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Abstract
This document provides supplementary material for confidence-calibrated adversarial training (CCAT). First,
in Sec. B, we provide the proof of Proposition 1, showing that there exist problems where standard adversarial
training (AT) is unable to reconcile robustness and accuracy, while CCAT is able to obtain both robustness
and accuracy. In Sec. C, to promote reproducibility and emphasize our thorough evaluation, we discuss details
regarding the used attacks, training procedure, baselines and evaluation metrics. Furthermore, Sec. C includes
additional experimental results in support of the observations in the main paper. For example, we present results
for confidence threshold at 95% and 98% true positive rate (TPR), results for the evaluated detection baselines as
well as per-attack and per-corruption results for in-depth analysis. We also include qualitative results highlighting
how CCAT obtains robustness through confidence thresholding. Code and pre-trained models are available at
davidstutz.de/ccat.

A. Introduction
Confidence-calibrated adversarial training (CCAT) biases the network towards low-confidence predictions on adversarial
examples. This is achieved by training the network to predict a uniform distribution between (correct) one-hot and uniform
distribution which becomes more uniform as the distance to the attacked example increases. In the main paper, we show that
CCAT addresses two problems of standard adversarial training (AT) as, e.g., proposed in (Madry et al., 2018): the poor
generalization of robustness to attacks not employed during training, e.g., other Lp attacks or larger perturbations, and the
reduced accuracy. We show that CCAT, trained only on L∞ adversarial examples, improves robustness against previously
unseen attacks through confidence thresholding, i.e., rejecting low-confidence (adversarial) examples. Furthermore, we
demonstrate that CCAT is able to improve accuracy compared to adversarial training. In this document, Sec. B provides
the proof of Proposition 1. Then, Sec. C includes details on our experimental setup, emphasizing our efforts to thoroughly
evaluate CCAT, and additional experimental results allowing an in-depth analysis of the robustness obtained through CCAT.

In Sec. B, corresponding to the proof of Proposition 1, we show that there exist problems where standard adversarial training
is indeed unable to reconcile robustness and accuracy. CCAT, in contrast, is able to obtain both robustness and accuracy,
given that the “transition” between one-hot and uniform distribution used during training is chosen appropriately.

In Sec. C, we discuss our thorough experimental setup to facilitate reproducibility and present additional experimental
results in support of the conclusions of the main paper. In the first part of Sec. C, starting with Sec. C.1, we provide a
detailed description of the employed projected gradient descent (PGD) attack with momentum and backtracking, including
pseudo-code and used hyper-parameters. Similarly, we discuss details of the used black-box attacks. In Sec. C.2, we include
details on our training procedure, especially for CCAT. In Sec. C.3, we discuss the evaluated baselines, i.e., (Maini et al.,
2020; Madry et al., 2018; Zhang et al., 2019; Lee et al., 2018; Ma et al., 2018). Then, in Sec. C.4, we discuss the employed
evaluation metrics, focusing on our confidence-thresholded robust test error (RErr). In the second part of Sec. C, starting
with Sec. C.5, we perform ablation studies considering our attack and CCAT. Regarding the attack, we demonstrate the
importance of enough iterations, backtracking and appropriate initialization to successfully attack CCAT. Regarding CCAT,
we consider various values for the hyper-parameter ρ which controls the transition from one-hot to uniform distribution
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during training. In Sec. C.6, we analyze how CCAT achieves robustness by considering its behavior in adversarial directions
as well as in between clean examples. Finally, we provide additional experimental results in Sec. C.7: our main results,
i.e., robustness against seen and unseen adversarial examples, for a confidence threshold at 95% and 98% true positive
rate (TPR), per-attack results on all datasets and per-corruption results on MNIST-C (Mu & Gilmer, 2019) and Cifar10-C
(Hendrycks & Dietterich, 2019).

B. Proof of Proposition 1
Adversarial training usually results in reduced accuracy on clean examples. In practice, training on 50% clean and 50%
adversarial examples instead of training only on adversarial examples allows to control the robustness-accuracy trade-off to
some extent, i.e., increase accuracy while sacrificing robustness. The following proposition shows that there exist problems
where adversarial training is unable to reconcile robustness and accuracy, while CCAT is able to obtain both:

Proposition 1. We consider a classification problem with two points x = 0 and x = ε in R with deterministic labels,
i.e., p(y = 2|x = 0) = 1 and p(y = 1|x = ε) = 1, such that the problem is fully determined by the probability
p0 = p(x = 0). The Bayes error of this classification problem is zero. Let the predicted probability distribution over classes
be p̃(y|x) = egy(x)

eg1(x)+eg2(x) , where g : Rd → R2 is the classifier and we assume that the function λ : R+ → [0, 1] used in
CCAT is monotonically decreasing and λ(0) = 1. Then, the error of the Bayes optimal classifier (with cross-entropy loss)
for

• adversarial training on 100% adversarial examples is min{p0, 1− p0}.

• adversarial training on 50%/50% adversarial/clean examples per batch is min{p0, 1− p0}.

• CCAT on 50% clean and 50% adversarial examples is zero if λ(ε) < min {p0/1−p0, 1−p0/p0}.

Proof. First, we stress that we are dealing with three different probability distributions over the labels: the true one p(y|x),
the imposed one during training p̂(y|x) and the predicted one p̃(y|x). We also note that p̂ depends on λ as follows:

p̂(k) = λpy(k) + (1− λ)u(k) (1)

where py(k) is the original one-hot distribution, i.e., py(k) = 1 iff k = y and py(k) = 0 otherwise with y being the true
label, and u(k) = 1/K is the uniform distribution. We note that this is merely an alternative formulation to the target
distribution as outlined in the main paper. Also note that λ itself is a function of the norm ‖δ‖; here, this dependence is
made explicit by writing p̂(λ)(y|x). This makes the expressions for the expected loss of CCAT slightly more complicated.
We first derive the Bayes optimal classifier and its loss for CCAT. We introduce

a = g1(0)− g2(0), b = g1(ε)− g2(ε). (2)

and express the logarithm of the predicted probabilities (confidences) of class 1 and 2 in terms of these quantities.

− log p̃(y = 2|x = x) = − log
( eg2(x)

eg1(x) + eg2(x)

)
= log

(
1 + eg1(x)−g2(x)

)
=

{
log
(
1 + ea

)
if x = 0

log(1 + eb) if x = ε
.

− log p̃(y = 1|x = x) = − log
( eg1(x)

eg1(x) + eg2(x)

)
= log

(
1 + eg2(x)−g1(x)

)
=

{
log(1 + e−a) if x = 0

log
(
1 + e−b

)
if x = ε

.

We consider the approach by (Madry et al., 2018) with 100% adversarial training. The expected loss can be written as

E
[
max‖δ‖∞≤ε L(y, g(x+ δ)

]
= E

[
E
[
max‖δ‖∞≤ε L(y, g(x+ δ)|x

]]
=p(x = 0)p(y = 2|x = 0)max

{
− log

(
p̃(y = 2|x = 0)

)
,− log

(
p̃(y = 2|x = ε)

)}
+ (1− p(x = 0))p(y = 1|x = ε)max

{
− log

(
p̃(y = 1|x = 0)

)
,− log

(
p̃(y = 1|x = ε)

)}
=p(x = 0)max

{
− log

(
p̃(y = 2|x = 0)

)
,− log

(
p̃(y = 2|x = ε)

)}
+ (1− p(x = 0))max

{
− log

(
p̃(y = 1|x = 0)

)
,− log

(
p̃(y = 1|x = ε)

}
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This yields in terms of the parameters a, b the expected loss:

L(a, b) =max
{
log(1 + ea), log(1 + eb)

}
p0 +max

{
log(1 + e−a), log(1 + e−b)

}
(1− p0)

The expected loss is minimized if a = b as then both maxima are minimal. This results in the expected loss

L(a) = log(1 + ea)p0 + log(1 + e−a)(1− p0).

The critical point is attained at a∗ = b∗ = log
(

1−p0
p0

)
. Thus

a∗ = b∗ =

{
> 0 if p0 < 1

2 ,

< 0 if p0 > 1
2 .

Thus, we classify x = 0 correctly, if p0 > 1
2 and x = ε correctly if p0 < 1

2 . As result, the error of 100% adversarial training
is given by min{p0, 1− p0} whereas the Bayes optimal error is zero as the problem is deterministic.

Next we consider 50% adversarial plus 50% clean training. The expected loss

E
[
max‖δ‖∞≤ε L(y, g(x+ δ)

]
+ E

[
L(y, g(x+ δ)

]
,

can be written as

L(a, b) =max
{
log(1 + ea), log(1 + eb)

}
p0

+max
{
log(1 + e−a), log(1 + e−b)

}
(1− p0)

+ log(1 + ea)p0 + log(1 + e−b)(1− p0)

We make a case distinction. If a ≥ b, then the loss reduces to

L(a, b) = log(1 + ea)p0 + log(1 + e−b)(1− p0)
+ log(1 + ea)p0 + log(1 + e−b)(1− p0)
≥ L(a, a)
= 2 log(1 + ea)p0 + 2 log(1 + e−a)(1− p0)

Solving for the critical point yields a∗ = log
(

1−p0
p0

)
= b∗. Next we consider the set a ≤ b. This yields the loss

L(a, b) = log(1 + eb)p0 + log(1 + e−a)(1− p0)
+ log(1 + ea)p0 + log(1 + e−b)(1− p0)

Solving for the critical point yields a∗ = log
(

1−p0
p0

)
= b∗ which fulfills a ≤ b. Actually, it coincides with the solution

found already for 100% adversarial training and thus resulting error of 50% adversarial, 50% clean training is again
min{p0, 1− p0} which is not equal to the Bayes optimal error.

For our confidence-calibrated adversarial training one first has to solve

δ∗x(j) = argmax
‖δ‖∞≤ε

max
k 6=j

p̃(y = k |x+ δ).
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We get with the expressions above (note that we have a binary classification problem):

δ∗0(1) = argmax
‖δ‖∞≤ε

p̃(y = 2|0 + δ) =

{
0 if a < b

ε else.
.

δ∗0(2) = argmax
‖δ‖∞≤ε

p̃(y = 1|0 + δ) =

{
ε if a < b

0 else.
.

δ∗ε (1) = argmax
‖δ‖∞≤ε

p̃(y = 2|ε+ δ) =

{
−ε if a < b

0 else.
.

δ∗ε (2) = argmax
‖δ‖∞≤ε

p̃(y = 1|ε+ δ) =

{
0 if a < b

−ε else.
.

Note that the imposed distribution p̂ over the classes depends on the true label y of x and δ∗x(y) and then λ(‖δ∗x(y)‖∞). Due
to the simple structure of the problem it holds that ‖δ∗x(y)‖∞ is either 0 or ε.

In CCAT we use for 50% of the batch the standard cross-entropy loss and for the other 50% we use the following loss:

L
(
p̂y
(
λ
(
‖δ∗x(y)‖

))
(x), p̃(x)

)
= −

2∑
j=1

p̂y
(
λ
(
‖δ∗x(y)‖

))
(y = j |x = x) log

(
p̃
(
y = j |x = x+ δ∗x(j)

))
.

The corresponding expected loss is then given by

E
[
L
(
p̂y
(
λ
(
‖δ∗x(y)‖

))
(x), p̃(x)

)]
= E

[
E
[
L
(
p̂y
(
λ
(
‖δ∗x(y)‖

))
(x), p̃(x)

)∣∣∣x]]
=p(x = 0)E

[
L
(
p̂y
(
λ
(
‖δ∗0(y)‖

))
(0), p̃(0)

)∣∣∣x = 0
]
+ p(x = ε)E

[
L
(
p̂Y
(
λ
(
‖δ∗ε (y)‖

))
(ε), p̃(ε)

)∣∣∣x = ε
]
,

where p(x = 0) = p0 and p(x = ε) = 1− p(x = 0) = 1− p0. With the true conditional probabilities p(y = s |x) we get

E
[
L
(
p̂y
(
λ(δ)

)
(x), p̃(x)

)∣∣∣x] = 2∑
s=1

p(y = s |x)L
(
p̂s
(
λ
(
‖δ∗x(s)‖

))
(x), p̃(x)

)
=−

2∑
s=1

p(y = s |x)
2∑
j=1

p̂s
(
λ
(
‖δ∗x(s)‖

))
(y = j |x) log

(
p̃(y = j |x = x+ δ∗x(s))

)
For our problem it holds with p(y = 2 |x = 0) = p(y = 1 |x = ε) = 1 (by assumption). Thus,

E
[
L
(
p̂y
(
λ(δ)

)
(x), p̃(x)

)∣∣∣x = 0
]
= −

2∑
j=1

p̂2
(
λ
(
‖δ∗0(2)‖

))
(y = j |x = 0) log

(
p̃(y = j |x = x+ δ∗0(2))

)
E
[
L
(
p̂y
(
λ(δ)

)
(x), p̃(x))

∣∣∣x = ε
]
= −

2∑
j=1

p̂1
(
λ
(
‖δ∗ε (1)‖

))
(y = j |x = ε) log

(
p̃(y = j |x = x+ δ∗ε (1))

)
As ‖δ∗x(y)‖∞ is either 0 or ε and λ(0) = 1 we use in the following for simplicity the notation λ = λ(‖ε‖∞). Moreover,
note that

p̂y(λ)(y = j|x = x) =

{
λ+ (1−λ)

K if y = j,
(1−λ)
K else

,

where K is the number of classes. Thus, K = 2 in our example and we note that λ+ (1−λ)
2 = 1+λ

2 .

