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Abstract
We propose a new framework for designing esti-
mators for off-policy evaluation in contextual ban-
dits. Our approach is based on the asymptotically
optimal doubly robust estimator, but we shrink
the importance weights to minimize a bound on
the mean squared error, which results in a better
bias-variance tradeoff in finite samples. We use
this optimization-based framework to obtain three
estimators: (a) a weight-clipping estimator, (b) a
new weight-shrinkage estimator, and (c) the first
shrinkage-based estimator for combinatorial ac-
tion sets. Extensive experiments in both standard
and combinatorial bandit benchmark problems
show that our estimators are highly adaptive and
typically outperform state-of-the-art methods.

1. Introduction
Many real-world applications, ranging from online news
recommendation (Li et al., 2011), advertising (Bottou et al.,
2013), and search engines (Li et al., 2015) to personalized
healthcare (Zhou et al., 2017), are naturally modeled by
the contextual bandit protocol (Langford & Zhang, 2008),
where a learner repeatedly observes a context, takes an
action, and accrues reward. In news recommendation, the
context is any information about the user, such as history of
past visits, the action is the recommended article, and the
reward could indicate the user’s click on the article. The goal
is to maximize the reward, but the learner can only observe
the reward for chosen actions, and not for the others.

We study a fundamental problem in contextual bandits
known as off-policy evaluation, where the goal is to use
the data gathered by a past algorithm, known as the logging
policy, to estimate the average reward of a new algorithm,
known as the target policy. High-quality off-policy esti-
mates help avoid costly A/B testing and can also be used as
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subroutines for optimizing a policy (Dudı́k et al., 2011).

The most accurate approaches to off-policy evaluation are
variants of doubly robust (DR) estimators (Robins & Rot-
nitzky, 1995; Bang & Robins, 2005; Dudı́k et al., 2011). DR
estimation begins by fitting a regression model to predict re-
wards as a function of context and action. The fitted model
can be used to impute unobserved rewards of the target
policy on the training data, but such a direct estimate is typi-
cally biased. Instead, DR adds a correction term obtained
by importance weighting the difference between observed
rewards and predicted rewards. The resulting approach is
unbiased, and it is asymptotically optimal under weaker
assumptions than other methods (Rothe, 2016). However,
its finite-sample variance can still be quite high when impor-
tance weights (also known as inverse propensity scores) are
large. Therefore, several works have developed variants of
DR that clip or remove large importance weights. Although
weight clipping incurs some bias, it substantially decreases
the variance and can yield a lower mean squared error (Be-
mbom & van der Laan, 2008; Bottou et al., 2013; Wang
et al., 2017; Su et al., 2018). These works motivate weight
shrinkage as a heuristic for trading off bias and variance,
but they do not provide insight into when and how these
different methods should be used.

In this paper, we ask: What are the systematic strategies
for shrinking importance weights? We seek to answer this
question without making strong assumptions about the qual-
ity of the reward predictor, but we would like to adapt to its
quality. We make the following contributions:

• We derive a general framework for shrinking the im-
portance weights by optimizing a sharp bound on the
mean squared error (MSE). We use two bounding tech-
niques. The first is agnostic to the quality of the reward
estimator and yields pessimistic shrinkage estimators.
The second incorporates the quality of the reward
predictor and yields optimistic shrinkage estimators.

• We provide theoretical justification for the standard
practice of weight clipping by showing that it
corresponds to pessimistic shrinkage.

• Using optimistic shrinkage, we derive new estimators,
which are also applicable to combinatorial actions, aris-
ing, for example, when a news portal is recommending
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not just a single article, but a list of articles (Cesa-
Bianchi & Lugosi, 2012; Swaminathan et al., 2017).

Apart from the conceptual and theoretical contributions
above, we also carry out an extensive empirical evaluation.
For atomic (i.e., non-combinatorial) actions, we consider
108 experimental conditions derived from 9 real-world data
sets and covering a range of data set sizes, feature dimen-
sions, policy overlap (i.e., the magnitude of importance
weights), and quality of reward estimators. For combi-
natorial actions, we consider a standard learning-to-rank
data set and vary the quality of reward estimators. In all
instances, we demonstrate the efficacy of our shrinkage
approach. Via extensive ablation studies, we also identify
a robust configuration of our shrinkage approach that we
recommend as a practical choice.

Comparison with related work. Off-policy estimation is
studied in observational settings under the name average
treatment effect (ATE) estimation, with many results on
asymptotically optimal estimators (Hahn, 1998; Hirano
et al., 2003; Imbens et al., 2007; Rothe, 2016), but only few
that optimize MSE in finite samples. Most notably, Kallus
(2017; 2018) develops the kernel optimal matching (KOM)
approach that adjusts importance weights by optimizing
MSE under smoothness (or parametric) assumptions on
the reward function. This method is reminiscent of direct
modeling, whose bias can be bounded under smoothness
assumptions, but whose performance deteriorates if these as-
sumptions are violated. In contrast, we optimize importance
weights with essentially no modeling assumptions. Another
difference is that KOM runs in time that is super-linear in
the data set size, which prevents its use with large data sets,
whereas our approach requires a single pass through the
data and readily applies to large-scale scenarios.

