
Doubly robust off-policy evaluation with shrinkage

A. Derivation of Shrinkage Estimators for Non-combinatorial Setting
In this section we provide detailed derivations for the two estimators in the non-combinatorial setting.

We first derive the pessimistic version. Recall that the optimization problem decouples across (x, a), so we focus on a single
(x, a) pair such that µ(a | x) > 0 since only such pairs can appear in the data. For conciseness, we omit the dependence on
(x, a) and simply write w = w(x, a), ŵ = ŵ(x, a) and µ = µ(a | x). Fixing λ ≥ 0, we must solve

Minimize
ŵ∈R

[
µŵ2 + 2λ |µ(ŵ − w)|

]
.

(Note that we allow any ŵ ∈ R, but we will see that the solution will actually satisfy 0 ≤ ŵ ≤ w.) Since µ > 0, this
minimization problem is strongly convex and therefore has a unique minimizer. By first-order optimality, ŵ is a minimizer
if and only if

2µŵ + 2λµv = 0 and v ∈ ∂ |ŵ − w| =


1 if ŵ > w,

[−1, 1] if ŵ = w,

−1 if ŵ < w.

(11)

Since µ > 0, the first equation can be rewritten as
ŵ = −λv.

Now a simple case analysis shows that if w > λ then the choice ŵ = λ, v = −1 satisfies Eq. (11), and if 0 ≤ w ≤ λ then
the choice ŵ = w, v = −w/λ satisfies Eq. (11), yielding

ŵp,λ(x, a) = min{λ,w(x, a)},

which is the clipped estimator.

For the optimistic version, the optimization problem is

Minimize
ŵ∈R

[
µŵ2w2/z + λµ(ŵ − w)2/z

]
,

where z = z(x, a). The optimality conditions are

2µw2ŵ/z + 2λµ(ŵ − w)/z = 0.

This gives the optimistic estimator

ŵo,λ(x, a) =
λ

w(x, a)2 + λ
w(x, a).

Notice that this estimator does not depend on the weighting function z, so it does not depend on how we train the regression
model.

B. Derivation of the Shrinkage Estimator for Combinatorial Setting
We provide a complete derivation of the shrinkage estimator for combinatorial actions. We use the notation w(x,a) =
w(x)>a. We assume that the regression model takes form η̂(x,a) = η̂(x)>a, satisfies η̂(x,a) ∈ [0, 1], and is trained to
minimize

L(η̂) := E
µ

[
z(x,a)(r − η̂(x)>a)2

]
for some z(x,a) > 0. We assume that the linearity assumption holds, so we can write η(x,a) = η(x)>a. And we also
assume that span

(
suppπ(· | x)

)
⊆ span

(
suppµ(· | x)

)
, so, as shown by Swaminathan et al. (2017), the pseudo-inverse

estimator is unbiased:
E

(x,a,r)∼µ

[
η̂(x)>qπ,x + w(x,a)

(
r − η̂(x)>a

)]
= E

(x,a,r)∼π
[r]. (12)
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Therefore, if we replace w by an arbitrary function ŵ (not necessarily linear in a), we obtain the expression for the bias

Bias(ŵ) = E
µ

[ (
ŵ(x,a)− w(x,a)

)
(r − η̂(x)>a)

]
. (13)

Using Cauchy–Schwarz inequality, we can bound the bias in terms of L(η̂):

Bias(ŵ) ≤
√
E
µ

[ (
ŵ(x,a)− w(x,a)

)2
/z(x,a)

]
·
√
L(η̂).

For the variance bound, we begin with a proxy based on Proposition 2, and then bound it using Cauchy–Schwarz inequality,
the fact that η̂(x)>a and r are bounded in [0, 1], and an additional assumption that |ŵ(x,a)| ≤ |w(x,a)| (which we will
show is true for the specific optimistic estimator that we derive below):

Var(ŵ) ≈ 1

n
E
µ

[
ŵ(x,a)2

(
r − η̂(x)>a

)2 ] ≤ 1

n

√
E
µ

[
ŵ(x,a)4/z(x,a)

]
·
√

E
µ

[
z(x,a)

(
r − η̂(x)>a

)4 ]
≤ 1

n

√
E
µ

[
ŵ(x,a)2w(x,a)2/z(x,a)

]
·
√
L(η̂).

Similar to non-combinatorial setting, the solutions of the resulting MSE bound must lie on the Pareto front parameterized by
a single scalar λ ∈ [0,∞]:

Minimize
ŵ

λE
µ

[
1

z(x,a)

(
ŵ(x,a)− w(x,a)

)2 ]
+ E

µ

[
w(x,a)2

z(x,a) ŵ(x,a)2
]
.

This decomposes across (x,a) and by first-order optimality, we obtain the same solution as in non-combinatorial setting:

ŵ(x,a) =
λ

w(x,a)2 + λ
w(x,a).

Note that these weights satisfy |ŵ(x,a)| ≤ |w(x,a)|, and ŵ matches the sign of w, so in fact a stronger shrinkage property
holds: ŵ(x,a) = c(x,a)w(x,a) where c(x,a) ∈ [0, 1]. Also note that when µ is supported on a linearly independent set
of actions for any given x, then we can pick ŵ(x) ∈ Rd to satisfy ŵ(x,a) = ŵ(x)>a across all actions in the support
of µ(· | x), thus satisfying the assumptions of Proposition 2. Plugging the expression for ŵ back into the pseudo-inverse
estimator yields

V̂DRos-PI(π; η̂, λ) :=
1

n

n∑
i=1

η̂(xi)
>qπ,xi

+

(
λ

λ+ (w(xi)>ai)2

)
w(xi)

>ai(ri − η̂(xi)
>ai).