With this we can write the total loss (remember that we have half normal cross-entropy loss and half the loss for the



Supplementary Material: Confidence-Calibrated Adversarial Training

adversarial part with the modified “labels”) as

L(a, b) =p0

[
log(1 + ea)1a≥b + 1a<b

( (1 + λ)

2
log(1 + eb) +

(1− λ)
2

log(1 + e−b)
)]

+ (1− p0)
[
log(1 + e−b)1a≥b + 1a<b

( (1 + λ)

2
log(1 + e−a) +

(1− λ)
2

log(1 + ea)
)]

+ log(1 + ea)p0 + log(1 + e−b)(1− p0),

where we have omitted a global factor 1
2 for better readability (the last row is the cross-entropy loss). We distinguish two sets

in the optimization. First we consider the case a ≥ b. Then it is easy to see that in order to minimize the loss we have a = b.

∂aL = 2
ea

1 + ea
p0 −

e−a

1 + e−a
(1− p0)

This yields ea = 1−p0
p0

or a = log
(
1−p0
p0

)
and the minimum for a ≥ b is attained on the boundary of the domain of a ≤ b.

The other case is a ≤ b. We get

∂aL =
[ (1 + λ)

2

−e−a

1 + e−a
+

(1− λ)
2

ea

1 + ea

]
(1− p0) + p0

ea

1 + ea

∂bL =
[ (1 + λ)

2

eb

1 + eb
+

(1− λ)
2

−eb

1 + e−b

]
p0 + (1− p0)

−e−b

1 + e−b

This yields the solution

a∗ = log

(
1+λ
2 (1− p0)

p0 +
1−λ
2 (1− p0)

)
, b∗ = log

(
1−λ
2 p0 + (1− p0)

1+λ
2 p0

)

It is straightforward to check that a∗ < b∗ for all 0 < p0 < 1, indeed we have

1+λ
2 (1− p0)

p0 +
1−λ
2 (1− p0)

=
1+λ
2 (1− p0)

p0
1+λ
2 + 1−λ

2

=
1− p0 − (1−λ)

2 (1− p0)
p0

1+λ
2 + 1−λ

2

<
1−λ
2 p0 + (1− p0)

1+λ
2 p0

if 0 < p0 < 1 and note that λ < 1 by assumption. We have a∗ < 0 and thus g2(0) > g1(0) (Bayes optimal decision for
x = 0) if

1 >
1− p0
p0

λ,

and b∗ > 0 and thus g1(ε) > g2(ε) (Bayes optimal decision for x = ε) if

1 >
p0

1− p0
λ.

Thus we recover the Bayes classifier if

λ < min
{1− p0

p0
,

p0
1− p0

}
.

C. Experiments
In the following, we provide additional details on our experimental setup regarding (a) the used attacks, especially our
PGD-Conf attack including pseudo-code in Sec. C.1, (b) training of AT and CCAT in Sec. C.2, (c) the evaluated baselines in
Sec. C.3 and (d) the used evaluation metrics in Sec. C.4. Afterwards, we include additional experimental results, including
ablation studies in Sec. C.5, qualitative results for analysis in Sec. C.6, and further results for 95% and 98% true positive
rate (TPR), results per attack and results per corruption on MNIST-C (Mu & Gilmer, 2019) and Cifar10-C (Hendrycks &
Dietterich, 2019) in Sec. C.7.
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MNIST (worst-case of L∞ attacks with ε = 0.3)
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Cifar10 (worst-case of L∞ attacks with ε = 0.03)
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Figure 1: Confidence Histograms. We show histograms of confidences on correctly classified test examples (top) and on
adversarial examples (bottom) for both AT and CCAT. Note that for AT, the number of successful adversarial examples is
usually lower than for CCAT. For CCAT in contrast, nearly all adversarial examples are successful, while only a part has
high confidence. Histograms obtained for the worst-case adversarial examples across all tested L∞ attacks with ε = 0.3 and
ε = 0.03 on MNIST and Cifar10, respectively.

C.1. Attacks

Projected Gradient Descent (PGD): Complementary to the description of the projected gradient descent (PGD) attack by
(Madry et al., 2018) and our adapted attack, we provide a detailed algorithm in Alg. 1. We note that the objective maximized
in (Madry et al., 2018) is

F(x+ δ, y) = L(f(x+ δ;w), y) (3)

where L denotes the cross-entropy loss, f(·;w) denotes the model and (x, y) is an input-label pair from the test set. Our
adapted attack, in contrast, maximizes

F(x+ δ, y) = maxk 6=y fk(x+ δ;w) (4)

where fk denotes the confidence of f in class k. Note that the maximum over labels, i.e., maxk 6=y, is explicitly computed
during optimization; this means that in contrast to (Goodfellow et al., 2019), we do not run (K − 1) targeted attacks
and subsequently take the maximum-confidence one, where K is the number of classes. We denote these two variants as
PGD-CE and PGD-Conf, respectively. Deviating from (Madry et al., 2018), we initialize δ uniformly over directions and
norm (instead of uniform initialization over the volume of the ε-ball):

δ = uε
δ′

‖δ′‖∞
, δ′ ∼ N (0, I), u ∼ U(0, 1) (5)

where δ′ is sampled from a standard Gaussian and u ∈ [0, 1] from a uniform distribution. We also consider zero initialization,
i.e., δ = 0. For random initialization we always consider multiple restarts, 10 for PGD-Conf and 50 for PGD-CE; for zero
initialization, we use 1 restart. Finally, in contrast to (Madry et al., 2018), we run PGD for exactly T iterations, taking the
perturbation corresponding to the best objective value obtained throughout the optimization.

PGD for Lp, p ∈ {0, 1, 2}: Both PGD-CE and PGD-Conf can also be applied using the L2, L1 and L0 norms following
the description above. Then, gradient normalization in Line 10 of Alg. 1, the projection in Line 6, and the initialization in
Eq. (5) need to be adapted. For the L2 norm, the gradient is normalized by dividing by the L2 norm; for the L1 norm only
the 1% largest values (in absolute terms) of the gradient are kept and normalized by their L1 norm; and for the L0 norm, the
gradient is normalized by dividing by the L1 norm. We follow the algorithm of (Duchi et al., 2008) for the L1 projection;
for the L0 projection (onto the ε-ball for ε ∈ N0), only the ε largest values are kept. Similarly, initialization for L2 and
L1 are simple by randomly choosing a direction (as in Eq. (5)) and then normalizing by their norm. For L0, we randomly
choose pixels with probability ( 23ε)/(HWD) and set them to a uniformly random values u ∈ [0, 1], where H ×W ×D is
the image size. In experiments, we found that tuning the learning rate for PGD with L1 and L0 constraints (independent of
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Algorithm 1 Projected Gradient Descent (PGD) with Backtracking. Pseudo-code for the used PGD procedure to
maximize Eq. (3) or Eq. (4) using momentum and backtracking subject to the constraints x̃i = xi + δi ∈ [0, 1] and
‖δ‖∞ ≤ ε; in practice, the procedure is applied on batches of inputs. The algorithm is easily adapted to work with arbitrary
Lp-norm; only the projections on Line 6 and 24 as well as the normalized gradient in Line 10 need to be adapted.

input: example x with label y
input: number of iterations T
input: learning rate γ, momentum β, learning rate factor α
input: initial δ(0), e.g., Eq. (5) or δ(0) = 0

1: v := 0 {saves the best objective achieved}
2: x̃ := x+ δ(0) {best adversarial example obtained}
3: g(−1) := 0 {accumulated gradients}
4: for t = 0, . . . , T do
5: {projection onto L∞ ε-ball and on [0, 1]:}
6: clip δ(t)i to [−ε, ε]
7: clip xi + δ

(t)
i to [0, 1]

8: {forward and backward pass to get objective and gradient:}
9: v(t) := F(x+ δ(t), y) {see Eq. (3) or Eq. (4)}

10: g(t) := sign
(
∇δ(t)F(x+ δ(t), y)

)
11: {keep track of adversarial example resulting in best objective:}
12: if v(t) > v then
13: v := v(t)

14: x̃ := x+ δ(t)

15: end if
16: {iteration T is only meant to check whether last update improved objective:}
17: if t = T then
18: break
19: end if
20: {integrate momentum term:}
21: g(t) := βg(t−1) + (1− β)g(t)
22: {“try” the update step and see if objective increases:}
23: δ̂(t) := δ(t) + γg(t)

24: clip δ̂(t)i to [−ε, ε]
25: clip xi + δ̂

(t)
i to [0, 1]

26: v̂(t) := F(x+ δ̂(t), y)
27: {only keep the update if the objective increased; otherwise decrease learning rate:}
28: if v̂(t) ≥ v(t) then
29: δ(t+1) := δ̂(t)

30: else
31: γ := γ/α
32: end if
33: end for
34: return x̃, ṽ

the objective, i.e., Eq. (3) or Eq. (4)) is much more difficult. Additionally, PGD using the L0 norm seems to get easily stuck
in sub-optimal local optima.

Backtracking: Alg. 1 also gives more details on the employed momentum and backtracking scheme. These two “tricks”
add two additional hyper-parameters to the number of iterations T and the learning rate γ, namely the momentum parameter
β and the learning rate factor α. After each iteration, the computed update, already including the momentum term, is only
applied if this improves the objective. This is checked through an additional forward pass. If not, the learning rate is divided
by α, and the update is rejected. Alg. 1 includes this scheme as an algorithm for an individual test example x with label y
for brevity; however, extending it to work on batches is straight-forward. However, it is important to note that the learning
rate is updated per test example individually. In practice, for PGD-CE, with T = 200 iterations, we use γ = 0.05, β = 0.9
and α = 1.25; for PGD-Conf, with T = 1000 iterations, we use γ = 0.001, β = 0.9 and α = 1.1.

Black-Box Attacks: We also give more details on the used black-box attacks. For random sampling, we apply Eq. (5)
T = 5000 times. We also implemented the Query-Limited (QL) black-box attack of (Ilyas et al., 2018) using a population
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MNIST: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ε = 0.3 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 0.4 0.4 0.4 0.3 0.6 0.4 0.6 0.4 0.4
AT Conf (AT trained with PGD-Conf) 0.8 0.8 0.8 0.8 1.1 1.0 1.1 1.0 1.0
CCAT 0.2 1.4 4.6 4.6 3.7 0.7 0.7 0.2 0.2

SVHN: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ε = 0.03 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 38.4 46.2 49.9 50.1 51.8 37.7 38.1 29.9 30.8
AT Conf (AT trained with PGD-Conf) 27.4 40.5 46.9 47.3 48.1 27.1 28.5 21.1 23.8
CCAT 4.0 5.0 22.8 23.3 5.2 2.6 2.6 2.6 2.6

CIFAR10: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ε = 0.03 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 60.9 60.8 60.8 60.8 60.9 60.9 60.9 57.4 57.6
AT Conf (AT trained with PGD-Conf) 60.4 60.6 60.5 60.5 60.9 60.4 60.6 56.2 56.6
CCAT 14.8 16.2 40.2 41.3 34.9 7.2 7.2 7.2 7.2

Table 1: Detailed Attack Ablation Studies. We compare our L∞ PGD-Conf attack with T iterations and different
combinations of momentum, backtracking and initialization on all three datasets. We consider AT, AT trained with PGD-
Conf (AT Conf), and CCAT; we report RErr for confidence threshold τ@99%TPR. As backtracking requires an additional
forward pass per iteration, we use T = 60 and T = 300 for attacks without backtracking to be comparable to attacks with
T = 40 and T = 200 with backtracking. Against CCAT, T = 1000 iterations or more are required and backtracking
is essential to achieve high RErr. AT, in contrast, is “easier” to attack, requiring less iterations and less sophisticated
optimization (i.e., without momentum and/or backtracking).

of 50 and variance of 0.1 for estimating the gradient in Line 10 of Alg. 1; a detailed algorithm is provided in (Ilyas et al.,
2018). We use a learning rate of 0.001 (note that the gradient is signed, as in (Madry et al., 2018)) and also integrated a
momentum with β = 0.9 and backtracking with α = 1.1 and T = 1000 iterations. We use zero and random initialization;
in the latter case we allow 10 random restarts. For the Simple black-box attack we follow the algorithmic description in
(Narodytska & Kasiviswanathan, 2017) considering only axis-aligned perturbations of size ε per pixel. We run the attack
for T = 1000 iterations and allow 10 random restarts. Following, (Khoury & Hadfield-Menell, 2018), we further use
the Geometry attack for T = 1000 iterations. Random sampling, QL, Simple and Geometry attacks are run for arbitrary
Lp, p ∈ {∞, 2, 1, 0}. For L∞, we also use the Square attack proposed in (Andriushchenko et al., 2019) with T = 5000
iterations with a probability of change of 0.05. For all attacks, we use Eq. (4) as objective. Finally, for L0, we also use
Corner Search (Croce & Hein, 2019) with the cross-entropy loss as objective, for T = 200 iterations. We emphasize that,
except for QL, these attacks are not gradient-based and do not approximate the gradient. Furthermore, we note that all
attacks except Corner Search are adapted to explicitly attack CCAT by maximizing Eq. (4).

