on the left side of Figure 5 and Figure 6. The
target of learning is to understand every function accurately.
In this experiment, both mapping-net and deconfusing-net
are made up of full-connect networks.

The results are shown on right side of Figure 5 and Fig-
ure6. Traditional supervised learning methods resulted in a
mean value function when dealing with confusing samples,
which verifies the confusion mapping challenge. On the
other hand, the CSL method could divide these confusing
samples into a reasonable function grouping and construct

multiple continuous mapping functions. With the increase
of learned task number £, the loss decreases and the suitable
k* corresponds to the smallest task number leading to zero
learning risk, which verifies the conclusion from Section 3.4.
Without extra constraints, although a normal CSL result is
a reasonable continuous function solution, it differs from
the ground-truth. This is the difficulty of the CSL problem,
mentioned in Section 3.3, in that multiple solutions could
lead the learning risk converging towards zero. Therefore,
we introduced a few-shot (5-shot) warm-up to determine the
initialization of the neural network. We found that the CSL
methods with few-shot warm-up steadily learn the ground-
truth results from confusing samples, shown in “CSL-FW”
of Figure 5 and Figure 6. Additionally, the output result of
deconfusing-net in the entire learning process is shown in
Figure 7, which demonstrates deconfusing-net progressively
understanding the task of three regressing functions.

5.4. Results of Pattern Recognition Tasks

In this experiment, we evaluated traditional supervised
learning methods and CSL methods in the pattern recogni-
tion problem on Colorful-Mnist and Kaggle Fashion Prod-
uct datasets. Two baselines are used as a comparison.
Pseudo-Label(Lee, 2013) is a semi-supervised learning
method by assuming the labels of unsupervised samples,
and SMiLE(Tan et al., 2017) is a generalized form of label
propagation algorithm. Table 1 shows the results of var-
ious learning methods with both confusing data and task
annotated data.

Colorful-MNIST. From the results of learning with con-
fusing data, only the CSL method understands these two
tasks, and further learns an accurate classification capabil-
ity. In contrast, without task understanding the traditional
supervised learning methods (Trad SL) and other learning
methods learn confusing results that an input only corre-
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Table 1. Accuracy of Pattern Recognition Experiments.

Colorful-MNIST

Kaggle Fashion Product

Learning Methods
aT(l) aT(2) aL(l) OzL(Q) aT(l) OLT(Q) aT(3) aL(l) CEL(Q) aL(?))
(Cor) (Num) (Cor) (Num) (Gen) (Cat) (Cor) (Gen) (Cat) (Cor)
Trad SL / 39.25 52.50 / / / 23.59 42.64  29.17
Confusing  Pseudo-Label / 36.57 50.01 / / / 20.74 3341 26.30
Data SMiILE / 12.94 19.98 / / / 16.04 3274 18.41
CSL 98.24 99.02 99.32 97.18 9842 99.16 9890 9325 97.87 90.84
Task Trad MT 99.48 99.61 99.24  98.15 99.01 99.43 99.17 9291 97.82 91.64
Annotated ML-LOC 99.57 99.58 99.66  98.62 99.12 98.92  99.25 94.54  98.63 94.12
Table 2. Accuracy of Partial Labeled Multi-label Learning.
Methods [e %1 (e as Qq as Qg ar as Macro-Ave

Pseudo-Label 81.80 77.61 90.85 76.87 78.15 8224 7547 71.86 79.36

SMIiLE 59.10 76.87 48.18 76.70 71.84 63.22 7124 62.86 66.25

CSL 98.18 98.25 9492 9528 99.10 93.27 9432 92.75 95.76

All-Label 99.68 9798 94.65 94.86 98.82 9345 9374 93.26 95.80

Confusing Samples
Deconfusing-Net Features
~

Confusing Samples

Deconfusing-Net Features

(b) Kaggle Fashion Product

Figure 8. Spectral embedding results of confusing samples and
deconfusing-net’s features in pattern recognition experiments.

sponds to one label in ”Color” pattern or "Number” pattern,
leading to low accuracy on evaluation metrics. When fur-
ther comparing the CSL results to that of multi-task learning
with task annotation, we find that the CSL method learns
almost the same task understanding and classification results
just from confusing data.

Kaggle Fashion Product. This experiment is in the same
form of Colorful-MNIST, but the number of subjects in-
creased and images became more complicated and more
practical. In this experiment, we used the pre-trained CNN
backbone and trained the full-connect networks following
the CNN features. Beyond the confusing results of tradi-
tional learning methods, the CSL methods autonomously
learned three tasks which exactly correspond to “Gender”,
“Category”, and “Color” in human cognition. This experi-
ment demonstrates the task understanding capability of the
CSL method in practical multi-task recognition problems.

We further visualized the confusing samples and learned fea-

tures from deconfusing-net by spectral embedding, shown
in Figure 8. The result demonstrates that the CSL-Net can
reasonably separate the original confusing samples through
task understanding.

5.5. Application of Multi-label Learning

Besides the amazing capability of task understanding with-
out task annotation, the CSL method also has advantages in
traditional learning problems such as partially labeled multi-
label learning. In multi-label classification, since multi-label
annotation is difficult, an alternative strategy is learning
multi-label classification from partial labels (Deng et al.,
2014). In the Kaggle Fashion Product experiment, every
image contained multiple correct labels, while every sample
only gave one of them (partially labeled). Therefore, we
evaluated the result of CSL methods on multi-label metrics.
As shown in Table 2, by learning human-like cognition, CSL
methods outperform other multi-label learning methods on
Macro-Average accuracy.

5.6. Limitations

The Number of Tasks. As analyzed in Section 3.4, we
determined the task number by increasing the assumed num-
ber of tasks progressively, and the lowest task number that
brings the risk closest to zero is the best. However, this
method requires repeated training processes. A promising
idea is adding low-quality constraints for deconfusing-net
to ensure that the optimal risk is obtained with the smallest
number of tasks.

Learning of Basic Features. In our experiment of pattern
recognition, we only trained the full-connect network based
on learned CNN features. We found that the current algo-
rithm is difficult for learning basic features directly through
a CNN structure and understand tasks simultaneously. How-
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ever, this difficulty does not affect the effectiveness of our
algorithm in learning confusing data based on pre-trained
features, and it is an open question for future work.

6. Conclusion

We proposed a novel learning idea to understanding tasks
from basic input-label pairs without manual task annota-
tions. Following the characteristics of human cognition, the
machine learned the minimum risk for confusing samples
by differentiating multiple mappings, thereby obtaining ba-
sic task concepts. We believe that the amazing result in
this paper is an important advantage for achieving artificial
general intelligence and the CSL method will be applied in
more machine learning problems in the future.
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