C. Proofs
C.1. Proof of Proposition 1

The law of total variance gives

Var(ŵ) =
1

n
Var

x,a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)

=
1

n
E
x

Var
a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)
︸ ︷︷ ︸

=:T1

+
1

n
Var
x

E
a,r∼µ

( ∑
a′∈A

π(a′ | x)η̂(x, a′) + ŵ(x, a)(r − η̂(x, a))

)
︸ ︷︷ ︸

=:T2

.
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For T1, since
∑
a′∈A π(a′ | x)η̂(x, a′) does not depend on a, r, it does not contribute to the conditional variance, and we get

T1 = E
x

Var
a,r

( ŵ(x, a)(r − η̂(x, a)) ) = E
x,a,r

[
ŵ(x, a)2(r − η̂(x, a))2

]
− E

x

[
E
a,r

[ ŵ(x, a)(r − η̂(x, a)) ]
2

]
.

The first term is our variance proxy. To bound the second term, write ŵ(x, a) = c(x, a)w(x, a) for some c(x, a) ∈ [0, 1],
which is possible since 0 ≤ w ≤ ŵ by assumption. The second term can then be rewritten and bounded as

0 ≤ E
x

[
E

a,r∼µ

[
ŵ(x, a)

(
r − η̂(x, a)

) ]2 ]
= E

x

[
E

a,r∼µ

[
w(x, a)c(x, a)

(
r − η̂(x, a)

) ]2 ]
= E

x

[
E

a,r∼π

[
c(x, a)

(
r − η̂(x, a)

) ]2 ] ≤ 1,

where the second equality follows by the unbiasedness of inverse-propensity scoring, and the final bound follows because
c(x, a), r, η̂(x, a) ∈ [0, 1].

For T2, of course we have T2 ≥ 0, and further

T2 = Var
x

[
E
a∼π

[
η̂(x, a)

]
+ E
a∼µ

[
ŵ(x, a)

(
η(x, a)− η̂(x, a)

)]]
≤ Ex

[(
E
a∼π

[η̂(x, a)] + E
a∼µ

[
ŵ(x, a)

(
η(x, a)− η̂(x, a)

)])2
]

= Ex

[(
E
a∼π

[η̂(x, a)] + E
a∼µ

[
w(x, a)c(x, a)

(
η(x, a)− η̂(x, a)

)])2
]

= Ex
[
E
a∼π

[
η̂(x, a) + c(x, a)

(
η(x, a)− η̂(x, a)

)]2]
= Ex

[
E
a∼π

[(
1− c(x, a)

)
η̂(x, a) + c(x, a)η(x, a)

]2]
≤ 1,

where we again write ŵ(x, a) = c(x, a)w(x, a) for some c(x, a) ∈ [0, 1], then appeal to the unbiasedness of the inverse-
propensity scoring, and finally use the bounds c(x, a), η(x, a), η̂(x, a) ∈ [0, 1].

Therefore, we can write

Var(ŵ)− 1

n
E

x,a,r

[
ŵ(x, a)2(r − η̂(x, a))2

]
= − 1

n
E
x

[
E
a,r

[ ŵ(x, a)(r − η̂(x, a)) ]
2

]
+

1

n
T2,

and we have just shown that the right hand side is in
[
− 1
n ,

1
n

]
. This proves the proposition.

C.2. Proof of Proposition 2

We begin by deriving a simple expression for the pseudo-inverse Γ†µ,x. Consider a fixed x and let s = |Bx| be the size of the
basis Bx (note that s might be a function of x). Let Dµ,x ∈ Rs×s denote the diagonal matrix Dµ,x = diag{µ(a | x)}a∈Bx

.
Recall that Bx is the matrix with a ∈ Bx in its columns. The matrix Γµ,x can then be written as

Γµ,x = BxDµ,xB
>
x .

To obtain its psedo-inverse, we use tho following fact:

Fact 4. Let B ∈ Rd×s be a matrix with linearly independent columns and let K = B>B. Then for any invertible diagonal
matrix D ∈ Rs×s, we have

(BDB>)† = BK−1D−1K−1B>,

where K−1 is well defined thanks to the linear independence of columns of B.
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Proof. Let G := BDB> and G′ := BK−1D−1K−1B>. To show that G† = G′, it suffices to argue that GG′G = G and
G′GG′ = G′:

GG′G = BDB>BK−1D−1K−1B>BDB> = BDB> = G,

G′GG′ = BK−1D−1K−1B>BDB>BK−1D−1K−1B> = BK−1D−1K−1B> = G′.

Using this fact, we thus have
Γ†µ,x = BxK

−1
x D−1

µ,xK
−1
x B>x , (14)

where Kx = B>x Bx.

We are now ready to start the proof of Proposition 2. Similarly to the proof of Proposition 1, we first apply the law of total
variance

nVar(ŵ) = Var
x,a,r∼µ

(
η̂(x)>qπ,x + ŵ(x)>a(r − η̂(x)>a)

)
= E

x
Var
a,r∼µ

(
η̂(x)>qπ,x + ŵ(x)>a(r − η̂(x)>a)

)
︸ ︷︷ ︸

=:T1

+ Var
x

E
a,r∼µ

(
η̂(x)>qπ,x + ŵ(x)>a(r − η̂(x)>a)

)
︸ ︷︷ ︸

=:T2

.