C.2. Training

We follow the ResNet-20 architecture by (He et al., 2016) implemented in PyTorch (Paszke et al., 2017). For training
we use a batch size of 100 and train for 100 and 200 epochs on MNIST and SVHN/Cifar10, respectively: this holds for
normal training, adversarial training (AT) and confidence-calibrated adversarial training (CCAT). For the latter two, we use
PGD-CE and PGD Conf, respectively, for T = 40 iterations including momentum and backtracking (β = 0.9, α = 1.5).
For PGD-CE we use a learning rate of 0.05, 0.01 and 0.005 on MNIST, SVHN and Cifar10. For PGD-Conf we use a
learning rate of 0.005. For CCAT, we randomly switch between the initialization in Eq. (5) and zero initialization. For
training, we use standard stochastic gradient descent, starting with a learning rate of 0.1 on MNIST/SVHN and 0.075 on
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SVHN: Training Ablation for Detection (τ@99%TPR) and Standard Settings (τ = 0)
(L∞ attack with ε = 0.03 during training and testing)

Detection Setting
τ@99%TPR

Standard Setting
τ = 0

ROC
AUC

Err
in %

RErr
in %

Err
in %

RErr
in %

Normal 0.17 2.6 99.9 3.6 99.9
AT 0.55 2.5 54.9 3.4 56.9
AT Conf (AT trained with PGD-Conf) 0.61 2.8 52.5 3.7 58.7
CCAT, ρ = 1 0.74 2.2 43.0 2.7 82.4
CCAT, ρ = 2 0.68 2.1 44.2 2.9 79.6
CCAT, ρ = 4 0.68 1.8 35.8 2.7 80.4
CCAT, ρ = 6 0.64 1.8 32.8 2.9 72.1
CCAT, ρ = 8 0.63 2.2 42.3 2.9 84.6
CCAT, ρ = 10 0.67 2.1 38.5 2.9 91.0
CCAT, ρ = 12 0.67 1.9 36.3 2.8 81.8

CIFAR10: Training Ablation for Detection (τ@99%TPR) and Standard Settings (τ = 0)
(L∞ attack with ε = 0.03 during training and testing)

Detection Setting
τ@99%TPR

Standard Setting
τ = 0

ROC
AUC

Err
in %

RErr
in %

Err
in %

RErr
in %

Normal 0.20 7.4 100.0 8.3 100.0
AT 0.65 15.1 60.9 16.6 61.3
AT Conf (AT trained with PGD-Conf) 0.63 15.1 61.5 16.1 61.7
CCAT, ρ = 1 0.63 8.7 72.4 9.7 95.3
CCAT, ρ = 2 0.60 8.4 70.6 9.7 95.1
CCAT, ρ = 4 0.61 8.6 66.3 9.8 93.5
CCAT, ρ = 6 0.54 8.0 69.8 9.2 94.1
CCAT, ρ = 8 0.58 8.5 65.3 9.4 93.2
CCAT, ρ = 10 0.60 8.7 63.0 10.1 95.0
CCAT, ρ = 12 0.62 9.4 63.0 10.1 96.6

Table 2: Training Ablation Studies. We report unthresholded RErr and Err, i.e., τ = 0 (“Standard Setting”), and
τ@99%TPR as well as ROC AUC (“Detection Setting”) for CCAT with various values for ρ. The models are tested against
our L∞ PGD-Conf attack with T = 1000 iterations and zero as well as random initialization. On Cifar10, ρ = 10 works
best and performance stagnates for ρ > 10. On SVHN, we also use ρ = 10, although ρ = 6 shows better results.

Cifar10. The learning rate is multiplied by 0.95 after each epoch. We do not use weight decay; but the network includes
batch normalization (Ioffe & Szegedy, 2015). On SVHN and Cifar10, we use random cropping, random flipping (only
Cifar10) and contrast augmentation during training. We always train on 50% clean and 50% adversarial examples per batch,
i.e., each batch contains both clean and adversarial examples which is important when using batch normalization.

C.3. Baselines

As baseline, we use the multi-steepest descent (MSD) adversarial training of (Maini et al., 2020), using the code and models
provided in the official repository1. The models correspond to a LeNet-like (LeCun et al., 1998) architecture on MNIST,
and the pre-activation version of ResNet-18 (He et al., 2016) on Cifar10. The models were trained with L∞, L2 and L1

adversarial examples and ε set to 0.3, 1.5, 12 and 0.03, 0.5, 12, respectively. We attacked these models using the same setup
as used for standard AT and our CCAT.

Additionally, we compare to TRADES (Zhang et al., 2019) using the code and pre-trained models from the official
repository2. The models correspond to a convolutional architecture with four convolutional and three fully-connected layers
(Carlini & Wagner, 2017) on MNIST, and a wide ResNet, specifically WRN-10-28 (Zagoruyko & Komodakis, 2016), on

1https://github.com/locuslab/robust_union
2https://github.com/yaodongyu/TRADES

https://github.com/locuslab/robust_union
https://github.com/yaodongyu/TRADES
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MNIST (worst-case of L∞ attacks with ε = 0.3)
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Figure 2: ROC and RErr curves. ROC curves, i.e. FPR plotted against TPR for all possible confidence thresholds τ ,
and (confidence-thresholded) RErr curves, i.e., RErr over confidence threshold τ for AT and CCAT, including different ρ
parameters. Worst-case adversarial examples across all L∞ attacks with ε = 0.3 (MNIST) and ε = 0.03 (Cifar10) were
tested. For evaluation, the confidence threshold τ is fixed at 99%TPR, allowing to reject at most 1% correctly classified
clean examples. Thus, we also do not report the area under the ROC curve in the main paper.

Cifar10. Both are trained using only L∞ adversarial examples with ε = 0.3 and ε = 0.03, respectively. The evaluation
protocol follows the same setup as used for standard AT and CCAT.

On Cifar10, we also use the pre-trained ResNet-50 from (Madry et al., 2018) obtained from the official repository3. The
model was trained on L∞ adversarial examples with ε = 0.03. The same evaluation as for CCAT applies.

Furthermore, we evaluate two detection baseline: the Mahalanobis detector (MAHA) of (Ma et al., 2018) and the local
intrinsic dimensionality (LID) detector of (Lee et al., 2018). We used the code provided by (Lee et al., 2018) from the official
repository4. For evaluation, we used the provided setup, adding only PGD-CE and PGD-Conf with T = 1000, T = 200
and T = 40. For T = 1000, we used 5 random restarts, for T = 200, we used 25 restarts, and for T = 40, we used one
restart. These were run for L∞, L2, L1 and L0. We also evaluated distal adversarial examples as in the main paper. While
the hyper-parameters were chosen considering our L∞ PGD-CE attack (T = 40, one restart) and kept fixed for other threat
models, the logistic regression classifier trained on the computed statistics (e.g., the Mahalanobis statistics) is trained for
each threat model individually, resulting in an advantage over AT and CCAT. For worst-case evaluation, where we keep
the highest-confidence adversarial example per test example for CCAT, we use the obtained detection score instead. This
means, for each test example individually, we consider the adversarial example with worst detection score for evaluation.

C.4. Evaluation Metrics

Complementing the discussion in the main paper, we describe the used evaluation metrics and evaluation procedure in
more detail. Adversarial examples are computed on the first 1000 examples of the test set; the used confidence threshold is
computed on the last 1000 examples of the test set; test errors are computed on all test examples minus the last 1000. As we
consider multiple attacks, and some attacks allow multiple random restarts, we always consider the worst case adversarial
example per test example and across all attacks/restarts; the worst-case is selected based on confidence.

FPR and ROC AUC: To compute receiver operating characteristic (ROC) curves, and the area under the curve, i.e., ROC
AUC, we define negatives as successful adversarial examples (corresponding to correctly classified test examples) and
positives as the corresponding correctly classified test examples. The ROC AUC as well as the curve itself can easily be
calculated using scikit-learn (Pedregosa et al., 2011). Practically, the generated curve could be used to directly estimate
a threshold corresponding to a pre-determined true positive rate (TPR). However, this requires interpolation; after trying
several interpolation schemes, we concluded that the results are distorted significantly, especially for TPRs close to 100%.
Thus, we follow a simpler scheme: on a held out validation set of size 1000 (the last 1000 samples of the test set), we sorted
the corresponding confidences, and picked the confidence threshold in order to obtain (at least) the desired TPR, e.g., 99%.

In the main paper, instead of reporting ROC AUC, we reported only confidence-thresholded robust test error (RErr), which

3https://github.com/MadryLab/robustness
4https://github.com/pokaxpoka/deep_Mahalanobis_detector

https://github.com/MadryLab/robustness
https://github.com/pokaxpoka/deep_Mahalanobis_detector
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SVHN: AT with L∞ PGD-Conf, ε = 0.03 for training and testing
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SVHN: CCAT with L∞ PGD-Conf, ε = 0.03 for training and testing
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Cifar10: AT with L∞ PGD-Conf, ε = 0.03 for training and testing
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Cifar10: CCAT with L∞ PGD-Conf, ε = 0.03 for training and testing
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Figure 3: Effect of Confidence Calibration. Confidences for classes along adversarial directions for AT and CCAT.
Adversarial examples were computed using PGD-Conf with T = 1000 iterations and zero initialization. For both AT and
CCAT, we show the first ten examples of the test set on SVHN, and the first five examples of the test set on Cifar10. As can
be seen, CCAT biases the network to predict uniform distributions beyond the ε-ball used during training (ε = 0.03). For
AT, in contrast, adversarial examples can usually be found right beyond the ε-ball.

implicitly subsumes the false positive rate (FPR), at a confidence threshold of 99%TPR. Again, we note that this is an
extremely conservative choice, allowing to reject at most 1% correctly classified clean examples. In addition, comparison to
other approaches is fair as the corresponding confidence threshold only depends on correctly classified clean examples, not
on adversarial examples. As also seen in Fig. 2, ROC AUC is not a practical metric to evaluate the detection/rejection of
adversarial examples. This is because rejecting a significant part of correctly classified clean examples is not acceptable.
In this sense, ROC AUC measures how well positives and negatives can be distinguished in general, while we are only
interested in the performance for very high TPR, e.g., 99%TPR as in the main paper. In this document, we also report FPR
to complement our evaluation using (confidence-thresholded) RErr.
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MNIST: AT with L∞ PGD-Conf, ε = 0.3 for training
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MNIST: CCAT with L∞ PGD-Conf, ε = 0.3 for training
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fỹ=0.12

y=4
fy=1

Classes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Figure 4: Confidence Calibration Between Test Examples. We plot the confidence for all classes when interpolating
linearly between test examples: (1− κ)x1 + κx2 for two test examples x1 and x2 with κ ∈ [0, 1]; x1 is fixed and we show
two examples corresponding to different x2. Additionally, we show the corresponding images for κ = 0, i.e., x1, κ = 0.5,
i.e., the mean image, and κ = 1, i.e., x2, with the corresponding labels and confidences. As can be seen, CCAT is able
to perfectly predict a uniform distribution between test examples. AT, in contrast, enforces high-confidence predictions,
resulting in conflicts if x1 and x2 are too close together (i.e., within one ε-ball) or in sudden changes of the predicted class
in between, as seen above.