Several recent works study how to improve DR estimators
under similar assumptions as we make here (Wang et al.,
2017; Farajtabar et al., 2018; Su et al., 2018), focusing either
on weight shrinkage or on training of the reward predictor.
However, to our knowledge, we are the first to provide a
detailed theoretical and empirical investigation of the inter-
play between these two design components. For example,
in Table 2, we show that the more robust doubly robust
(MRDR) approach for training of the reward predictor (Fara-
jtabar et al., 2018) performs poorly in combination with
weight shrinkage. More generally, different estimators may
require different reward predictors. This specific finding
has practical implications that are missing in prior work.

2. Setup
We consider the contextual bandits protocol, where a de-
cision maker interacts with the environment by repeatedly
observing a context x ∈ X , choosing an action a ∈ A, and

observing a reward r ∈ [0, 1]. The context space X can be
uncountably large, but we assume that the action space A
is finite. In the news recommendation example, x describes
the history of past visits of a given user, a is a recommended
article, and r equals one if the user clicks on the article
and zero otherwise. We assume that contexts are sampled
i.i.d. from some distribution D(x) and rewards are sampled
from some conditional distribution D(r | x, a). We write
η(x, a) := E [ r | x, a ] for the expected reward, conditioned
on a given context and action.

The behavior of a decision maker is formalized as a condi-
tional distribution π(a | x) over actions given contexts, re-
ferred to as a policy. We also write π(x, a, r) := D(x)π(a |
x)D(r | x, a) for the joint distribution over context-action-
reward triples when actions are selected by the policy π.
The expected reward of a policy π, called the value of π, is
denoted as V (π) := E(x,a,r)∼π[r].

In the off-policy evaluation problem, we are given a dataset
{(xi, ai, ri)}ni=1 ∼ µ consisting of context-action-reward
triples collected by some logging policy µ, and we would
like to estimate the value of a target policy π. The quality of
an estimator V̂ (π) is measured by the mean squared error

MSE
(
V̂ (π)

)
:= E

[(
V̂ (π)− V (π)

)2]
,

where the expectation is with respect to the data generation
process. In analyzing the error of an estimator, we rely on
the decomposition of MSE into the bias and variance terms:

MSE
(
V̂ (π)

)
= Bias

(
V̂ (π)

)2
+ Var

[
V̂ (π)

]
,

Bias
(
V̂ (π)

)
:=
∣∣∣E[V̂ (π)− V (π)

]∣∣∣.
We consider three standard approaches for off-policy evalu-
ation. The first two are direct modeling (DM) and inverse
propensity scoring (IPS). In DM, we train a reward predictor
η̂ : X × A → [0, 1] and use it to impute rewards. In IPS,
we simply reweight the data. The two estimators are:

V̂DM(π; η̂) :=
1

n

n∑
i=1

∑
a∈A

π(a | xi)η̂(xi, a),

V̂IPS(π) :=
1

n

n∑
i=1

π(ai | xi)
µ(ai | xi)

ri.

Let w(x, a) := π(a | x)/µ(a | x) denote the importance
weight. We make a standard assumption that π is absolutely
continuous with respect to µ, meaning that µ(a | x) > 0
whenever π(a | x) > 0. This ensures that the importance
weights are well defined and V̂IPS(π) is an unbiased estima-
tor of V (π). If there is a substantial mismatch between π
and µ, then the importance weights will be large and V̂IPS(π)
will have large variance. On the other hand, given any fixed
reward predictor η̂ (fit on a separate dataset), V̂DM(π) has
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low variance, but it can be biased due to approximation
errors in fitting η̂.

The third approach, called the doubly robust (DR) estimator,
combines DM and IPS:

V̂DR(π; η̂)

:= V̂DM(π; η̂) +
1

n

n∑
i=1

w(xi, ai)
(
ri − η̂(xi, ai)

)
. (1)

The DR estimator applies IPS to a shifted reward, using η̂
as a control variate to decrease the variance of IPS, while
preserving its unbiasedness. DR is asymptotically optimal,
as long as it is possible to derive sufficiently good reward
predictors η̂ given enough data (Rothe, 2016).

However, even when the reward predictor η̂ is perfect,
stochasticity in the rewards may cause the terms ri −
η̂(xi, ai), appearing in the DR estimator, to be far from
zero. Multiplied by large importance weights w(xi, ai),
these terms yield large variance for DR in comparison with
DM. As mentioned in Section 1, several approaches seek
a more favorable bias–variance trade-off by shrinking the
importance weights. Our work also seeks to systematically
replace the weights w(xi, ai) with new weights ŵ(xi, ai)
to bring the variance of DR closer to that of DM.