To analyze T2, we first rewrite and bound the inner expectation for a fixed x. We drop the dependence on x from the notation
and write η̂ = η̂(x), qπ = qπ,x, ŵ = ŵ(x), η = η(x), and Γµ = Γµ,x:

E
a,r∼µ

[
η̂>qπ + ŵ>a(r − a>η̂)

]
= η̂>qπ + E

a∼µ

[
ŵ>a(a>η − a>η̂)

]
= η̂>qπ + ŵ>

(
E

a∼µ
[aa>]

)
(η − η̂) = η̂>qπ + ŵ>Γµ(η − η̂)

= η̂>Bvπ + ŵ>(BDµB
>)(η − η̂) (15)

where in the last step we introduced shorthands B = Bx, Dµ = Dµ,x and vπ = vπ,x.

To continue with the derivation, observe that by assumption, we have ŵ>a = c(x,a)w>a for all a ∈ Bx, and so we can
write ŵ>B = w>BC where C is a diagonal matrix with entries c(x,a) across a ∈ Bx. Next, using the fact that w = Γ†µqπ
and then plugging in Eq. (14), we obtain

ŵ>B = w>BC = q>π Γ†µBC = v>πB
>
(
BK−1D−1

µ K−1B>
)
BC = v>πD

−1
µ C, (16)

where we introduced the shorthand K = Kx. Now combining Eqs. (15) and (16), we obtain∣∣∣∣ E
a,r∼µ

[
η̂>qπ + ŵ>a(r − a>η̂)

]∣∣∣∣ =
∣∣∣v>πB>η̂ + v>πD

−1
µ CDµB

>(η − η̂)
∣∣∣

=
∣∣∣v>π (B>η̂ + CB>(η − η̂)

)∣∣∣
≤ ‖vπ‖1 ·

∥∥(I − C)B>η̂ + CB>η
∥∥
∞ , (17)

where in the last step we used Holder’s inequality. For the `∞ norm, we get∥∥(I − C)B>η̂ + CB>η
∥∥2

∞ = max
a∈Bx

∣∣∣(1− c(x,a)
)
η̂(x,a) + c(x,a)η(x,a)

∣∣∣ ≤ 1,

where the last step follows because η(x,a), η̂(x,a), c(x,a) ∈ [0, 1]. Therefore, we have that 0 ≤ T2 ≤ Ex
[
‖vπ,x‖21

]
.

To bound T1, we first note that η̂(x)>qπ,x is independent of a and r, and so it does not contribute to the variance, and so

T1 = E
x,a,r∼µ

[(
ŵ>a(r − a>η̂)

)2]− E
x

[
E

a,r∼µ

[
ŵ>a(r − a>η̂)

]2]
.

The second term satisfies

0 ≤ E
x

[
E

a,r∼µ

[
ŵ>a(r − a>η̂)

]2] ≤ E
x

[
‖vπ,x‖21 ·

∥∥CB>(η − η̂)
∥∥2

∞

]
≤ E

x

[
‖vπ,x‖21

]
,

where we applied similar reasoning as in Eq. (17). Combining this bound with the bound on T2 completes the proof:∣∣∣nVar(ŵ)− E
x,a,r∼µ

[(
ŵ>a(r − a>η̂)

)2]∣∣∣ ≤ E
x

[
‖vπ,x‖21

]
.
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C.3. Proof of Theorem 3

The main technical part of the proof is a deviation inequality for the sample variance. For this, let us fix θ, which we drop
from notation, and focus on estimating the variance

Var(Z) = E[(Z − E(z))2] with V̂ar =
1

2n(n− 1)

∑
1≤i,j≤n
i6=j

(Zi − Zj)2.

We have the following lemma

Lemma 5 (Variance estimation). Let Z1, . . . , Zn be iid random variables, and assume that |Zi| ≤ R almost surely. Then
there exists a constant C > 0 such that for any δ ∈ (0, 1), with probability at least 1− δ

∣∣∣Var(Z)− V̂ar
∣∣∣ ≤ (C + 3)

(√
2R2 Var(Z) log(6C/δ)

n
+

2R2 log(6C/δ)

3n

)
.

Proof. For this lemma only, define µ = E[Z]. By direct calculation

Var(Z) = E
[
Z2
]
− µ2, V̂ar =

1

n

n∑
i=1

Z2
i −

1

n(n− 1)

∑
i 6=j

ZiZj .

We work with the second term first. Let Z ′1, . . . , Z
′
n be an iid sample, independent of Z1, . . . , Zn. Now, by Theorem 3.4.1

of De la Pena & Giné (2012), we have

P

 ∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣ > t

 ≤ CP
 ∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Z ′j − µ)

∣∣∣∣∣∣ > t/C


for a universal constant C > 0. Thus, we have decoupled the U-statistic. Now let us condition on Z1, . . . , Zn and write
Xj = 1

n−1

∑
i 6=j(Zi − µ), which conditional on Z1, . . . , Zn is non-random. We will apply Bernstein’s inequality on

1
n

∑n
j=1Xj(Z

′
j − µ), which is a centered random variable, conditional on Z1:n. This gives that with probability at least

1− δ ∣∣∣∣∣∣ 1

n

n∑
j=1

Xj(Z
′
j − µ)

∣∣∣∣∣∣ ≤
√

2 1
n

∑n
j=1 Var(XjZ ′j) log(2/δ)

n
+

2 maxj sup |Xj(Zj − µ) | log(2/δ)

3n
.

≤ max
j
|Xj |

(√
2 Var(Z) log(2/δ)

n
+

2R log(2/δ)

3n

)
.

This bound holds with high probability for any {Xj}nj=1. In particular, since |Xj | ≤ R almost surely, we get that with
probability 1− δ∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣ ≤ C
√

2R2 Var(Z) log(2C/δ)

n
+

2CR2 log(2C/δ)

3n
.