Robust Test Error: The standard robust test error (Madry et al., 2018) is the model’s test error in the case where all test
examples are allowed to be attacked, i.e., modified within the chosen threat model, e.g., for Lp:

“Standard” RErr =
1

N

N∑
n=1

max
‖δ‖p≤ε

1f(xn+δ) 6=yn (6)

where {(xn, yn)}Nn=1 are test examples and labels. In practice, RErr is computed empirically using several adversarial
attacks, potentially with multiple restarts as the inner maximization problem is generally non-convex.

As standard RErr does not account for a reject option, we propose a generalized definition adapted to our confidence-
thresholded setting. For fixed confidence threshold τ , e.g., at 99%TPR, the confidence-thresholded RErr is defined as

RErr(τ) =

N∑
n=1

max
‖δ‖p≤ε,c(xn+δ)≥τ

1f(xn+δ)6=yn

N∑
n=1

max
‖δ‖p≤ε

1c(xn+δ)≥τ

(7)

with c(x) = maxk fk(x) and f(x) being the model’s confidence and predicted class on example x, respectively. This is the
test error on test examples that can be modified within the chosen threat model and pass confidence thresholding. It reduces
to standard RErr for τ = 0, is in [0, 1] and, thus, fully comparable to related work.

As both Eq. (6) and Eq. (7) cannot be computed exactly, we compute∑N
n=1 max{1f(xn)6=yn1c(xn)≥τ ,1f(x̃n)6=yn1c(x̃n)≥τ}∑N

n=1 max{1c(xn)≥τ ,1c(x̃n)≥τ}
(8)

which is an upper bound assuming that our attack is perfect. Essentially, this counts the test examples xn that are either
classified incorrectly with confidence c(xn) ≥ τ or that can be attacked successfully x̃n = xn + δ with confidence
c(x̃n) ≥ τ . This is normalized by the total number of test examples xn that have c(xn) ≥ τ or where the corresponding
adversarial example x̃n has c(x̃n) ≥ τ . It can easily be seen that τ = 0 reduces Eq. (8) to its unthresholded variant, i.e.,
standard RErr, ensuring full comparability to related work.
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MNIST: FPR and RErr in % for τ@99%TPR
L∞

ε = 0.3
L∞

ε = 0.4
L2

ε = 3
L1

ε = 18
L0

ε = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.3 100.0 91.6 92.3 87.0 87.7
AT-50% 1.0 1.7 99.3 100.0 80.7 81.5 23.8 24.6 23.0 23.9 72.9 73.7
AT-100% 1.0 1.7 99.2 100.0 83.9 84.8 20.2 21.3 12.9 13.9 61.3 62.3
CCAT 6.9 7.4 11.4 11.9 0.0 0.3 1.3 1.8 14.2 14.8 0.0 0.2
* MSD 32.1 34.3 96.7 98.9 57.0 59.2 53.7 55.9 64.2 66.4 6.6 8.8
* TRADES 3.4 4.0 99.3 99.9 43.6 44.3 8.2 9.0 34.6 35.5 0.0 0.2

SVHN: FPR and RErr in % for τ@99%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 95.8 99.9 95.9 100.0 95.9 100.0 95.9 100.0 79.6 83.7 74.6 78.7
AT-50% 52.3 56.0 84.7 88.4 95.7 99.4 95.8 99.5 70.0 73.6 30.0 33.6
AT-100% 42.1 48.3 80.9 87.1 93.3 99.5 93.6 99.8 83.1 89.4 19.9 26.0
CCAT 35.5 39.1 49.5 53.1 25.4 29.0 28.1 31.7 0.4 3.5 1.0 3.7
* LID 87.1 91 89.2 93.1 96.1 92.2 85.7 90 37.6 41.6 85.1 89.8
* MAHA 68.6 73 75.2 79.5 73.2 78.1 63.2 67.5 36.9 41.5 6.3 9.9

CIFAR10: FPR and RErr in % for τ@99%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 77.7 84.7 89.7 96.7
AT-50% 47.6 62.7 78.6 93.7 83.3 98.4 83.3 98.4 59.3 74.4 63.6 78.7
AT-100% 42.3 59.9 72.7 90.3 80.7 98.3 80.4 98.0 54.7 72.3 62.0 79.6
CCAT 59.9 68.4 83.9 92.4 43.7 52.2 50.3 58.8 14.4 23.0 57.4 66.1
* MSD 35.3 53.2 71.5 89.4 70.6 88.5 50.7 68.6 21.4 39.2 64.7 82.6
* TRADES 28.9 43.5 66.4 81.0 56.3 70.9 82.3 96.9 22.3 36.9 57.5 72.1
* AT-Madry 33.8 45.1 73.2 84.5 87.4 98.7 86.5 97.8 31.0 42.3 62.0 73.3
* LID 92.7 99 92.9 99.2 64 70.6 82.9 89.4 40.6 47 59.9 66.1
* MAHA 87.7 94.1 89 95.3 84.2 90.6 91.3 97.6 43.5 49.8 64.1 70

Table 3: Main Results: FPR for 99%TPR. For 99%TPR, we report confidence-thresholded RErr and FPR for the results
from the main paper. We emphasize that only PGD-CE and PGD-Conf were used against LID and MAHA. In general, the
observations of the main paper can be confirmed considering FPR. Due to the poor Err of AT, MSD or TRADES on Cifar10,
these methods benefit most from considering FPR instead of (confidence-thresholded) RErr. * Pre-trained models with
different architectures.

In the following, we also highlight two special cases that are (correctly) taken into account by Eq. (8): (a) if a correctly
classified test example xn, i.e., f(xn) = yn, has confidence c(xn) < τ , i.e., is rejected, but the corresponding adversarial
example x̃n with f(x̃n) 6= y has c(x̃n) ≥ τ , i.e., is not rejected, this is counted both in the numerator and denominator; (b)
if an incorrectly classified test example xn, i.e., f(xn) 6= y, with c(xn) < τ , i.e., rejected, has a corresponding adversarial
example x̃n, i.e., also f(x̃n) 6= y, but with x(xn) ≥ τ , i.e., not rejected, this is also counted in the numerator as well as
denominator. Note that these cases are handled differently in our detection evaluation following related work (Ma et al.,
2018; Lee et al., 2018): negatives are adversarial examples corresponding to correctly classified clean examples that are
successful, i.e., change the label. For example, case (b) would not contribute towards the FPR since the original test example
is already mis-classified. Thus, while RErr implicitly includes FPR as well as Err, it is even more conservative than just
considering “FPR + Err”.
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MNIST: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ε = 0.3
L∞

ε = 0.4
L2

ε = 3
L1

ε = 18
L0

ε = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.3 100.0 87.3 88.1 79.8 80.5
AT-50% 0.5 0.8 99.3 100.0 66.7 67.9 16.3 17.5 16.1 17.2 61.3 62.5
AT-100% 0.6 1.3 99.2 100.0 77.3 78.3 16.9 18.0 9.2 10.2 52.6 53.7
CCAT 5.2 5.7 8.8 9.3 0.0 0.2 0.6 0.9 7.6 8.1 0.0 0.1
* MSD 28.8 31.0 96.6 98.8 53.9 56.2 51.3 53.5 61.5 63.7 4.4 6.6
* TRADES 1.2 1.9 99.1 99.7 31.6 32.6 4.3 5.1 28.0 29.7 0.0 0.1

distal

unseen
FPR↓
100.0
100.0
100.0

0.0
100.0
100.0

corr.
MNIST-C

unseen
Err ↓
31.0
12.3
15.4
5.3
5.6
5.7

SVHN: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 95.7 99.8 95.9 100.0 95.9 100.0 95.9 100.0 72.7 76.8 72.4 76.5
AT-50% 50.0 53.7 83.4 87.1 95.5 99.2 95.7 99.4 54.0 57.9 26.8 30.6
AT-100% 42.1 48.3 80.9 87.1 93.3 99.5 93.6 99.8 82.2 88.8 19.3 25.1
CCAT 34.0 37.6 40.5 44.1 20.3 23.9 25.0 28.6 0.2 2.6 0.1 2.2

distal

unseen
FPR↓
87.1
86.3
81.0
0.0

CIFAR10: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 70.1 77.1 89.6 96.6
AT-50% 47.6 62.7 78.6 93.7 83.3 98.4 83.3 98.4 57.2 72.4 63.6 78.7
AT-100% 42.1 59.7 72.7 90.3 80.7 98.3 80.4 98.0 52.1 70.0 62.0 79.6
CCAT 59.4 67.9 83.5 92.0 43.3 51.8 50.0 58.5 11.7 20.3 56.4 65.1
* MSD 35.1 53.0 71.5 89.4 69.9 87.8 50.6 68.5 17.8 35.8 64.7 82.6
* TRADES 28.9 43.5 66.4 81.0 56.2 70.8 82.3 96.9 21.9 36.4 57.4 72.0
* AT-Madry 33.6 44.9 73.2 84.5 87.4 98.7 86.5 97.8 30.8 42.0 61.9 73.2

corr.

unseen
FPR↓
83.3
75.0
72.5
0.0

76.7
76.2
78.5

corr.
CIFAR10-C

unseen
Err ↓
11.4
15.1
17.8
8.1

17.1
14.1
11.4

Table 4: Main Results: Generalizable Robustness for 98%TPR. While reporting results for 99%TPR in the main paper,
reducing the TPR requirement for confidence-thresholding to 98%TPR generally improves results, but only slightly. We
report FPR and confidence-thresholded RErr for 98%TPR. For MNIST-C and Cifar10-C, we report mean Err across all
corruptions. L∞ attacks with ε=0.3 on MNIST and ε = 0.03 on SVHN/Cifar10 were used for training (seen). All other
attacks were not used during training (unseen). * Pre-trained models with different architectures.

C.5. Ablation Study

In the following, we include ablation studies for our attack PGD-Conf, in Tab. 1, and for CCAT, in Tab. 2.

Attack. Regarding the proposed attack PGD-Conf using momentum and backtracking, Tab. 1 shows that backtracking
and sufficient iterations are essential to attack CCAT. On SVHN, for AT, the difference in RErr between T = 200 and
T = 1000 iterations is only 3.7%, specifically, 46.2% and 49.9%. For CCAT, in contrast, using T = 200 iterations is not
sufficient, with merely 5% RErr. However, T = 1000 iterations with zero initialization increases RErr to 22.8%. For more
iterations, i.e., T = 2000, RErr stagnates with 23.3%. When using random initialization (one restart), RErr drops to 5.2%,
even when using T = 2000 iterations. Similar significant drops are observed without backtracking. These observations
generalize to MNIST and Cifar10.

Training: Tab. 2 reports results for CCAT with different values for ρ. We note that ρ controls the (speed of the) transi-
tion from (correct) one-hot distribution to uniform distribution depending on the distance of adversarial example to the
corresponding original training example. Here, higher ρ results in a sharper (i.e., faster) transition from one-hot to uniform
distribution. It is also important to note that the power transition does not preserve a bias towards the true label, i.e., for the
maximum possible perturbation (‖δ‖∞ = ε), the network is forced to predict a purely uniform distribution. As can be seen,
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MNIST: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ε = 0.3
L∞

ε = 0.4
L2

ε = 3
L1

ε = 18
L0

ε = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.0 99.7 75.6 76.7 65.9 67.0
AT-50% 0.2 0.4 99.3 100.0 54.6 56.7 12.3 13.7 11.1 12.3 47.3 49.2
AT-100% 0.2 0.9 99.2 100.0 63.9 65.6 10.7 12.4 3.6 4.4 35.0 37.2
CCAT 3.1 3.7 5.7 6.3 0.0 0.1 0.0 0.1 2.0 2.2 0.0 0.1
* MSD 22.0 24.6 95.0 97.2 44.0 46.8 42.1 44.6 54.5 57.3 2.3 4.4
* TRADES 0.6 1.0 98.1 98.8 16.5 18.3 2.1 2.7 21.4 24.0 0.0 0.0

distal

unseen
FPR↓
100.0
100.0
100.0

0.0
100.0
100.0

corr.
MNIST-C

unseen
Err ↓
27.5
8.6
10.5
5.5
4.4
3.2

SVHN: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 95.6 99.7 95.9 100.0 95.9 100.0 95.9 100.0 65.3 69.5 66.8 71.1
AT-50% 45.5 49.2 79.7 83.4 95.4 99.1 95.5 99.2 34.8 38.9 21.5 25.5
AT-100% 40.5 46.9 80.9 87.1 93.3 99.5 93.6 99.8 78.5 85.5 15.9 21.7
CCAT 32.8 36.5 38.6 42.2 16.5 20.3 21.1 24.9 0.0 1.2 0.0 1.2

distal

unseen
FPR↓
87.1
59.3
75.1
0.0

CIFAR10: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ε = 0.03
L∞

ε = 0.06
L2

ε = 2
L1

ε = 24
L0

ε = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 52.0 59.0 88.8 95.9
AT-50% 46.6 61.7 78.6 93.7 83.3 98.4 83.3 98.4 43.9 59.6 62.8 77.9
AT-100% 41.3 59.1 72.7 90.3 80.6 98.2 80.4 98.0 47.2 65.3 62.0 79.7
CCAT 57.4 66.0 80.8 89.3 39.7 48.2 48.9 57.4 3.6 11.1 50.8 59.7
* MSD 32.8 50.9 71.5 89.4 67.7 85.6 49.1 67.3 11.4 28.4 64.2 82.2
* TRADES 26.5 41.3 66.1 80.7 53.9 68.5 82.3 96.9 17.6 32.0 56.4 71.1
* AT-Madry 32.4 43.9 73.2 84.5 87.4 98.7 86.5 97.8 28.6 40.1 61.5 72.8

corr.

unseen
FPR↓
83.3
75.0
72.5
0.0

76.7
76.2
78.5

corr.
CIFAR10-C

unseen
Err ↓
7.7

12.1
15.6
6.0

13.7
10.7
9.1

Table 5: Main Results: Generalizable Robustness for 95%TPR. We report FPR and RErr for 95%TPR, in comparison
with 98% in Tab. 4 and 99% in the main paper. For MNIST-C and Cifar10-C, we report mean Err across all corruptions.
L∞ attacks with ε=0.3 on MNIST and ε = 0.03 on SVHN/Cifar10 seen during training; all other attacks unseen during
training. Results improve slightly in comparison with 98%TPR. However, the improvements are rather small and do not
justify the significantly increased fraction of “thrown away” (correctly classified) clean examples. * Pre-trained models with
different architectures.

both on SVHN and Cifar10, higher ρ usually results in better robustness. Thus, for the main paper, we chose ρ = 10. Only
on SVHN, ρ = 6 of ρ = 12 perform slightly better. However, we found that ρ = 10 generalizes better to previously unseen
attacks.