In practice, η̂ is biased due to approximation errors, so in
this paper we make no assumptions about its quality. At the
same time, we would like to make sure that our estimators
can adapt to high-quality η̂ if it is available. To motivate our
adaptive estimator, we assume that η̂ is trained via weighted
least squares regression on a separate dataset than used
in V̂DR. That is, for a dataset {(xj , aj , rj)}mj=1 ∼ µ, we
consider a weighting function z : X ×A → R+ and solve

η̂ := argmin
f∈F

1

m

m∑
j=1

z(xj , aj)
(
f(xj , aj)− rj

)2
, (2)

where F is some function class of reward predictors.
Natural choices of the weighting function z, explored in our
experiments, include z(x, a) = 1, z(x, a) = w(x, a) and
z(x, a) = w2(x, a). We stress that the assumption on how
we fit η̂ only serves to guide our derivations, but we make
no specific assumptions about its quality. In particular, we
do not assume that F contains a good approximation of η.

3. Our Approach: DR with Shrinkage
Our approach replaces the importance-weight mapping w :
X × A → R+ in the DR estimator (1) with a new weight
mapping ŵ : X × A → R+ found by directly optimizing
sharp bounds on the MSE. The resulting estimator, which
we call the doubly robust estimator with shrinkage (DRs)
thus depends on both the reward predictor η̂ and the weight

mapping ŵ:

V̂DRs(π; η̂, ŵ)

:= V̂DM(π; η̂) +
1

n

n∑
i=1

ŵ(xi, ai)
(
ri − η̂(xi, ai)

)
. (3)

We assume that 0 ≤ ŵ ≤ w, justifying the terminology
“shrinkage”. For a fixed choice of π and η̂, we will seek the
mapping ŵ that minimizes the MSE of V̂DRs(π; η̂, ŵ), which
we simply denote as MSE(ŵ). We similarly write Bias(ŵ)
and Var(ŵ) for the bias and variance of this estimator.

We treat ŵ as the optimization variable and consider two up-
per bounds on MSE: an optimistic one and a pessimistic one.
In both cases, we separately bound Bias(ŵ) and Var(ŵ).
To bound the bias, we use the following expression, derived
from the fact that V̂DRs is unbiased when ŵ = w:

Bias(ŵ) =
∣∣∣E[V̂DRs(π; η̂, ŵ)

]
− E

[
V̂DRs(π; η̂, w)

]∣∣∣
=
∣∣∣Eµ[(ŵ(x, a)− w(x, a)

)(
r − η̂(x, a)

)]∣∣∣. (4)

To bound the variance, we rely on the following proposition,
which states that it suffices to focus on the second moment
of the terms ŵ(xi, ai)

(
ri − η̂(xi, ai)

)
:

Proposition 1. If 0 ≤ ŵ ≤ w then∣∣∣∣Var(ŵ)− 1

n
Eµ
[
ŵ2(x, a)

(
r − η̂(x, a)

)2]∣∣∣∣ ≤ 1

n
.

See appendix for the proof of Proposition 1 (as well as other
mathematical statements from this paper).

We derive estimators for two different regimes depending on
the quality of the reward predictor η̂. Since we do not know
the quality of η̂ a priori, in Section 5 we derive a model
selection procedure to select between these two estimators.

3.1. DR with Optimistic Shrinkage

Our first family of estimators is based on an optimistic MSE
bound, which adapts to the quality of η̂, and which we
expect to be tighter when η̂ is more accurate. Recall that η̂
is trained to minimize weighted square loss with respect to
some weighting function z, which we denote as

L(η̂) := Eµ
[
z(x, a)

(
r − η̂(x, a)

)2]
.

The loss L(η̂) quantifies the quality of η̂. We use it to bound
the bias by applying the Cauchy–Schwarz inequality to (4):

Bias(ŵ) ≤
√
Eµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]
·
√
L(η̂). (5)
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To bound the variance, we invoke Proposition 1 and focus
on bounding the quantity Eµ

[
ŵ2(r − η̂)2

]
:

Eµ
[
ŵ2(x, a)

(
r − η̂(x, a)

)2]
≤
√

Eµ
[

1
z(x,a) ŵ

4(x, a)
]√

Eµ
[
z(x, a)

(
r − η̂(x, a)

)4]
≤
√

Eµ
[
w2(x,a)
z(x,a) ŵ

2(x, a)
]√

L(η̂), (6)

where the first inequality follows by the Cauchy-Schwarz
inequality, and the second from the fact that ŵ2(x, a) ≤
w2(x, a) and |r − η̂(x, a)| ≤ 1.

Combining the bounds (5) and (6) with Proposition 1 yields
the following bound on MSE(ŵ):

MSE(ŵ) ≤ Eµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]
L(η̂)

+

√
Eµ
[
w2(x,a)
z(x,a) ŵ

2(x, a)
]√

L(η̂) +
1

n
.