The factors of C arise from working through the decoupling inequality.

Next, by a standard application of Bernstein’s inequality, with probability at least 1− δ, we have∣∣∣∣∣ 1

n

n∑
i=1

Zi − µ

∣∣∣∣∣ ≤
√

2 Var(Z) log(2/δ)

n
+

2R log(2/δ)

3n
.
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Therefore, with probability 1− 2δ we have∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

ZiZj − µ2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣+ 2

∣∣∣∣∣ 1

n

n∑
i=1

Ziµ− µ2

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(Zi − µ)(Zj − µ)

∣∣∣∣∣∣+ 2R

∣∣∣∣∣ 1

n

n∑
i=1

Zi − µ

∣∣∣∣∣
≤ (C + 2)

√
R2 Var(Z) log(2C/δ)

n
+

2(C + 2)R2 log(2C/δ)

3n

Let us now address the first term, a simple application of Bernstein’s inequality gives that with probability at least 1− δ∣∣∣∣∣ 1

n

n∑
i=1

Z2
i − E[Z2]

∣∣∣∣∣ ≤
√

2 Var(Z2) log(2/δ)

n
+

2R2 log(2/δ)

3n

≤
√

2R2 Var(Z) log(2/δ)

n
+

2R2 log(2/δ)

3n
.

Combining the two inequalities, we obtain the result.

Since we are estimating the variance of the sample average estimator, we divide by another factor of n. Meanwhile the range
and the variance terms themselves are certainly O(1), so the error terms in Lemma 5 are O(n−3/2) and O(n−2) respectively.
Formally, there exists a universal constants C1, C2 > 0 such that for any δ ∈ (0, 1) with probability at least 1− δ we have

∣∣∣Var(θ)− V̂ar(θ)
∣∣∣ ≤ C1

√
log(1/δ)

n3
+ C2

log(1/δ)

n2
.

By adjusting the constant, we can simplify the expression by removing the n−2 term. In other words, there exists a different
universal constant C > 0 such that ∣∣∣Var(θ)− V̂ar(θ)

∣∣∣ ≤ C log(1/δ)

n3/2

holds with probability at least 1− δ.

For the model selection result, first apply Lemma 5 for all θ ∈ Θ, taking a union bound. Further take a union bound over the
event that Bias(θ) ≤ BiasUB(θ) for all θ ∈ Θ, if it is needed. Then, observe that for any θ0 ∈ Θ0 we have

MSE(θ̂) = Bias(θ̂)2 + Var(θ̂) ≤ BiasUB(θ̂)2 + V̂ar(θ̂) +
C log(|Θ|/δ)

n3/2

≤ BiasUB(θ0)2 + V̂ar(θ0) +
C log(|Θ|/δ)

n3/2
≤ 0 + Var(θ0) +

2C log(|Θ|/δ)
n3/2

= MSE(θ0) +
2C log(|Θ|/δ)

n3/2
.

The first inequality uses Lemma 5 and the fact that Bias ≤ BiasUB. The second uses that θ̂ optimizes this quantity, and the
third uses the property that BiasUB(θ0) = 0 by assumption. Note that the universal constant here is slightly different from
the one in the variance bound, since we have also taken a union bound for the bias term.

C.4. Construction of Upper Bounds on Bias

In this section we give detailed construction of bias upper bounds that we use in the model selection procedure. Recall that
this is for the analysis only. Empirically we found that using the estimators alone — not the upper bounds — leads to better
performance.

Throughout, we fix a set of hyperparameters θ, which we suppress from the notation.
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Direct bias estimation. The most straightforward bias estimator is to simply approximate the expectation with a sample
average.

B̃ias =

∣∣∣∣∣ 1n
n∑
i=1

( ŵ(xi, ai)− w(xi, ai) ) ( ri − η̂(xi, ai) )

∣∣∣∣∣ .
This estimator has finite-sum structure, and naively, each term is bounded in [−w∞, w∞] where w∞ = maxx,a w(x, a).
The variance is at most Eµ[w(x, a)2]. Hence Bernstein’s inequality gives that with probability at least 1− δ∣∣∣ B̃ias− Bias

∣∣∣ ≤√2Eµ[w(x, a)2] log(2/δ)

n
+

2w∞ log(2/δ)

3n
.

Inflating the estimate by the right hand side gives BiasUB, which is a high probability upper bound on Bias.

Pessimistic estimation. The bias bound used in the pessimistic estimator and its natural sample estimator are

E
µ

[∣∣ŵ(x, a)− w(x, a)
∣∣], B̃ias =

1

n

∑
i

∑
a

µ(a | xi)
∣∣∣ŵ(xi, a)− w(xi, a)

∣∣∣ =
1

n

∑
i

∑
a

π(a | xi)
∣∣∣∣ ŵ(xi, a)

w(xi, a)
− 1

∣∣∣∣ .
Note that since we have already eliminated the dependence on the reward, we can analytically evaluate the expectation over
actions, which will lead to lower variance in the estimate.

Again we perform a fairly naive analysis. Since 0 ≤ ŵ(x, a) ≤ w(x, a), the random variables, equal to the inner sum over a,
take values in [0, 1]. Therefore, Hoeffding’s inequality gives that with probability 1− δ

Bias ≤ B̃ias +

√
log(1/δ)

2n
,

and we use the right hand side for our high probability upper bound.

Optimistic estimation. For the optimistic bound, we must estimate two terms, one involving the regressor and one
involving the importance weights. We use

T1 :=
1

n

n∑
i=1

z(xi, ai)(ri − η̂(xi, ai))
2, T2 :=

1

n

n∑
i=1

∑
a

µ(a | xi)
|ŵ(xi, a)− w(xi, a)|2

z(xi, a)
.