C.6. Analysis

Confidence Histograms: For further analysis, Fig. 1 shows confidence histograms for AT and CCAT on MNIST and
Cifar10. The confidence histograms for CCAT reflect the expected behavior: adversarial examples are mostly successful in
changing the label, which is supported by high RErr values for confidence threshold τ = 0, but their confidence is pushed
towards uniform distributions. For AT, in contrast, successful adversarial examples – fewer in total – generally obtain high
confidence. As a result, while confidence thresholding generally benefits AT, the improvement is not as significant as for
CCAT.

Confidence Along Adversarial Directions: In Fig. 3, we plot the probabilities for all ten classes along an adversarial
direction. We note that these directions do not necessarily correspond to successful or high-confidence adversarial examples.
Instead, we chose the first 10 test examples on SVHN and Cifar10. The adversarial examples were obtained using our L∞
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MNIST:
all

unseen

FPR↓ RErr ↓
Normal 99.3 100.0
AT-50% 99.3 100.0
AT-100% 99.2 100.0
CCAT 23.4 23.9

* MSD 97.0 99.2
* TRADES 99.3 99.9
* AT-Madry – –

SVHN:
all

unseen

FPR↓ RErr ↓
95.9 100.0
96.2 99.9
93.7 99.9
57.5 61.1

– –
– –
– –

CIFAR10:
all

unseen

FPR↓ RErr ↓
93.0 100.0
84.1 99.2
81.0 98.6
86.3 94.8

76.2 94.1
82.8 97.4
87.6 98.9

CIFAR10:
unseen

except L∞
with ε=0.06

FPR↓ RErr ↓
93.0 100.0
84.1 99.2
81.1 98.7
69.1 77.6

75.6 93.5
82.7 97.3
87.6 98.9

Table 6: Worst-Case Results Across Unseen Attacks. We report the (per-example) worst-case, confidence-thresholded
RErr and FPR across all unseen attacks on MNIST, SVHN and Cifar10. On Cifar10, we additionally present results for all
attacks except L∞ adversarial examples with larger ε = 0.06 (indicated in blue). CCAT is able to outperform all baselines,
including MSD and TRADES, significantly on MNIST and SVHN. On Cifar10, CCAT performs poorly on L∞ adversarial
examples with larger ε = 0.06. However, excluding these adversarial examples, CCAT also outperforms all baselines on
Cifar10. * Pre-trained models with different architectures.

PGD-Conf attack with T = 1000 iterations and zero initialization for ε = 0.03. For AT, we usually observe a change in
predictions along these directions; some occur within ‖δ‖∞ ≤ ε, corresponding to successful adversarial examples (within
ε), some occur for ‖δ‖∞ > ε, corresponding to unsuccessful adversarial examples (within ε). However, AT always assigns
high confidence. Thus, when allowing larger adversarial perturbations at test time, robustness of AT reduces significantly.
For CCAT, in contrast, there are only few such cases; more often, the model achieves a near uniform prediction for small
‖δ‖∞ and extrapolates this behavior beyond the ε-ball used for training. On SVHN, this behavior successfully allows to
generalize the robustness to larger adversarial perturbations. Furthermore, these plots illustrate why using more iterations
at test time, and using techniques such as momentum and backtracking, are necessary to find adversarial examples as the
objective becomes more complex compared to AT.

Confidence Along Interpolation: In Fig. 4, on MNIST, we additionally illustrate the advantage of CCAT with respect to
the toy example in Proposition 1. Here, we consider the case where the ε-balls of two training or test examples (in different
classes) overlap. As we show in Proposition 1, adversarial training is not able to handle such cases, resulting in the trade-off
between accuracy in robustness reported in the literature (Tsipras et al., 2018; Stutz et al., 2019; Raghunathan et al., 2019;
Zhang et al., 2019). This is because adversarial training enforces high-confidence predictions on both ε-balls (corresponding
to different classes), resulting in an obvious conflict. CCAT, in contrast, enforces uniform predictions throughout the largest
parts of both ε-balls, resolving the conflict.

C.7. Results

Main Results for 98% and 95% TPR: Tab. 4 reports our main results requiring only 98%TPR; Tab. 5 shows results for
95%TPR. This implies, that compared to 99%TPR, up to 1% (or 4%) more correctly classified test examples can be rejected,
increasing the confidence threshold and potentially improving robustness. For relatively simple tasks such as MNIST and
SVHN, where Err is low, this is a significant “sacrifice”. However, as can be seen, robustness in terms of RErr only improves
slightly. We found that the same holds for 95%TPR, however, rejecting more than 2% of correctly classified examples seems
prohibitive large for the considered datasets.

Worst-Case Across Unseen Attacks: Tab. 6 reports per-example worst-case RErr and FPR for 99%TPR considering all
unseen attacks. On MNIST and SVHN, RErr increases to nearly 100% for AT, both AT-50% and AT-100%. CCAT, in
contrast, is able to achieve considerably lower RErr: 23.9% on MNIST and 61.1% on SVHN. Only on Cifar10, CCAT
does not result in a significant improvement; all methods, including related work such as MSD and TRADES yield RErr of
94% or higher. However, this is mainly due to the poor performance of CCAT against large L∞ adversarial examples with
ε = 0.06. Excluding these adversarial examples (right most table, indicated in blue) shows that RErr improves to 77.6% for
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CCAT, while RErr for the remaining methods remains nearly unchanged. Overall, these experiments emphasize that CCAT
is able to generalize robustness to previously unseen attacks.

Per-Attack Results: In Tab. 7 to 17, we break down our main results regarding all used Lp attacks for p ∈ {∞, 2, 1, 0}.
For simplicity we focus on PGD-CE and PGD-Conf while reporting the used black-box attacks together, i.e., taking the
per-example worst-case adversarial examples across all black-box attacks. For comparison, we also include the area under
the ROC curve (ROC AUC), non-thresholded Err and non-thresholded RErr. On MNIST, where AT performs very well in
practice, it is striking that for 4/3ε = 0.4 even black-box attacks are able to reduce robustness completely, resulting in high
RErr. This observation also transfers to SVHN and Cifar10. For CCAT, black-box attacks are only effective on Cifar10,
where they result in roughly 87% RErr with τ@99%TPR. For the L2, L1 and L0 attacks we can make similar observations.
Across all Lp norms, it can also be seen that PGD-CE performs significantly worse against our CCAT compared to AT,
which shows that it is essential to optimize the right objective to evaluate the robustness of defenses and adversarially trained
models, i.e., maximize confidence against CCAT.

Results on Corrupted MNIST/Cifar10: We also conducted experiments on MNIST-C (Mu & Gilmer, 2019) and Cifar10-C
(Hendrycks & Dietterich, 2019). These datasets are variants of MNIST and Cifar10 that contain common perturbations of
the original images obtained from various types of noise, blur or transformations; examples include zoom or motion blue,
Gaussian and shot noise, rotations, translations and shear. Tab. 18 to 21 presents the per-corruption results on MNIST-C and
Cifar10-C, respectively. Here, all includes all corruptions and mean reports the average results across all corruptions. We
note that, due to the thresholding, different numbers of corrupted examples are left after detection for different corruptions.
Thus, the distinction between all and mean is meaningful. Striking is the performance of CCAT on noise corruptions
such as gaussian noise or shot noise. Here, CCAT is able to reject 100% of the corrupted examples, resulting in a
thresholded Err of 0%. This is in stark contrast to AT, exhibiting a Err of roughly 15% after rejection on Cifar10-C. On the
remaining corruptions, CCAT is able to perform slightly better than AT, which is often due to higher detection rate, i.e.,
higher ROC AUC. On, Cifar10, the generally lower Err of CCAT also contributes to the results. Overall, this illustrates
that CCAT is able to preserve the inductive bias of predicting near-uniform distribution on noise similar to L∞ adversarial
examples as seen during training.
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MNIST: Supplementary Results for L∞ Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L∞, ε = 0.30)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.97 1.0 0.0 1.0 1.00 0.5 7.2
AT-100% 0.98 1.0 0.0 1.0 1.00 0.5 7.1
CCAT 0.99 6.9 0.2 7.1 0.85 0.4 48.9
MSD 0.86 32.1 0.9 33.9 0.51 1.8 38.0
TRADES 0.96 3.4 0.1 3.5 0.92 0.5 9.5

PGD Conf (L∞, ε = 0.30)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.97 0.4 0.0 0.4 1.00 0.5 5.6
AT-100% 0.98 0.6 0.0 0.6 1.00 0.5 5.4
CCAT 0.98 6.9 0.2 7.1 0.85 0.4 45.9
MSD 0.87 28.7 0.9 30.5 0.51 1.8 34.6
TRADES 0.96 1.6 0.1 1.6 0.92 0.5 7.0

PGD CE (L∞, ε = 0.30)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.97 0.8 0.0 0.8 1.00 0.5 6.7
AT-100% 0.98 0.7 0.0 0.7 1.00 0.5 6.3
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.88 28.0 0.9 29.8 0.51 1.8 37.6
TRADES 0.96 2.8 0.1 2.9 0.92 0.5 8.6

Black-Box (L∞, ε = 0.30)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.98 1.0 0.0 1.0 1.00 0.5 7.2
AT-100% 0.98 1.0 0.0 1.0 1.00 0.5 6.9
CCAT 1.00 0.1 0.2 0.3 0.85 0.4 82.4
MSD 0.88 27.7 0.9 29.5 0.51 1.8 35.9
TRADES 0.96 3.2 0.1 3.3 0.92 0.5 9.1

Worst-Case (L∞, ε = 0.40)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.20 99.3 0.0 100.0 1.00 0.5 100.0
AT-100% 0.27 99.2 0.0 100.0 1.00 0.5 100.0
CCAT 0.97 11.4 0.2 11.6 0.85 0.4 69.3
MSD 0.66 96.7 0.9 98.9 0.51 1.8 99.8
TRADES 0.56 99.3 0.1 99.9 0.92 0.5 100.0

PGD Conf (L∞, ε = 0.40)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.36 97.1 0.0 97.8 1.00 0.5 99.8
AT-100% 0.81 46.5 0.0 46.9 1.00 0.5 77.0
CCAT 0.97 11.4 0.2 11.6 0.85 0.4 58.9
MSD 0.73 89.3 0.9 91.4 0.51 1.8 93.3
TRADES 0.76 87.0 0.1 87.5 0.92 0.5 96.9

PGD CE (L∞, ε = 0.40)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.20 99.3 0.0 100.0 1.00 0.5 100.0
AT-100% 0.27 99.2 0.0 100.0 1.00 0.5 100.0
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.69 95.6 0.9 97.8 0.51 1.8 99.7
TRADES 0.58 99.3 0.1 99.9 0.92 0.5 100.0

Black-Box (L∞, ε = 0.40)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.23 99.3 0.0 100.0 1.00 0.5 100.0
AT-100% 0.27 99.2 0.0 100.0 1.00 0.5 100.0
CCAT 1.00 0.2 0.2 0.4 0.85 0.4 91.2
MSD 0.76 92.5 0.9 94.7 0.51 1.8 99.3
TRADES 0.78 95.4 0.1 96.0 0.92 0.5 99.8

Table 7: Per-Attack Results on MNIST, Part I (L∞). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for the L∞ threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr, we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.