A direct minimization of this bound appears to be a high
dimensional optimization problem. Instead of minimizing
the bound directly, we note that it is a strictly increasing
function of the two expectations that appear in it. Thus, its
minimizer must be on the Pareto front with respect to the two
expectations, meaning that for some choice of λ ∈ [0,∞],
it can be obtained by minimizing

λEµ
[

1
z(x,a)

(
ŵ(x, a)− w(x, a)

)2]
+Eµ

[
w2(x,a)
z(x,a) ŵ

2(x, a)
]

with respect to ŵ. This objective decomposes across con-
texts and actions. Taking the derivative with respect to
ŵ(x, a) and setting it to zero yields the solution

ŵo,λ(x, a) =
λ

w2(x, a) + λ
w(x, a),

where “o” above is a mnemonic for optimistic shrinkage.
We refer to the DRs estimator with ŵ = ŵo,λ as the doubly
robust estimator with optimistic shrinkage (DRos) and de-
note it by V̂DRos(π; η̂, λ). Note that this estimator does not
depend on z, although it was included in the optimization
objective. When λ = 0, we have ŵ(x, a) = 0 correspond-
ing to DM. As λ→∞, the weights increase and in the limit
become equal to w(x, a), corresponding to standard DR.

3.2. DR with Pessimistic Shrinkage

Our second estimator family makes no assumptions on the
quality of η̂ beyond the range bound η̂(x, a) ∈ [0, 1], which
implies |η̂(x, a)− r| ≤ 1 and yields the bounds

Bias(ŵ) ≤ Eµ
[
|ŵ(x, a)− w(x, a)|

]
, (7)

Eµ
[
ŵ(x, a)2(r − η̂(x, a))2

]
≤ Eµ

[
ŵ(x, a)2

]
. (8)

As before, we do not optimize the resulting MSE bound
directly and instead solve for the Pareto front points param-
eterized by λ ∈ [0,∞] (we scale λ by a factor of two to
obtain the solution that more cleanly matches the clipping
estimator):

Minimize
ŵ

2λEµ
[
|ŵ(x, a)− w(x, a)|

]
+ Eµ

[
ŵ(x, a)2

]
.

The objective again decomposes across context-action pairs,
yielding the solution

ŵp,λ(x, a) = min{λ, w(x, a)},

which recovers (and justifies) existing weight-clipping ap-
proaches (Kang et al., 2007; Strehl et al., 2010; Su et al.,
2018) (see Appendix A for detailed calculations). We re-
fer to the resulting estimator as V̂DRps(π; η̂, λ), for doubly
robust with pessimistic shrinkage. Similarly to optimistic
shrinkage, we recover DM for λ = 0, and DR as λ→∞.

4. Shrinkage for Combinatorial Actions
We showcase the generality of our optimization-based ap-
proach by deriving a shrinkage estimator for combinatorial
actions (also called slates), which arise, for example, when
recommending a ranked list of items.

In contextual combinatorial bandits, the actions are repre-
sented as vectors a ∈ Rd for some dimension d and the
action space A ⊆ Rd is typically exponentially large in d.

Example 1 (Ranking and NDCG). Consider the task of
recommending a ranked list of items such as images or web
pages. The context x is the query submitted by a user to-
gether with a user profile. The action a represents a ranked
list of ` items out of m. The list (i1, . . . , i`), where ij ∈
{1, . . . ,m}, is encoded into an action vector a ∈ {0, 1}`m
via `-hot encoding, i.e., we split a into ` blocks of size m,
and in the block j we set the ij-th coordinate to 1 and all
others to 0. As a reward we use a standard information-
retrieval metric called the normalized discounted cumulative
gain, defined as NDCG(x,a) := DCG(x,a)/DCG?(x),
where DCG(x,a) :=

∑`
j=1

2rel(x,ij)−1
log2(j+1) , DCG?(x) :=

maxa′ DCG(x,a′), and rel(x, i) is some intrinsic measure
of item relevance. (See, e.g., Swaminathan et al., 2017.)

Standard importance weighting techniques, such as DR
and IPS, can fail dramatically in the combinatorial setting,
because their variance scales linearly with the size of A,
which is typically exponential in d. However, if the expected
reward is linear in a, i.e., η(x,a) = η(x)>a for some
(unknown) function η : X → Rd, then it is possible to
achieve variance polynomial in d using the pseudo-inverse
estimator of Swaminathan et al. (2017). Given a reward
predictor η̂ : X → Rd, it is also possible to obtain the DR
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variant of this estimator (DR-PI):

V̂DR-PI(π; η̂) :=
1

n

n∑
i=1

η̂>i qπ,xi
+ w>i ai(ri − η̂>i ai), (9)

where η̂i := η̂(xi), qπ,xi
:= Eπ[a | xi], wi := Γ†µ,xi

qπ,xi
,

Γµ,xi
:= Eµ[aa> | xi], and † denotes the matrix pseudo-

inverse. The vector wi plays the role of the importance
weight, while the first term corresponds to the direct mod-
eling approach. Swaminathan et al. (2017) establish that
this estimator is unbiased when η(x,a) is linear in a and
span

(
suppπ(· | x)

)
⊆ span

(
suppµ(· | x)

)
, which is a lin-

ear relaxation of absolute continuity. Note that NDCG in
Example 1 satisfies the linearity assumption.