Note here that the former uses sampled actions from µ, but does not involve the importance weight, while the latter involves
the importance weight but analytically evaluates the expectation over µ. Thus we can expect that both are fairly low variance.

For both, we use Bernstein’s inequality. For T1, each term is bounded in [−z∞, z∞] where z∞ = maxx,a z(x, a) and its
variance is bounded by Eµ[z(x, a)2]. Thus we get that with probability at least 1− δ/2

E
[
z(x, a)(r − η̂(x, a))2

]
≤ T1 +

√
2Eµ[z(x, a)2] log(2/δ)

n
+

2z∞ log(2/δ)

3n
.

For T2, we similarly to the pessimistic case convert the inner expectation w.r.t. µ(a | xi) to an expectation w.r.t. π(a | xi),
obtaining a random variable bounded between 0 and maxx,a w(x, a)/z(x, a). Using Hoeffding’s inequality, we obtain that
with probability 1− 2δ

E
µ

[
|ŵ(x, a)− w(x, a)|2 /z(x, a)

]
≤ T2 +

√
maxx,a

w(x,a)
z(x,a) log(2/δ)

2n
.

The high probability upper bound follows by multiplying the two right hand sides together and taking square root.

D. Experimental Details and Additional Results
D.1. Experimental Details and Results for Atomic Actions

Dataset statistics. We use datasets from the UCI Machine Learning Repository (Dua & Graff, 2017). Dataset statistics
are displayed in Table 4.

https://archive.ics.uci.edu/ml/index.php
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Hyperparameter grid. For our shrinkage estimators and SWITCH, we choose the shrinkage coefficients from a grid of 30
geometrically spaced values. For the pessimistic estimator and SWITCH, the largest and smallest values in the grid are the
0.05 quantile and 0.95 quantile of the importance weights. For the optimistic estimator, the largest and smallest values are
0.01× (w0.05)2 and 100× (w0.95)2 where w0.05 and w0.95 are the 0.05 and 0.95 quantile of the importance weights.

For the off-policy learning experiments, we only consider the shrinkage coefficients in {0.0, 0.1, 1, 10, 100, 1000,∞} during
training, while for model selection, we use the same grid as in the evaluation experiments.

MRDR. Farajtabar et al. (2018) propose training the regression model with a specific choice of weighting z, which we
also use in our experiments. When the evaluation policy π is deterministic, they set z(x, a) = 1{π(x) = a} · 1−µ(a|x)

µ(a|x)2 .
For stochastic policies, following the implementation of Farajtabar et al., we sample ai ∼ π(· | xi) for each example in
the dataset used to train the reward predictor. Then we proceed as if the evaluation policy deterministically chooses ai on
example xi.

Ablation study for deterministic target policy. Since MRDR is more suited to deterministic policies, we also report the
results of our regressor and shrinkage ablations for a deterministic target policy π1,det in Table 5. As with the stochastic
policies, the estimator influences the choice of reward predictor, but note that z = 1 and z = w are more favorable here.
This is likely due to high variance suffered from training with z = w2, because the importance weights are larger with a
deterministic policy. Our shrinkage ablation reveals that both estimator types are important also when the target policy is
deterministic.

Ablation study for model selection. In Table 6, we show the comparison of different model selection methods under
different reward predictors and different shrinkage types. In most cases, Dir-all (DRs-direct where the bias bound is
estimated as the pointwise minimum of (1) the bias, (2) the optimistic bound and (3) the pessimistic bound) and Up-all (all
bias estimates are adjusted by adding twice standard error before taking pointwise minimum) are most frequently statistically
indistinguishable from the best, which suggests that our proposed bias estimate (by taking pointwise minimum of the three)
is robust and adaptive.

Comparisons across additional experimental conditions. In Figure 4 and Figure 5, we compare our new estimators,
DRs-direct and DRs-upper, with baselines across various conditions (apart from deterministic versus stochastic rewards from
the main paper). We first investigate the performance under friendly logging (logging and evaluation policies are derived
from the same deterministic policy, π1,det), adversarial logging (logging and evaluation policies are derived from different
policies π1,det, π2,det), and uniform logging (logging policy is uniform over all actions). Then we plot the performance in
the small sample regime, where we aggregate the 108 conditions (6 logging policies, 9 datasets, deterministic/stochastic
reward) at just 200 bandit samples.

Comparisons across all reward predictors. In Table 7–Table 11, we compare the performance of DRs-direct and DRs-
upper against baselines across various choices of reward predictors. We begin with using the best reward predictor type for
each method (matching the setting of the main paper), and then consider each reward predictor in turn, across all estimators.
We report the number of conditions where each estimator is statistically indistinguishable from the best, and the number
of conditions where each estimator statistically dominates all others. DRs-upper is most often in the top group and most
often the unique winner. DRs-direct is also better than snIPS, snDR, and SWITCH. These results suggest that our shrinkage
estimators are robust to different choices of reward predictors, and not just limited to the recommended set {η̂ ≡ 0, z = w2}.

Robustness of DRs-direct and DRs-upper (w.r.t. inclusion of more reward predictors) In Figure 6, we test the robust-
ness of our proposed methods as we incorporate more reward predictors. Our practical suggestions is to use {η̂ ≡ 0, z = w2}
(shown as DRs-direct and DRs-upper in the figure). Here we also evaluate these methods when selecting from all reward
predictors in the set {η̂ ≡ 0, z ≡ 1, z = w, z = w2,MRDR} (shown as DRs-direct (all) and DRs-upper (all) in the figure).
For DRs-direct, the curves almost match, suggesting that it is quite robust. However, DRs-upper is less robust to including
additional reward predictors.