Supplementary Material: Confidence-Calibrated Adversarial Training

MNIST: Supplementary Results for L2 Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L2, ε = 1.5)

Normal 0.39 98.9 0.1 99.6 0.98 0.4 100.0
AT-50% 0.96 2.3 0.0 2.4 1.00 0.5 13.6
AT-100% 0.96 2.6 0.0 2.7 1.00 0.5 12.0
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 6.7
MSD 0.94 7.9 0.9 9.6 0.51 1.8 15.2
TRADES 0.96 2.2 0.1 2.3 0.92 0.5 8.5

PGD Conf (L2, ε = 1.5)

Normal 0.56 83.3 0.1 83.9 0.98 0.4 91.6
AT-50% 0.99 0.2 0.0 0.2 1.00 0.5 3.2
AT-100% 0.99 0.1 0.0 0.1 1.00 0.5 2.5
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 5.5
MSD 0.96 2.0 0.9 3.7 0.51 1.8 6.5
TRADES 0.99 0.2 0.1 0.2 0.92 0.5 3.6

PGD CE (L2, ε = 1.5)

Normal 0.39 98.8 0.1 99.5 0.98 0.4 99.9
AT-50% 0.96 1.9 0.0 2.0 1.00 0.5 10.2
AT-100% 0.96 1.9 0.0 2.0 1.00 0.5 10.0
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.94 7.5 0.9 9.2 0.51 1.8 15.8
TRADES 0.96 2.2 0.1 2.3 0.92 0.5 8.2

Black-Box (L2, ε = 1.5)

Normal 0.55 91.0 0.1 91.7 0.98 0.4 97.4
AT-50% 0.97 0.8 0.0 0.8 1.00 0.5 8.1
AT-100% 0.98 0.9 0.0 0.9 1.00 0.5 6.8
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 84.8
MSD 0.95 3.6 0.9 5.3 0.51 1.8 8.6
TRADES 0.99 0.3 0.1 0.3 0.92 0.5 4.4

Worst-Case (L2, ε = 3)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.73 80.7 0.0 81.4 1.00 0.5 98.8
AT-100% 0.66 83.9 0.0 84.7 1.00 0.5 98.5
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 15.5
MSD 0.81 57.0 0.9 59.0 0.51 1.8 67.6
TRADES 0.90 43.6 0.1 44.0 0.92 0.5 69.9

PGD Conf (L2, ε = 3)

Normal 0.41 93.2 0.1 93.9 0.98 0.4 96.9
AT-50% 0.98 0.2 0.0 0.2 1.00 0.5 3.4
AT-100% 0.99 0.1 0.0 0.1 1.00 0.5 2.7
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 4.9
MSD 0.96 2.3 0.9 4.0 0.51 1.8 7.3
TRADES 0.98 0.4 0.1 0.4 0.92 0.5 3.8

PGD CE (L2, ε = 3)

Normal 0.34 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.93 11.3 0.0 11.5 1.00 0.5 29.2
AT-100% 0.92 9.3 0.0 9.5 1.00 0.5 24.5
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.82 55.7 0.9 57.8 0.51 1.8 67.7
TRADES 0.95 5.3 0.1 5.4 0.92 0.5 15.9

Black-Box (L2, ε = 3)

Normal 0.35 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.73 79.5 0.0 80.1 1.00 0.5 98.7
AT-100% 0.67 83.0 0.0 83.8 1.00 0.5 98.1
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 88.4
MSD 0.88 28.6 0.9 30.4 0.51 1.8 37.4
TRADES 0.91 42.6 0.1 43.0 0.92 0.5 69.1

Table 8: Per-Attack Results on MNIST, Part II (L2). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for the L2 threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.



Supplementary Material: Confidence-Calibrated Adversarial Training

MNIST: Supplementary Results for L1 Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L1, ε = 12)

Normal 0.44 98.9 0.1 99.6 0.98 0.4 100.0
AT-50% 0.93 8.6 0.0 8.8 1.00 0.5 26.3
AT-100% 0.91 8.2 0.0 8.4 1.00 0.5 23.6
CCAT 1.00 0.8 0.2 1.0 0.85 0.4 16.5
MSD 0.87 25.5 0.9 27.3 0.51 1.8 32.3
TRADES 0.96 2.7 0.1 2.8 0.92 0.5 9.5

PGD Conf (L1, ε = 12)

Normal 0.45 98.9 0.1 99.6 0.98 0.4 100.0
AT-50% 0.92 6.3 0.0 6.4 1.00 0.5 19.3
AT-100% 0.90 5.8 0.0 6.0 1.00 0.5 16.7
CCAT 1.00 0.7 0.2 0.9 0.85 0.4 14.2
MSD 0.87 24.8 0.9 26.6 0.51 1.8 31.7
TRADES 0.96 1.8 0.1 1.9 0.92 0.5 6.7

PGD CE (L1, ε = 12)

Normal 0.58 92.4 0.1 93.1 0.98 0.4 96.5
AT-50% 0.94 6.4 0.0 6.6 1.00 0.5 20.2
AT-100% 0.92 5.9 0.0 6.1 1.00 0.5 17.3
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.92 12.5 0.9 14.3 0.51 1.8 21.8
TRADES 0.96 2.4 0.1 2.5 0.92 0.5 8.8

Black-Box (L1, ε = 12)

Normal 0.98 3.3 0.1 3.5 0.98 0.4 10.8
AT-50% 0.96 0.7 0.0 0.7 1.00 0.5 4.4
AT-100% 0.97 0.8 0.0 0.8 1.00 0.5 5.3
CCAT 1.00 0.1 0.2 0.3 0.85 0.4 8.8
MSD 0.96 0.4 0.9 2.1 0.51 1.8 3.2
TRADES 0.98 0.1 0.1 0.1 0.92 0.5 1.4

Worst-Case (L1, ε = 18)

Normal 0.36 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.88 23.8 0.0 24.1 1.00 0.5 50.4
AT-100% 0.88 20.2 0.0 20.7 1.00 0.5 43.8
CCAT 1.00 1.3 0.2 1.5 0.85 0.4 22.0
MSD 0.81 53.7 0.9 55.6 0.51 1.8 60.8
TRADES 0.95 8.2 0.1 8.4 0.92 0.5 21.4

PGD Conf (L1, ε = 18)

Normal 0.36 99.3 0.1 100.0 0.98 0.4 100.0
AT-50% 0.88 15.5 0.0 15.7 1.00 0.5 33.8
AT-100% 0.87 12.7 0.0 13.0 1.00 0.5 27.6
CCAT 1.00 0.8 0.2 1.0 0.85 0.4 15.5
MSD 0.81 53.1 0.9 55.0 0.51 1.8 60.3
TRADES 0.95 2.9 0.1 3.0 0.92 0.5 8.9

PGD CE (L1, ε = 18)

Normal 0.45 97.7 0.1 98.4 0.98 0.4 98.8
AT-50% 0.90 17.0 0.0 17.3 1.00 0.5 37.6
AT-100% 0.90 11.7 0.0 12.0 1.00 0.5 29.8
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 100.0
MSD 0.88 27.0 0.9 28.9 0.51 1.8 36.3
TRADES 0.95 4.8 0.1 4.9 0.92 0.5 13.6

Black-Box (L1, ε = 18)

Normal 0.98 3.3 0.1 3.5 0.98 0.4 10.8
AT-50% 0.96 0.7 0.0 0.7 1.00 0.5 4.4
AT-100% 0.97 0.8 0.0 0.8 1.00 0.5 5.3
CCAT 1.00 0.1 0.2 0.3 0.85 0.4 8.8
MSD 0.96 0.4 0.9 2.1 0.51 1.8 3.2
TRADES 0.98 0.1 0.1 0.1 0.92 0.5 1.4

Table 9: Per-Attack Results on MNIST, Part III (L1). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for the L1 threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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MNIST: Supplementary Results for L0 Adversarial Examples and Adversarial Frames
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L0, ε = 15)

Normal 0.63 91.6 0.1 92.3 0.98 0.4 99.1
AT-50% 0.94 23.0 0.0 23.5 1.00 0.5 95.3
AT-100% 0.98 12.9 0.0 13.3 1.00 0.5 94.3
CCAT 0.99 14.2 0.2 14.5 0.85 0.4 83.5
MSD 0.75 64.2 0.9 66.2 0.51 1.8 74.2
TRADES 0.87 34.6 0.1 35.1 0.92 0.5 86.7

PGD Conf (L0, ε = 15)

Normal 0.69 84.4 0.1 85.0 0.98 0.4 92.7
AT-50% 0.98 0.5 0.0 0.5 1.00 0.5 5.2
AT-100% 0.98 0.3 0.0 0.3 1.00 0.5 3.6
CCAT 0.99 3.1 0.2 3.3 0.85 0.4 13.7
MSD 0.88 26.7 0.9 28.5 0.51 1.8 35.4
TRADES 0.97 3.0 0.1 3.1 0.92 0.5 12.6

PGD CE (L0, ε = 15)

Normal 0.63 90.3 0.1 90.9 0.98 0.4 95.2
AT-50% 0.98 2.3 0.0 2.4 1.00 0.5 17.7
AT-100% 0.99 0.5 0.0 0.5 1.00 0.5 11.1
CCAT 1.00 0.9 0.2 1.1 0.85 0.4 10.3
MSD 0.88 30.5 0.9 32.3 0.51 1.8 41.5
TRADES 0.95 10.7 0.1 11.0 0.92 0.5 27.9

Black-Box (L0, ε = 15)

Normal 0.97 18.3 0.1 18.5 0.98 0.4 98.6
AT-50% 0.94 21.7 0.0 22.3 1.00 0.5 95.3
AT-100% 0.98 12.9 0.0 13.3 1.00 0.5 94.3
CCAT 0.99 12.5 0.2 12.8 0.85 0.4 84.4
MSD 0.78 51.8 0.9 54.0 0.51 1.8 70.8
TRADES 0.88 31.7 0.1 32.4 0.92 0.5 86.7

Adversarial Frames

Normal 0.69 87.0 0.1 87.6 0.98 0.4 94.6
AT-50% 0.82 72.9 0.0 73.6 1.00 0.5 95.4
AT-100% 0.86 61.3 0.0 62.0 1.00 0.5 93.9
CCAT 1.00 0.0 0.2 0.2 0.85 0.4 95.4
MSD 0.96 6.6 0.9 8.3 0.51 1.8 17.3
TRADES 0.99 0.0 0.1 0.0 0.92 0.5 1.9

Table 10: Per-Attack Results on MNIST, Part IV (L0, Adversarial Frames). Per-attack results considering PGD-CE,
as in (Madry et al., 2018), our PGD-Conf and the remaining black-box attacks for L0 threat models and adversarial frames.
The used ε values are reported in the left-most column. For the black-box attacks, we report the per-example worst-case
across all black-box attacks. In addition to FPR and RErr we include ROC AUC, Err as well as Err and RErr in the standard,
non-thresholded setting, as reference.
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SVHN: Supplementary Results for L∞ Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L∞, ε = 0.03)

Normal 0.17 95.8 2.6 99.9 0.78 3.6 100.0
AT-50% 0.55 52.3 2.5 55.6 0.56 3.4 57.3
AT-100% 0.73 42.1 4.6 47.5 0.27 5.9 48.4
CCAT 0.70 35.5 2.1 38.5 0.60 2.9 97.8

PGD Conf (L∞, ε = 0.03)

Normal 0.17 95.8 2.6 99.9 0.78 3.6 99.9
AT-50% 0.55 51.6 2.5 54.9 0.56 3.4 56.9
AT-100% 0.73 40.9 4.6 46.2 0.27 5.9 47.1
CCAT 0.67 35.5 2.1 38.5 0.60 2.9 91.0

PGD CE (L∞, ε = 0.03)

Normal 0.17 95.8 2.6 99.9 0.78 3.6 100.0
AT-50% 0.68 40.0 2.5 43.2 0.56 3.4 50.7
AT-100% 0.81 34.6 4.6 39.9 0.27 5.9 45.3
CCAT 1.00 0.0 2.1 2.6 0.60 2.9 94.9

Black-Box (L∞, ε = 0.03)