We next derive the shrunk variant of DR-PI, following the
optimistic bounding technique from Section 3.1. A formal
difference is that we seek a vector-valued map ŵ : X → Rd.
Since w(x)>a can be negative, we formalize the shrinkage
property as ŵ(x)>a = c(x,a)w(x)>a for some c(x,a) ∈
[0, 1]. Also, analogously to non-combinatorial setup, we
assume that η̂(x)>a ∈ [0, 1] for all a. Now all the steps
from Section 3.1, except for Proposition 1 (to which we
return below), go through under substitution w(x,a) =
w(x)>a, ŵ(x,a) = ŵ(x)>a, and η̂(x,a) = η̂(x)>a. The
resulting (optimistic) shrinkage estimator takes form

V̂DRos-PI(π; η̂, λ)

:=
1

n

n∑
i=1

η̂>i qπ,xi
+

λw>i ai
λ+ (w>i ai)

2
(ri − η̂>i ai). (10)

The detailed derivation is in Appendix B. To our knowledge
this is the first weight-shrinkage estimator for contextual
combinatorial bandits.

To finish the section, we derive a combinatorial variant of
Proposition 1, establishing a tight, but simple-to-optimize
proxy for the variance of a DR-PI. This requires an addi-
tional assumption that for each x, the logging policy is sup-
ported on a linearly independent set of actions Bx ⊆ A; this
requirement is typically easy to satisfy in practice (see, e.g.,
Section 6.2). We write Bx ∈ Rd×|Bx| for the matrix with
columns a ∈ Bx, and vπ,x for the unique vector such that
Bxvπ,x = qπ,x. Finally, let Var(ŵ) denote the variance of
a DR-PI estimator with the shrunk weight map ŵ.

Proposition 2. Assume that µ(· | x) is supported on a lin-
early independent set of actions for every x. If ŵ(x)>a =
c(x,a)w(x)>a for some c(x,a) ∈ [0, 1], then∣∣∣∣Var(ŵ)− 1

n
Eµ
[
(ŵ>a)2

(
r − η̂>a

)2]∣∣∣∣ ≤ 1

n
Ex[‖vπ,x‖21].

Note that the quantity ‖vπ,x‖1 on the right-hand side only
depends on the set Bx, but not on the probabilities with

which µ chooses a ∈ Bx. Non-combinatorial setting of Sec-
tion 3 is a special case of the linearly independent setting,
where d = |A| and actions are represented by standard basis
vectors. In this case, ‖vπ,x‖1 = 1 and we recover Propo-
sition 1. We can always select Bx to be an (approximate)
barycentric spanner and achieve ‖vπ,x‖1 = O(d) (Awer-
buch & Kleinberg, 2008; Dani et al., 2008).

5. Model Selection
All of our shrinkage estimators have hyperparameters which
we condense into a tuple θ. For example θ = (η̂, o, λ)
denotes that we are using a reward predictor η̂ and optimistic
shrinkage with the parameter λ. To select among these
hyperparameters, we propose and analyze a simple model
selection procedure.

Let V̂θ denote the estimator parameterized by θ. We con-
sider the procedure that estimates the variance of V̂θ by
sample variance V̂ar(θ), and bounds the bias of V̂θ by a
data-dependent upper bound BiasUB(θ). The only require-
ment is that for all θ, Bias(θ) ≤ BiasUB(θ) (with high prob-
ability), and that BiasUB(θ) = 0 whenever Bias(θ) = 0;
this holds for both bias bounds from Section 3, as they be-
come zero when ŵ = w. Now, to choose θ from a set of
hyperparameters Θ, we optimize the estimate of the MSE:

θ̂ ← Minimize
θ∈Θ

BiasUB(θ)2 + V̂ar(θ).

The next theorem shows that this procedure always com-
pares favorably with all the unbiased estimators included
in Θ, up to an asymptotically negligible term O(n−3/2). In
particular, the procedure is asymptotically optimal whenever
Θ includes a standard (non-shrunk) DR.

Theorem 3. Let Θ be a finite set of hyperparameter values
and let Θ0 := {θ ∈ Θ : Bias(θ) = 0} denote the subset of
unbiased estimators. Assume that with probability 1− δ/2
we have Bias(θ) ≤ BiasUB(θ) for all θ ∈ Θ. Then there
exists a universal constant C such that with probability at
least 1− δ we have

MSE(θ̂) ≤ min
θ0∈Θ0

MSE(θ0) + C log(|Θ|/δ)/n3/2.

There are many strategies to construct data-dependent bias
bounds with the required properties. The three bounds in our
experiments take form of sample averages that approximate
expectations in: (i) the expression for the bias given in (4),
(ii) the optimistic bias bound in (5), and (iii) the pessimistic
bias bound in (7). In our theory, these estimates need to be
adjusted to obtain high-probability confidence bounds. In
our experiments, we evaluate both the basic estimates and
adjusted variants where we add twice the standard error.