Learning curves. At the end of appendix, we provide learning curves across all conditions. Dataset glass is excluded
since we only ran it for a single sample size n = 214.
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Dataset Glass Ecoli Vehicle Yeast PageBlok OptDigits SatImage PenDigits Letter
Actions 6 8 4 10 5 10 6 10 26

Examples 214 336 846 1484 5473 5620 6435 10992 20000
Table 4. Dataset statistics.

η̂ ≡ 0 z ≡ 1 z = w z = w2 MRDR
DM 0 (0) 54 (30) 59 (23) 35 (4) 24 (6)
DR 28 (1) 94 (11) 85 (0) 85 (1) 85 (0)
snDR 65 (7) 86 (7) 79 (0) 72 (0) 71 (0)
DRs 14 (9) 51 (17) 65 (14) 54 (6) 47 (4)

DRps DRos
η̂ ≡ 0 13 59
z ≡ 1 29 55
z = w 26 66
z = w2 30 67
MRDR 29 63

Table 5. Ablation analysis for deterministic target policy π1,det across experimental conditions. Left: we compare reward predictors using
a fixed estimator (with oracle tuning if applicable). We report the number of conditions where a regressor is statistically indistinguishable
from the best and, in parenthesis, the number of conditions where it statistically dominates all others. Right: we compare different
shrinkage types using a fixed reward predictor (with oracle tuning) reporting the number of conditions where one statistically dominates
the other.

D.2. Experimental Details for Combinatorial Actions

Hyperparameter grid. We select the hyperparameter λ from the grid of 15 geometrically spaced values, with the smallest
value 0.01× (w0.05)2 and the largest value 100× (w0.95)2, where w0.05 and w0.95 are the 0.05 and 0.95 quantiles of the
weights w(xi,ai) on the logged data. We also add two boundary values λ = 10−50 and λ = 1030 to include DM and DR-PI
as special cases.

Basis construction. We use the logging distribution supported on a linearly independent set of actions, i.e., a basis,
constructed following Algorithm 1. The number of elements of the basis for the action space of lists of length ` out of m
items is 1 + `(m− 1).

Algorithm 1 Constructing basis for the action space of lists of length ` out of m items.
Actions a are represented as tuples of size ` with entries a[i] ∈ {0, . . . ,m− 1}, indexed by i ∈ {0, . . . , `− 1}.
Actions a correspond to vectors in R`m, obtained by representing each a[i] as a vector of standard basis in Rm,
and concatenating these vectors.
Assume: Greedy action is the tuple g = [1, 2, . . . , `]

Initialize B = {g}
for i = 1 to `− 1 do

Set a = g
Set a[0] = i and a[i] = 0, B = B ∪ {a}

end for
for j = ` to m− 1 do

Set a = g
Set a[0] = j and B = B ∪ {a}

end for
for i = 1 to `− 1 do

for i′ = 1 to `− 1 such that i 6= i′ do
Set a = g
Set a[0] = i, a[i] = i′ and a[i′] = 0, B = B ∪ {a}

end for
for j = ` to m− 1 do

Set a = g
Set a[0] = i, a[i] = j and B = B ∪ {a}

end for
end for
for i = 1 to `− 1 do

Set a = g
Set a[0] = `, a[i] = 0 and B = B ∪ {a}

end for
Return B
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Dir-all Dir-naive Dir-opt Dir-pes Up-all Up-naive Up-opt Up-pes
0-pes 71 67 74 78 63 60 79 79
0-opt 75 68 71 81 64 62 66 81
0-best 63 59 67 74 56 54 64 76
w2-pes 47 41 5 3 72 71 5 3
w2-opt 47 40 3 2 73 70 3 2
w2-best 47 42 4 3 75 72 4 3
best-pes 51 46 7 5 69 70 6 5
best-opt 49 46 7 3 69 70 5 3
best-best 50 46 8 4 71 70 6 4
all-best 49 46 7 6 65 67 6 6

Table 6. Comparison of model selection methods when paired with different reward predictor sets and shrinkage types. As in other tables,
we record the number of conditions in which this model selection method is statistically indistinguishable from the best, for fixed reward
predictor set and shrinkage types. Columns are indexed by model selection methods, “Dir” denotes taking sample average and “Up”
denotes inflating sample averages with twice the standard error. “Naive” denotes directly estimating bias, “opt” denotes estimating
optimistic bias bound, “pes” denotes pessimistic bias bound, and “all” denotes taking the pointwise minimum of all three. Rows are
indexed by reward predictors: η̂ ≡ 0, z = w2, “best” denotes selecting over both, and “all” denotes selecting over these and additionally
z = 1, z = w, and MRDR. Rows are also indexed by shrinkage type, optimistic, pessimistic, and best, which denotes model selection
over both.
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Figure 4. CDF plots of normalized MSE aggregated across all conditions with friendly scenario (left) and adversary scenario (right).
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Figure 5. CDF plots of normalized MSE aggregated across all conditions with uniform logging policy scenario (left) and small data
regime (right).
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Figure 6. Robustness test for DRs-direct and DRs-upper. DRs-direct (all) and DRs-upper (all) means the corresponding method with
reward predictor select from all possible cases {η̂ = 0, z = 1, z = w, z = w2} and MRDR.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 1 39 1 1 27 56
Unique Best 0 28 0 0 14 52