Normal 0.23 95.6 2.6 99.7 0.78 3.6 99.7
AT-50% 0.95 27.7 2.5 30.8 0.56 3.4 46.2
AT-100% 0.78 38.5 4.6 43.8 0.27 5.9 45.5
CCAT 1.00 3.7 2.1 6.4 0.60 2.9 79.6

Worst-Case (L∞, ε = 0.06)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.32 84.7 2.5 88.3 0.56 3.4 89.0
AT-100% 0.38 80.9 4.6 86.9 0.27 5.9 87.1
CCAT 0.64 49.5 2.1 52.6 0.60 2.9 99.9

PGD Conf (L∞, ε = 0.06)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.31 81.1 2.5 84.7 0.56 3.4 86.1
AT-100% 0.40 77.4 4.6 83.3 0.27 5.9 83.6
CCAT 0.64 42.1 2.1 45.2 0.60 2.9 98.1

PGD CE (L∞, ε = 0.06)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.61 84.4 2.5 88.0 0.56 3.4 88.9
AT-100% 0.43 80.9 4.6 86.9 0.27 5.9 87.1
CCAT 0.99 14.3 2.1 17.2 0.60 2.9 100.0

Black-Box (L∞, ε = 0.06)

Normal 0.17 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.78 78.9 2.5 82.4 0.56 3.4 84.0
AT-100% 0.51 76.5 4.6 82.4 0.27 5.9 82.7
CCAT 1.00 4.5 2.1 7.2 0.60 2.9 83.7

Table 11: Per-Attack Results on SVHN, Part I (L∞). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for the L∞ threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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SVHN: Supplementary Results for L2 Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L2, ε = 0.5)

Normal 0.27 93.3 2.6 97.4 0.78 3.6 97.7
AT-50% 0.53 65.2 2.5 68.6 0.56 3.4 70.7
AT-100% 0.67 60.1 4.6 65.8 0.27 5.9 66.3
CCAT 0.87 17.2 2.1 20.0 0.60 2.9 63.3

PGD Conf (L2, ε = 0.5)

Normal 0.32 91.1 2.6 95.1 0.78 3.6 96.4
AT-50% 0.56 57.5 2.5 60.8 0.56 3.4 62.9
AT-100% 0.68 54.0 4.6 59.6 0.27 5.9 60.2
CCAT 0.85 16.9 2.1 19.7 0.60 2.9 54.5

PGD CE (L2, ε = 0.5)

Normal 0.28 93.3 2.6 97.4 0.78 3.6 97.7
AT-50% 0.57 63.1 2.5 66.5 0.56 3.4 70.1
AT-100% 0.72 57.7 4.6 63.5 0.27 5.9 66.5
CCAT 0.99 1.8 2.1 4.5 0.60 2.9 100.0

Black-Box (L2, ε = 0.5)

Normal 0.67 53.8 2.6 57.3 0.78 3.6 63.7
AT-50% 0.99 3.0 2.5 5.9 0.56 3.4 13.8
AT-100% 0.90 7.3 4.6 12.2 0.27 5.9 15.3
CCAT 1.00 0.1 2.1 2.7 0.60 2.9 91.3

Worst-Case(L2, ε = 1)

Normal 0.17 95.8 2.6 99.9 0.78 3.6 99.9
AT-50% 0.26 88.4 2.5 92.0 0.56 3.4 92.4
AT-100% 0.38 87.3 4.6 93.4 0.27 5.9 93.5
CCAT 0.88 18.9 2.1 21.7 0.60 2.9 80.9

PGD Conf (L2, ε = 1)

Normal 0.22 95.4 2.6 99.5 0.78 3.6 99.6
AT-50% 0.49 73.6 2.5 77.1 0.56 3.4 78.7
AT-100% 0.48 75.5 4.6 81.4 0.27 5.9 81.7
CCAT 0.88 18.6 2.1 21.4 0.60 2.9 74.6

PGD CE (L2, ε = 1)

Normal 0.17 95.8 2.6 99.9 0.78 3.6 99.9
AT-50% 0.27 88.4 2.5 92.0 0.56 3.4 92.4
AT-100% 0.39 87.3 4.6 93.4 0.27 5.9 93.5
CCAT 0.99 2.1 2.1 4.8 0.60 2.9 100.0

Black-Box (L2, ε = 1)

Normal 0.42 88.3 2.6 92.3 0.78 3.6 94.4
AT-50% 0.98 10.8 2.5 13.8 0.56 3.4 29.8
AT-100% 0.85 22.5 4.6 27.7 0.27 5.9 30.1
CCAT 1.00 0.1 2.1 2.7 0.60 2.9 96.5

Worst-Case (L2, ε = 2)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.11 95.7 2.5 99.4 0.56 3.4 99.4
AT-100% 0.12 93.3 4.6 99.5 0.27 5.9 99.5
CCAT 0.89 25.4 2.1 28.3 0.60 2.9 91.9

PGD Conf (L2, ε = 2)

Normal 0.21 95.4 2.6 99.5 0.78 3.6 99.8
AT-50% 0.49 76.2 2.5 79.7 0.56 3.4 81.2
AT-100% 0.45 78.1 4.6 84.0 0.27 5.9 84.3
CCAT 0.89 19.1 2.1 21.9 0.60 2.9 88.0

PGD CE (L2, ε = 2)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.12 95.7 2.5 99.4 0.56 3.4 99.4
AT-100% 0.12 93.3 4.6 99.5 0.27 5.9 99.5
CCAT 0.98 5.0 2.1 7.7 0.60 2.9 100.0

Table 12: Per-Attack Results on SVHN, Part II (L2). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for L2 threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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SVHN: Supplementary Results for L1, L0 Adversarial Examples and Adversarial Frames
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L1, ε = 18)

Normal 0.17 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.09 95.0 2.5 98.7 0.56 3.4 98.7
AT-100% 0.14 93.1 4.6 99.3 0.27 5.9 99.3
CCAT 0.82 24.3 2.1 27.2 0.60 2.9 72.8

PGD Conf (L1, ε = 18)

Normal 0.17 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.11 94.8 2.5 98.5 0.56 3.4 98.5
AT-100% 0.15 92.9 4.6 99.1 0.27 5.9 99.1
CCAT 0.82 23.4 2.1 26.3 0.60 2.9 69.3

PGD CE (L1, ε = 18)

Normal 0.21 95.7 2.6 99.8 0.78 3.6 99.8
AT-50% 0.29 92.8 2.5 96.5 0.56 3.4 96.6
AT-100% 0.27 92.1 4.6 98.3 0.27 5.9 98.3
CCAT 0.99 2.7 2.1 5.4 0.60 2.9 100.0

Black-Box (L1, ε = 18)

Normal 0.89 6.2 2.6 9.2 0.78 3.6 13.0
AT-50% 0.97 3.7 2.5 6.6 0.56 3.4 10.9
AT-100% 0.90 7.4 4.6 12.3 0.27 5.9 14.9
CCAT 1.00 0.5 2.1 3.2 0.60 2.9 10.0

Worst-Case (L1, ε = 24)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.05 95.8 2.5 99.5 0.56 3.4 99.5
AT-100% 0.09 93.6 4.6 99.8 0.27 5.9 99.8
CCAT 0.80 28.1 2.1 31.0 0.60 2.9 77.0

PGD Conf (L1, ε = 24)

Normal 0.16 95.9 2.6 100.0 0.78 3.6 100.0
AT-50% 0.06 95.7 2.5 99.4 0.56 3.4 99.4
AT-100% 0.09 93.6 4.6 99.8 0.27 5.9 99.8
CCAT 0.79 27.1 2.1 30.0 0.60 2.9 73.3

PGD CE (L1, ε = 24)

Normal 0.19 95.8 2.6 99.9 0.78 3.6 99.9
AT-50% 0.25 94.0 2.5 97.7 0.56 3.4 98.0
AT-100% 0.22 92.5 4.6 98.7 0.27 5.9 98.7
CCAT 0.98 3.4 2.1 6.1 0.60 2.9 100.0

Black-Box (L1, ε = 24)

Normal 0.86 18.7 2.6 21.8 0.78 3.6 27.1
AT-50% 0.96 11.2 2.5 14.2 0.56 3.4 22.2
AT-100% 0.86 16.3 4.6 21.3 0.27 5.9 24.6
CCAT 1.00 1.3 2.1 4.0 0.60 2.9 18.3

Worst-Case (L0, ε = 10)

Normal 0.60 79.6 2.6 83.5 0.78 3.6 98.0
AT-50% 0.90 70.0 2.5 73.5 0.56 3.4 89.2
AT-100% 0.65 83.1 4.6 89.2 0.27 5.9 89.9
CCAT 1.00 0.4 2.1 3.0 0.60 2.9 75.3

PGD Conf (L0, ε = 10)

Normal 0.55 63.4 2.6 67.1 0.78 3.6 69.0
AT-50% 0.90 48.0 2.5 51.3 0.56 3.4 59.7
AT-100% 0.64 61.3 4.6 67.2 0.27 5.9 68.0
CCAT 1.00 0.1 2.1 2.7 0.60 2.9 63.9

PGD CE (L0, ε = 10)

Normal 0.52 71.4 2.6 75.2 0.78 3.6 78.1
AT-50% 0.89 57.4 2.5 60.8 0.56 3.4 68.9
AT-100% 0.65 68.2 4.6 74.2 0.27 5.9 75.5
CCAT 1.00 0.0 2.1 2.6 0.60 2.9 96.9

Black-Box (L0, ε = 10)

Normal 0.96 44.5 2.6 47.9 0.78 3.6 97.7
AT-50% 0.98 34.4 2.5 37.7 0.56 3.4 86.6
AT-100% 0.86 74.3 4.6 80.6 0.27 5.9 85.5
CCAT 1.00 0.3 2.1 3.0 0.60 2.9 93.1

Adversarial Frames

Normal 0.47 74.6 2.6 78.4 0.78 3.6 80.1
AT-50% 0.77 30.0 2.5 33.1 0.56 3.4 36.0
AT-100% 0.78 19.9 4.6 25.1 0.27 5.9 27.4
CCAT 1.00 1.0 2.1 3.7 0.60 2.9 97.3

Table 13: Per-Attack Results on SVHN, Part III (L1, L0, Adversarial Frames). Per-attack results considering PGD-CE,
as in (Madry et al., 2018), our PGD-Conf and the remaining black-box attacks for L1, L0 threat models and adversarial
frames. The used ε values are reported in the left-most column. For the black-box attacks, we report the per-example
worst-case across all black-box attacks. In addition to FPR and RErr we include ROC AUC, Err as well as Err and RErr in
the standard, non-thresholded setting, as reference.
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CIFAR10: Supplementary Results for L∞ Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L∞ , ε = 0.03)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.64 47.6 15.1 62.3 0.35 16.6 62.7
AT-100% 0.64 42.3 18.3 59.5 0.29 19.4 59.9
CCAT 0.60 59.9 8.7 67.9 0.40 10.1 96.7
MSD 0.66 35.3 17.6 53.0 0.24 18.4 53.2
TRADES 0.73 28.9 13.2 41.9 0.30 15.2 43.5
AT-Madry 0.73 33.8 11.7 44.4 0.29 13.0 45.1

PGD Conf (L∞ , ε = 0.03)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.65 46.2 15.1 60.9 0.35 16.6 61.3
AT-100% 0.65 40.0 18.3 57.2 0.29 19.4 57.6
CCAT 0.60 55.1 8.7 63.0 0.40 10.1 95.0
MSD 0.66 33.0 17.6 50.7 0.24 18.4 50.9
TRADES 0.73 28.2 13.2 41.2 0.30 15.2 42.8
AT-Madry 0.73 31.9 11.7 42.5 0.29 13.0 43.2

PGD CE (L∞ , ε = 0.03)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.67 46.7 15.1 61.4 0.35 16.6 62.3
AT-100% 0.69 40.5 18.3 57.7 0.29 19.4 59.3
CCAT 0.99 2.5 8.7 9.8 0.40 10.1 100.0
MSD 0.75 33.2 17.6 50.9 0.24 18.4 52.6
TRADES 0.80 25.3 13.2 38.4 0.30 15.2 42.9
AT-Madry 0.78 30.3 11.7 40.9 0.29 13.0 44.2

Black-Box (L∞ , ε = 0.03)

Normal 0.21 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.70 42.2 15.1 56.9 0.35 16.6 57.3
AT-100% 0.70 36.9 18.3 54.1 0.29 19.4 54.7
CCAT 0.90 41.6 8.7 49.3 0.40 10.1 96.4
MSD 0.73 30.2 17.6 47.9 0.24 18.4 48.4
TRADES 0.78 25.1 13.2 38.0 0.30 15.2 40.0
AT-Madry 0.78 29.2 11.7 39.7 0.29 13.0 41.2