Our model selection procedure is related to MAGIC
(Thomas & Brunskill, 2016) as well as the procedure for the
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SWITCH estimator (Wang et al., 2017). Unlike MAGIC, we
pick a single hyperparameter value θ rather than aggregating
several, and we use different bias and variance estimates.
SWITCH uses our pessimistic bias bound (7), but with no
theoretical justification. We use two additional bounding
strategies, which are empirically shown to help, and provide
theoretical justification in the form of an oracle inequality.

6. Experiments
We evaluate our new estimators on the tasks of off-policy
evaluation and off-policy learning and compare their perfor-
mance with previous estimators. Our secondary goal is to
identify the configuration of the shrinkage estimator that is
most robust for use in practice.

6.1. Non-combinatorial Setting

Datasets. Following prior work (Dudı́k et al., 2014; Wang
et al., 2017; Farajtabar et al., 2018; Su et al., 2018), we
simulate bandit feedback on 9 UCI multi-class classifica-
tion datasets. This lets us evaluate estimators in a broad
range of conditions and gives us ground-truth policy val-
ues (see Table 4 in the appendix for the dataset statistics).
Each multi-class dataset with k classes corresponds to a
contextual bandit problem with k possible actions coin-
ciding with classes. We consider either deterministic re-
wards, where on multiclass example (x, y∗), the action
y yields the reward r = 1{y = y∗}, or stochastic re-
wards where r = 1{y = y∗} with probability 0.75 and
r = 1− 1{y = y∗} otherwise. For every dataset, we hold
out 25% of the examples to measure ground truth. On the
remaining 75% of the dataset, we use logging policy µ to
simulate n bandit examples by sampling a context x from
the dataset, sampling an action y ∼ µ(· |x) and then observ-
ing a deterministic or stochastic reward r. The value of n
varies across experimental conditions.

Policies. We use the 25% held-out data to obtain logging
and target policies as follows. We first obtain two determin-
istic policies π1,det and π2,det by training two logistic models
on the same data, but using either the first or second half of
the features. We obtain stochastic policies parameterized
by (α, β), following the softening technique of Farajtabar
et al. (2018). Specifically, π1,(α,β)(a | x) = (α + βu) if
a = π1,det(x) and π1,(α,β)(a | x) = 1−α−βu

k−1 otherwise,
where u ∼ Unif([−0.5, 0.5]). In off-policy evaluation ex-
periments, we consider a fixed target and several choices of
logging policy (see Table 1). In off-policy learning we use
π1,(0.9,0) as the logging policy.

Reward predictors. We obtain reward predictors
η̂ by training linear models via weighted least
squares with `2 regularization. We consider weights
z(x, a) ∈ {1, w(x, a), w2(x, a)} as well as the more robust

doubly robust, or MRDR, weight design of Farajtabar et al.
(2018) (see Appendix D). In evaluation experiments, we use
1/2 of the bandit data to train η̂; in learning experiments,
we use 1/3 of the bandit data to train η̂. In addition to the
four trained reward predictors, we also consider η̂ ≡ 0. The
remaining bandit data is used to calculate the value of each
estimator.

Baselines. We include a number of estimators in our evalua-
tion: the direct modeling approach (DM), doubly-robust ap-
proach (DR) and its self-normalized variant (snDR), our ap-
proach (DRs), and the doubly-robust version of the SWITCH
estimator of Wang et al. (2017), which also performs a form
of weight clipping.1 Note that DR with η̂ ≡ 0 is identical
to inverse propensity scoring (IPS); we refer to its self-
normalized variant as snIPS. Our estimator and SWITCH
have hyperparameters, which are selected by their respec-
tive model selection procedures (see Appendix D for details
about the hyperparameter grid).

6.1.1. OFF-POLICY EVALUATION

We begin by evaluating different configurations of DRs via
an ablation analysis. Then we compare DRs with baseline
estimators. We have a total of 108 experimental conditions:
for each of the 9 datasets we use 6 logging policies and
consider stochastic or deterministic rewards. Except for the
learning curves below, we always take n to be all available
bandit data (75% of the overall dataset).

We measure performance with clipped MSE,
E
[
(V̂ − V (π))2 ∧ 1

]
, where V̂ is the estimator and

V (π) is the ground truth (computed on the held-out 25% of
the data). We use 500 replicates of bandit-data generation
to estimate the MSE; statistical comparisons are based on
paired t-tests at significance level 0.05. In some of our
ablation experiments, we pick the best hyperparameters
against the test set on a per-replicate basis, which we call
oracle tuning and always call out explicitly.

Ablation analysis. We conduct two ablation studies: one
evaluating different reward predictors and the other evaluat-
ing the optimistic and pessimistic shrinkage types.