Table 7. Significance testing for different estimators across all conditions, with each estimator using its best reward predictor (DM uses
z = 1, snDR uses z = w, while SWITCH and DRs use reward from {η̂ = 0, z = w2}). In the top row, we report the number of
conditions where each estimator is statistically indistinguishable from the best, and in the bottom row we report the number of conditions
where each estimator is the uniquely best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 10 39 19 15 25 49
Unique Best 0 23 3 1 5 43

Table 8. Significance testing for different estimators across all conditions (DM, snDR use reward z = 1, while SWITCH and DRs use
reward from {η̂ = 0, z = 1}). In the top row, we report the number of conditions where each estimator is statistically indistinguishable
from the best, and in the bottom row we report the number of conditions where each estimator is the uniquely best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 3 44 5 5 30 58
Unique Best 0 23 0 0 6 51

Table 9. Significance testing for different estimators across all conditions (DM, snDR use reward z = w, while SWITCH and DRs use
reward from {η̂ = 0, z = w}). In the top row, we report the number of conditions where each estimator is statistically indistinguishable
from the best, and in the bottom row we report the number of conditions where each estimator is the uniquely best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 5 36 5 4 43 63
Unique Best 0 15 0 0 13 46

Table 10. Significance testing for different estimators across all conditions (DM, snDR use reward z = w2, while SWITCH and DRs use
reward from {η̂ = 0, z = w2}). In the top row, we report the number of conditions where each estimator is statistically indistinguishable
from the best, and in the bottom row we report the number of conditions where each estimator is the uniquely best.

snIPS DM snDR SWITCH DRs-direct DRs-upper
Best or Tied 10 17 8 10 37 73
Unique Best 0 7 0 0 17 57

Table 11. Significance testing for different estimators across all conditions (DM, snDR use reward estimated from MRDR, while SWITCH
and DRs use reward from {η̂ = 0,MRDR}). In the top row, we report the number of conditions where each estimator is statistically
indistinguishable from the best, and in the bottom row we report the number of conditions where each estimator is the uniquely best.
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200 500 1000 8244
number of samples

5.0e-04

9.5e-03

1.8e-02

2.8e-02
3.6e-02
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S

E

pendigits, log with (base= π2,α=0.95, β=0.1), stoch reward
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DRs-upper

200 252
number of samples

7.6e-04

1.5e-03

2.2e-03

3.0e-03

3.7e-03
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E

ecoli, log with (base= π1,α=0.5, β=0.2), det reward
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DRs-upper

200 252
number of samples

4.0e-03

4.7e-03

5.4e-03

6.1e-03

6.8e-03
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S

E

ecoli, log with (base= π1,α=0.5, β=0.2), stoch reward
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200 252
number of samples

6.1e-04

1.1e-03

1.5e-03

1.9e-03

2.4e-03
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E

ecoli, log with (base= π1,α=0.7, β=0.2), det reward
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200 252
number of samples

3.4e-03

3.9e-03

4.4e-03

4.9e-03

5.5e-03
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ecoli, log with (base= π1,α=0.7, β=0.2), stoch reward
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200 252
number of samples

4.4e-03

8.9e-03

1.3e-02

1.8e-02

2.2e-02
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ecoli, log with (base= π0,α=1/k, β=0), det reward
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200 252
number of samples

1.3e-02

1.6e-02

1.9e-02

2.2e-02

2.5e-02
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S

E

ecoli, log with (base= π0,α=1/k, β=0), stoch reward
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DRs-upper

200 252
number of samples

1.3e-03

2.9e-03

4.4e-03

6.0e-03

7.6e-03
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S

E

ecoli, log with (base= π2,α=0.3, β=0.2), det reward
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DRs-upper

200 252
number of samples

7.4e-03

8.4e-03

9.4e-03

1.0e-02

1.1e-02
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E

ecoli, log with (base= π2,α=0.3, β=0.2), stoch reward
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DRs-upper

200 252
number of samples

8.2e-04

1.9e-03

3.1e-03

4.2e-03

5.3e-03
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E

ecoli, log with (base= π2,α=0.5, β=0.2), det reward
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200 252
number of samples

5.3e-03

6.3e-03

7.3e-03

8.3e-03

9.3e-03
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S
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ecoli, log with (base= π2,α=0.5, β=0.2), stoch reward

snIPS
DM
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200 252
number of samples

6.0e-04

2.6e-03

4.6e-03

6.5e-03

8.5e-03
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S
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ecoli, log with (base= π2,α=0.95, β=0.1), det reward
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200 252
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4.2e-03

6.6e-03

9.0e-03

1.1e-02

1.4e-02
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ecoli, log with (base= π2,α=0.95, β=0.1), stoch reward
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Doubly robust off-policy evaluation with shrinkage

200 500 1000 15000
number of samples

1.9e-04
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2.8e-05
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letter, log with (base= π1,α=0.7, β=0.2), det reward
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4.4e-03

7.4e-03
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1.4e-02

1.7e-02

M
S

E

letter, log with (base= π1,α=0.7, β=0.2), stoch reward
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8.3e-04

1.3e-02
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letter, log with (base= π0,α=1/k, β=0), det reward
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number of samples

1.5e-03

2.5e-02
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letter, log with (base= π0,α=1/k, β=0), stoch reward
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number of samples

7.4e-04

1.1e-02
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letter, log with (base= π2,α=0.3, β=0.2), det reward
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number of samples

5.3e-03

2.5e-02

4.5e-02

6.5e-02

8.4e-02
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letter, log with (base= π2,α=0.3, β=0.2), stoch reward
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8.6e-04

1.4e-02
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letter, log with (base= π2,α=0.5, β=0.2), det reward
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number of samples

1.2e-02

3.3e-02
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letter, log with (base= π2,α=0.5, β=0.2), stoch reward
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3.1e-03