In Table 2, for each fixed estimator type (e.g., DR) we
evaluate each reward predictor by reporting the number of
conditions where it is statistically indistinguishable from the
best and the number of conditions where it statistically dom-
inates all other predictors. For DRs we use oracle tuning for
the shrinkage type and coefficient λ. The table shows that
weight shrinkage strongly influences the choice of regressor.
For example, z ≡ 1 and z = w are top choices for DR, but
with the inclusion of shrinkage in DRs, z = w2 emerges
as the best choice. In our comparison experiments below,

1For simplicity we call this estimator SWITCH, although Wang
et al. call it SWITCH-DR.
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Table 1. Policy parameters used
in the experiments.

base α β
target π1,det 0.9 0

logging

π1,det 0.7 0.2
π1,det 0.5 0.2

— 1/k 0
π2,det 0.3 0.2
π2,det 0.5 0.2
π2,det 0.95 0.1

Table 2. Comparison of reward predictors using a fixed
estimator (with oracle tuning if applicable); reporting the
number of conditions where a regressor is statistically
as good as the best and, in parenthesis, the number of
conditions where it statistically dominates all others.

η̂ ≡ 0 z ≡ 1 z = w z = w2 MRDR
DM 0 (0) 47 (23) 45 (22) 41 (31) 11 (5)
DR 27 (2) 86 (9) 90 (4) 85 (5) 65 (0)
snDR 63 (7) 80 (2) 85 (8) 69 (4) 54 (0)
DRs 23 (19) 44 (16) 35 (4) 62 (35) 18 (2)

Table 3. Comparison of shrinkage types us-
ing a fixed reward predictor (with oracle
tuning); reporting the number of conditions
where one statistically dominates the other.

DRps DRos
η̂ ≡ 0 21 51
z ≡ 1 58 28
z = w 55 30
z = w2 55 29
MRDR 49 29

we run each method with its best reward predictor: DM
with z ≡ 1, snDR with z = w, and DRs and SWITCH with
z = w2. For DRs and SWITCH, we additionally also con-
sider η̂ ≡ 0, because it allows including IPS as their special
case. Somewhat surprisingly, in our experiments, MRDR
is dominated by other reward predictors (except for η̂ ≡ 0),
and this remains true even with a deterministic target policy
(see Table 5 in the appendix).

In Table 3, we compare optimistic and pessimistic shrinkage
when paired with a fixed reward predictor (using oracle
tuning for λ). We report how many times each estimator sta-
tistically dominates the other. The results suggest that both
shrinkage types are important for robust performance across
conditions, so we consider both choices going forward.

Comparisons. In Figure 1 (left two plots), we compare our
new estimator with the baselines. We visualize the results
by plotting the cumulative distribution function (CDF) of
the normalized MSE of each method (normalized by the
MSE of snIPS) across the experimental conditions. Better
performance corresponds to CDF curves towards the top-left
corner, meaning the method achieves a lower MSE more fre-
quently. The first plot summarizes 54 conditions where the
reward is deterministic, while the second plot considers the
54 stochastic reward conditions. For DRs we consider two
model selection procedures outlined in Section 5 that differ
in their choice of BiasUB. DRs-direct estimates the expecta-
tions in the expressions in Eqs. (4), (5), and (7) (correspond-
ing to the bias and bias bounds) by empirical averages and
takes their pointwise minimum. DRs-upper adds to these
estimates twice their standard error, before taking minimum,
more closely matching our theory. For DRs, we use the zero
reward predictor and the one trained with z = w2, and we
always select between both shrinkage types. Since SWITCH
also comes with a model selection procedure, we use it to
select between the same two reward predictors as DRs.

In the deterministic case (the first plot), we see that DRs-
upper has the best aggregate performance, by a large margin.
DRs-direct also has better aggregate performance than the
baselines on most of the conditions. In the stochastic case
(the second plot), DRs-direct has similarly strong perfor-
mance, but DRs-upper degrades considerably, suggesting

this model selection scheme is less robust to stochastic re-
wards. We illustrate this phenomenon in the right two plots
of Figure 1, plotting the MSE as a function of the number
of samples for one choice of a logging policy and dataset,
first with deterministic rewards and then with stochastic re-
wards. Because of a more robust performance, we therefore
advocate for DRs-direct as our final method.

6.1.2. OFF-POLICY LEARNING

Following prior work (Swaminathan & Joachims, 2015a;b;
Su et al., 2018), we learn a stochastic linear policy πu where
πu(a | x) ∝ exp

{
u>f(x, a)

}
and f(x, a) is a featurization

of context-action pairs. We solve `2-regularized empirical
risk minimization û = argminu

[
−V̂ (πu)+γ‖u‖2

]
via gra-

dient descent, where V̂ is a policy-value estimator and γ > 0
is a hyperparameter. For these experiments, we partition
the data into four quarters: one full-information segment for
training the logging policy and as a test set, and three bandit
segments for (1) training reward predictors, (2) learning the
policy, and (3) hyperparameter tuning and model selection.
The logging policy is π1,(0.9,0) and since there is no fixed
target policy, we consider three reward predictors: η̂ ≡ 0,
and η̂ trained with z = 1/µ(a | x) and z = 1/µ(a | x)2.

In Figure 3, we show the performance of four methods (DM,
DR, IPS, and DRs-direct) on four of the UCI datasets. For
each method, we compute the average value of the learned
policy on the test set (averaged over 10 replicates) and report
this value normalized by the average value for IPS. For DM
and DR, we select the hyperparameter γ and reward predic-
tor optimally in hindsight, while for DRs we use our model
selection. Note that we do not compare with SWITCH here as
it is not amenable to gradient-based optimization (Su et al.,
2018). We find that off-policy learning using DRs-direct
always outperforms the baselines, with the exception of the
optdigits dataset, where all the methods perform similarly.

6.2. Combinatorial Setting

We empirically evaluate the performance of shrinkage-based
estimator in the ranking problem introduced in Example 1.
Following Swaminathan et al. (2017), we generate contex-
tual bandit data from the fully labeled MSLR-WEB10K
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Figure 1. From left to right: (1) CDF of relative MSE w.r.t. snIPS for deterministic rewards, 54 conditions in total; (2) CDF of relative
MSE w.r.t. snIPS for stochastic rewards, 54 conditions in total; (3) learning curves on yeast dataset, using base policy π1 with α = 0.7 and
β = 0.2, deterministic reward; (4) learning curves on yeast dataset, using base policy π1 with α = 0.7 and β = 0.2, stochastic reward.
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Figure 3. Off-policy learning experiments.

dataset (Qin & Liu, 2013). The dataset has 10K queries,
with up to 1251 judged documents for each query. The con-
texts x are the queries and actions a represent lists of doc-
uments. For each query x and document i, the dataset con-
tains a relevance judgement rel(x, i) ∈ {0, 1, 2, 3, 4}. We
consider two types of rewards: deterministic rewards, r =
NDCG(x,a) (see definition in Example 1); and stochastic
rewards, where r is drawn from a Bernoulli distribution with
p = 0.25 + 0.5 ·NDCG(x,a). We use data for 10% of the
queries to train relevance predictors used to define logging
and target policies; the remaining data is used for the bandit
protocol. The ground truth is determined using all the data.

Policies. Each query-document pair (x, i) is described by a
feature vector f(x, i), partitioned into title and body features,
denoted ft and fb. We train two regression models to predict
relevance: a lasso model lassob based on fb, and a tree model
treet based on ft. The model lassob is used to select the top
20 scoring documents; the action a is a list of 5 documents
out of these 20. In the notation of Example 1, m = 20,
` = 5. The target policy is deterministic and chooses a
that lists top 5 documents according to treet. The logging
policy is supported on a basis Bx ⊆ A for each x. The
basis contains the “greedy action” that lists top 5 documents
according to lassob as well as actions obtained by replacing
items on the top position and up to two additional positions
of the greedy action, resulting in the total of 96 elements
in Bx (see Appendix D.2 for details). The logging policy
is ε-greedy: on each context, ε is drawn uniformly from the
set {2−1, 2−2, 2−3, 2−4, 2−5} and is included as part of the
context, creating a skew in the importance weights w(x)>a.

Reward predictors. We consider two reward predictors η̂
trained on logged data. Both are trained via ridge regression,
but differ in feature sets they consider: ridge(all) is trained
on all features, ridge(5) is trained on the five features that
are most correlated with the reward.



Doubly robust off-policy evaluation with shrinkage

Baselines. We compare our method (DRs-PI) with DM
and DR-PI.2 In DRs-PI we select the hyperparameter λ
from a geometrically spaced grid using our model selection
procedure with the empirical version of Eq. (4) in place of
bias bound and also consider the oracle tuning of λ from the
same grid (details in Appendix D.2).

Results and discussion. In Figure 2 we show the MSE of
all the methods as a function of sample size, averaged over
20 replicates. Across all conditions, DRs-PI outperforms
DR by a factor of 1.5 or more (note that MSE is reported on
log scale). A more striking result is the superior quality of
the oracle-tuned DRs-PI. It shows that the shrinkage strategy
is highly effective in achieving a good bias–variance trade-
off, but to unlock its potential in combinatorial settings
requires improvements in model selection.

7. Conclusion
In this paper, we have derived shrinkage-based doubly-
robust estimators for off-policy evaluation using a principled
optimization-based framework. Our approach recovers the
weight-clipping estimator from prior work and also yields
novel optimistic shrinkage estimators for both atomic and
combinatorial settings. Extensive experiments demonstrate
the efficacy of these estimators and highlight the role of
model selection in achieving good performance. Thus, the
next step is to develop model selection procedures for off-
policy evaluation that can close the gap with oracle tuning.
We look forward to pursuing this direction in future work.
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Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X.,
Chickering, D. M., Portugaly, E., Ray, D., Simard, P.,
and Snelson, E. Counterfactual reasoning and learning
systems: The example of computational advertising. The
Journal of Machine Learning Research, 2013.

Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
Journal of Computer and System Sciences, 2012.

Dani, V., Hayes, T. P., and Kakade, S. M. The price of
bandit information for online optimization. In Advances
in Neural Information Processing Systems, 2008.
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