3.2e-02
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letter, log with (base= π2,α=0.95, β=0.1), det reward
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1.3e-02
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letter, log with (base= π2,α=0.95, β=0.1), stoch reward
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200 500 1000 4827
number of samples

6.9e-05

2.1e-03
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3.1e-04

2.8e-03
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satimage, log with (base= π1,α=0.5, β=0.2), stoch reward
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5.9e-05
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satimage, log with (base= π1,α=0.7, β=0.2), det reward
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2.8e-04

1.6e-03
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satimage, log with (base= π1,α=0.7, β=0.2), stoch reward
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1.9e-04

1.6e-02
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satimage, log with (base= π0,α=1/k, β=0), det reward
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satimage, log with (base= π0,α=1/k, β=0), stoch reward
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1.2e-04

5.1e-03
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satimage, log with (base= π2,α=0.3, β=0.2), det reward
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4.2e-04
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satimage, log with (base= π2,α=0.3, β=0.2), stoch reward
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satimage, log with (base= π2,α=0.5, β=0.2), det reward

snIPS
DM
snDR
SWITCH
DRs-direct
DRs-upper

200 500 1000 4827
number of samples

4.0e-04
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1.3e-04

1.7e-03
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satimage, log with (base= π2,α=0.95, β=0.1), det reward
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Doubly robust off-policy evaluation with shrinkage

200 500 635
number of samples

1.6e-03

3.1e-03
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number of samples

3.9e-03

4.9e-03
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6.9e-03

8.0e-03
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vehicle, log with (base= π1,α=0.5, β=0.2), stoch reward
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number of samples

1.3e-03

2.3e-03

3.3e-03

4.3e-03

5.3e-03
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vehicle, log with (base= π1,α=0.7, β=0.2), det reward
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200 500 635
number of samples

3.7e-03

4.4e-03

5.0e-03

5.7e-03

6.4e-03
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vehicle, log with (base= π1,α=0.7, β=0.2), stoch reward
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DRs-upper

200 500 635
number of samples

2.7e-03

5.6e-03

8.5e-03

1.1e-02

1.4e-02
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vehicle, log with (base= π0,α=1/k, β=0), det reward
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number of samples

4.5e-03

6.5e-03

8.6e-03

1.1e-02

1.3e-02
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vehicle, log with (base= π0,α=1/k, β=0), stoch reward
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200 500 635
number of samples

2.6e-03

5.0e-03

7.3e-03

9.7e-03

1.2e-02
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vehicle, log with (base= π2,α=0.3, β=0.2), det reward
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DRs-upper

200 500 635
number of samples

4.8e-03

6.6e-03

8.4e-03

1.0e-02

1.2e-02
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vehicle, log with (base= π2,α=0.3, β=0.2), stoch reward
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number of samples

1.0e-03

2.5e-03
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5.5e-03

7.0e-03
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vehicle, log with (base= π2,α=0.5, β=0.2), det reward
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DRs-upper

200 500 635
number of samples

5.2e-03

6.7e-03

8.3e-03

9.9e-03

1.1e-02
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vehicle, log with (base= π2,α=0.5, β=0.2), stoch reward
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SWITCH
DRs-direct
DRs-upper
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number of samples

1.3e-03

5.9e-03

1.0e-02

1.5e-02

2.0e-02
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vehicle, log with (base= π2,α=0.95, β=0.1), det reward
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number of samples

8.6e-03

1.6e-02
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3.1e-02

3.9e-02
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vehicle, log with (base= π2,α=0.95, β=0.1), stoch reward
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DRs-upper

200 500 1000 4105
number of samples

3.2e-05

5.4e-04

1.0e-03

1.6e-03
2.1e-03
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page-blocks, log with (base= π1,α=0.5, β=0.2), det reward
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number of samples

2.8e-02

3.0e-02

3.2e-02

3.4e-02

3.5e-02
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page-blocks, log with (base= π1,α=0.5, β=0.2), stoch reward
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DRs-upper

200 500 1000 4105
number of samples

2.5e-05

4.4e-04

8.5e-04

1.3e-03
1.7e-03
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E

page-blocks, log with (base= π1,α=0.7, β=0.2), det reward
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DRs-upper
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number of samples

2.8e-02

2.9e-02

3.1e-02

3.3e-02
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page-blocks, log with (base= π1,α=0.7, β=0.2), stoch reward
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number of samples

6.8e-05

8.9e-04

1.7e-03

2.5e-03
3.4e-03
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E

page-blocks, log with (base= π0,α=1/k, β=0), det reward

snIPS
DM
snDR
SWITCH
DRs-direct
DRs-upper
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2.8e-02

3.3e-02

3.8e-02

4.3e-02

4.9e-02
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page-blocks, log with (base= π0,α=1/k, β=0), stoch reward
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5.8e-05

7.9e-04

1.5e-03

2.3e-03
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page-blocks, log with (base= π2,α=0.3, β=0.2), det reward
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DRs-upper
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number of samples

2.8e-02

3.1e-02

3.4e-02

3.7e-02

4.0e-02
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page-blocks, log with (base= π2,α=0.3, β=0.2), stoch reward
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number of samples

5.4e-05

7.9e-04

1.5e-03

2.3e-03
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page-blocks, log with (base= π2,α=0.5, β=0.2), det reward
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DRs-upper
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number of samples

2.8e-02

3.0e-02

3.3e-02

3.5e-02

3.8e-02
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page-blocks, log with (base= π2,α=0.5, β=0.2), stoch reward
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4.5e-05

2.2e-03
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page-blocks, log with (base= π2,α=0.95, β=0.1), det reward
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