Worst-Case (L∞ , ε = 0.06)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.35 78.6 15.1 93.6 0.35 16.6 93.7
AT-100% 0.39 72.7 18.3 90.2 0.29 19.4 90.3
CCAT 0.40 83.9 8.7 92.3 0.40 10.1 99.4
MSD 0.43 71.5 17.6 89.4 0.24 18.4 89.4
TRADES 0.53 66.4 13.2 80.5 0.30 15.2 81.0
AT-Madry 0.46 73.2 11.7 84.3 0.29 13.0 84.5

PGD Conf (L∞ , ε = 0.06)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.37 77.1 15.1 92.1 0.35 16.6 92.2
AT-100% 0.43 70.7 18.3 88.2 0.29 19.4 88.3
CCAT 0.45 64.5 8.7 72.6 0.40 10.1 97.4
MSD 0.46 68.7 17.6 86.5 0.24 18.4 86.6
TRADES 0.54 63.9 13.2 77.9 0.30 15.2 78.5
AT-Madry 0.51 69.4 11.7 80.4 0.29 13.0 80.7

PGD CE (L∞ , ε = 0.06)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.40 78.6 15.1 93.6 0.35 16.6 93.7
AT-100% 0.45 72.7 18.3 90.2 0.29 19.4 90.3
CCAT 0.98 3.7 8.7 11.0 0.40 10.1 100.0
MSD 0.53 71.6 17.6 89.5 0.24 18.4 89.5
TRADES 0.64 64.8 13.2 78.8 0.30 15.2 80.4
AT-Madry 0.50 73.1 11.7 84.2 0.29 13.0 84.4

Black-Box (L∞ , ε = 0.06)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.50 72.1 15.1 87.1 0.35 16.6 87.2
AT-100% 0.53 65.9 18.3 83.4 0.29 19.4 83.5
CCAT 0.77 79.1 8.7 87.4 0.40 10.1 99.7
MSD 0.58 60.5 17.6 78.3 0.24 18.4 78.5
TRADES 0.65 57.6 13.2 71.4 0.30 15.2 72.2
AT-Madry 0.62 63.5 11.7 74.5 0.29 13.0 75.2

Table 14: Per-Attack Results on Cifar10, Part I (L∞). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for L∞ and L2 threat models. The used ε values are reported in the
left-most column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition
to FPR and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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CIFAR10: Supplementary Results for L2 Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L2, ε = 1)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.59 59.1 15.1 73.9 0.35 16.6 74.4
AT-100% 0.57 55.8 18.3 73.2 0.29 19.4 73.4
CCAT 0.75 42.6 8.7 50.4 0.40 10.1 83.2
MSD 0.68 34.3 17.6 52.0 0.24 18.4 52.2
TRADES 0.64 56.3 13.2 70.1 0.30 15.2 71.3
AT-Madry 0.59 62.4 11.7 73.4 0.29 13.0 73.8

PGD Conf (L2, ε = 1)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.63 50.2 15.1 64.9 0.35 16.6 65.3
AT-100% 0.62 46.4 18.3 63.7 0.29 19.4 64.0
CCAT 0.76 41.9 8.7 49.6 0.40 10.1 82.6
MSD 0.68 30.4 17.6 48.1 0.24 18.4 48.3
TRADES 0.67 43.1 13.2 56.5 0.30 15.2 57.7
AT-Madry 0.68 44.8 11.7 55.5 0.29 13.0 56.1

PGD CE (L2, ε = 1)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.61 59.1 15.1 73.9 0.35 16.6 74.6
AT-100% 0.60 55.1 18.3 72.5 0.29 19.4 73.7
CCAT 0.93 13.8 8.7 21.2 0.40 10.1 100.0
MSD 0.74 33.6 17.6 51.3 0.24 18.4 52.1
TRADES 0.68 56.1 13.2 70.0 0.30 15.2 72.6
AT-Madry 0.61 61.9 11.7 72.9 0.29 13.0 74.1

Black-Box (L2, ε = 1)

Normal 0.38 90.1 7.4 97.1 0.59 8.3 97.4
AT-50% 0.81 21.3 15.1 35.8 0.35 16.6 36.9
AT-100% 0.78 19.8 18.3 36.8 0.29 19.4 37.8
CCAT 0.99 5.0 8.7 12.3 0.40 10.1 78.8
MSD 0.80 16.5 17.6 34.2 0.24 18.4 34.6
TRADES 0.84 15.2 13.2 27.9 0.30 15.2 31.0
AT-Madry 0.83 16.3 11.7 26.7 0.29 13.0 28.8

Worst-Case (L2, ε = 2)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.28 83.3 15.1 98.4 0.35 16.6 98.4
AT-100% 0.34 80.7 18.3 98.3 0.29 19.4 98.4
CCAT 0.74 43.7 8.7 51.5 0.40 10.1 85.8
MSD 0.53 70.6 17.6 88.5 0.24 18.4 88.8
TRADES 0.64 56.3 13.2 70.1 0.30 15.2 71.3
AT-Madry 0.26 87.4 11.7 98.7 0.29 13.0 98.7

PGD Conf (L2, ε = 2)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.62 52.4 15.1 67.2 0.35 16.6 67.5
AT-100% 0.60 48.2 18.3 65.5 0.29 19.4 65.8
CCAT 0.76 42.4 8.7 50.2 0.40 10.1 84.6
MSD 0.67 31.9 17.6 49.6 0.24 18.4 49.8
TRADES 0.67 43.1 13.2 56.5 0.30 15.2 57.7
AT-Madry 0.67 48.6 11.7 59.4 0.29 13.0 59.9

PGD CE (L2, ε = 2)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.28 83.3 15.1 98.4 0.35 16.6 98.4
AT-100% 0.34 80.7 18.3 98.3 0.29 19.4 98.4
CCAT 0.92 15.9 8.7 23.3 0.40 10.1 100.0
MSD 0.54 71.2 17.6 89.1 0.24 18.4 89.5
TRADES 0.68 56.1 13.2 70.0 0.30 15.2 72.6
AT-Madry 0.26 87.4 11.7 98.7 0.29 13.0 98.7

Black-Box (L2, ε = 2)

Normal 0.21 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.67 47.5 15.1 62.2 0.35 16.6 62.6
AT-100% 0.66 43.4 18.3 60.6 0.29 19.4 61.3
CCAT 0.99 7.7 8.7 15.1 0.40 10.1 81.0
MSD 0.71 33.7 17.6 51.5 0.24 18.4 51.8
TRADES 0.84 15.2 13.2 27.9 0.30 15.2 31.0
AT-Madry 0.73 42.2 11.7 52.9 0.29 13.0 53.9

Table 15: Per-Attack Results on Cifar10, Part II (L2). Per-attack results considering PGD-CE, as in (Madry et al., 2018),
our PGD-Conf and the remaining black-box attacks for the L2 threat model. The used ε values are reported in the left-most
column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition to FPR
and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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CIFAR10: Supplementary Results for L1 Adversarial Examples
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L1, ε = 18)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.39 80.1 15.1 95.2 0.35 16.6 95.2
AT-100% 0.39 76.8 18.3 94.3 0.29 19.4 94.4
CCAT 0.67 47.6 8.7 55.4 0.40 10.1 85.4
MSD 0.63 40.0 17.6 57.7 0.24 18.4 57.9
TRADES 0.45 78.6 13.2 93.0 0.30 15.2 93.2
AT-Madry 0.39 83.0 11.7 94.2 0.29 13.0 94.3

PGD Conf (L1, ε = 18)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.39 79.9 15.1 94.9 0.35 16.6 95.0
AT-100% 0.40 76.5 18.3 94.0 0.29 19.4 94.1
CCAT 0.67 47.3 8.7 55.1 0.40 10.1 85.4
MSD 0.63 38.6 17.6 56.3 0.24 18.4 56.5
TRADES 0.45 78.4 13.2 92.8 0.30 15.2 93.0
AT-Madry 0.41 82.5 11.7 93.7 0.29 13.0 93.8

PGD CE (L1, ε = 18)

Normal 0.20 92.9 7.4 99.9 0.59 8.3 99.9
AT-50% 0.57 69.0 15.1 83.9 0.35 16.6 85.0
AT-100% 0.55 66.2 18.3 83.7 0.29 19.4 84.6
CCAT 0.94 13.8 8.7 21.1 0.40 10.1 100.0
MSD 0.75 32.2 17.6 49.9 0.24 18.4 51.1
TRADES 0.63 69.4 13.2 83.6 0.30 15.2 85.5
AT-Madry 0.55 74.6 11.7 85.8 0.29 13.0 87.0

Black-Box (L1, ε = 18)

Normal 0.94 3.6 7.4 9.9 0.59 8.3 11.6
AT-50% 0.93 1.9 15.1 16.3 0.35 16.6 17.6
AT-100% 0.93 1.0 18.3 17.9 0.29 19.4 19.1
CCAT 0.99 0.8 8.7 8.1 0.40 10.1 18.7
MSD 0.84 0.8 17.6 18.4 0.24 18.4 18.8
TRADES 0.92 0.9 13.2 13.3 0.30 15.2 15.9
AT-Madry 0.90 1.1 11.7 11.3 0.29 13.0 12.8

Worst-Case (L1, ε = 24)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.28 83.3 15.1 98.4 0.35 16.6 98.4
AT-100% 0.31 80.4 18.3 98.0 0.29 19.4 98.0
CCAT 0.62 50.3 8.7 58.2 0.40 10.1 87.0
MSD 0.57 50.7 17.6 68.5 0.24 18.4 68.6
TRADES 0.37 82.3 13.2 96.8 0.30 15.2 97.0
AT-Madry 0.29 86.5 11.7 97.8 0.29 13.0 97.8

PGD Conf (L1, ε = 24)

Normal 0.20 93.0 7.4 100.0 0.59 8.3 100.0
AT-50% 0.29 83.3 15.1 98.4 0.35 16.6 98.4
AT-100% 0.32 80.1 18.3 97.7 0.29 19.4 97.7
CCAT 0.63 50.2 8.7 58.1 0.40 10.1 86.9
MSD 0.57 49.3 17.6 67.1 0.24 18.4 67.2
TRADES 0.37 82.3 13.2 96.8 0.30 15.2 96.9
AT-Madry 0.31 86.3 11.7 97.6 0.29 13.0 97.6

PGD CE (L1, ε = 24)

Normal 0.20 92.9 7.4 99.9 0.59 8.3 99.9
AT-50% 0.52 76.3 15.1 91.3 0.35 16.6 92.5
AT-100% 0.51 72.7 18.3 90.2 0.29 19.4 91.2
CCAT 0.94 15.0 8.7 22.4 0.40 10.1 100.0
MSD 0.72 38.7 17.6 56.4 0.24 18.4 57.9
TRADES 0.59 75.6 13.2 89.9 0.30 15.2 91.2
AT-Madry 0.49 80.5 11.7 91.7 0.29 13.0 92.4

Black-Box (L1, ε = 24)

Normal 0.93 8.6 7.4 14.9 0.59 8.3 17.4
AT-50% 0.93 3.5 15.1 17.9 0.35 16.6 19.7
AT-100% 0.90 3.8 18.3 20.7 0.29 19.4 21.8
CCAT 0.99 1.6 8.7 8.9 0.40 10.1 26.8
MSD 0.87 2.6 17.6 20.2 0.24 18.4 20.6
TRADES 0.89 1.7 13.2 14.0 0.30 15.2 16.7
AT-Madry 0.89 2.9 11.7 13.2 0.29 13.0 14.9

Table 16: Per-Attack Results on Cifar10, Part III (L1). Per-attack results considering PGD-CE, as in (Madry et al.,
2018), our PGD-Conf and the remaining black-box attacks for the L1 threat model. The used ε values are reported in the
left-most column. For the black-box attacks, we report the per-example worst-case across all black-box attacks. In addition
to FPR and RErr we include ROC AUC, Err as well as Err and RErr in the standard, non-thresholded setting, as reference.
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CIFAR10: Supplementary Results for L0 Adversarial Examples and Adversarial Frames
Detection Setting
τ@99%TPR

Standard Setting
τ=0

Attack Training ROC
AUC

FPR
in %

Err
in %

RErr
in %

τ
Err

in %
RErr
in %

Worst-Case (L0, ε = 10)

Normal 0.80 77.7 7.4 84.6 0.59 8.3 96.2
AT-50% 0.80 59.3 15.1 74.1 0.35 16.6 75.9
AT-100% 0.75 54.7 18.3 72.0 0.29 19.4 73.2
CCAT 0.97 14.4 8.7 21.9 0.40 10.1 54.7
MSD 0.84 21.4 17.6 39.1 0.24 18.4 39.8
TRADES 0.78 22.3 13.2 35.2 0.30 15.2 37.8
AT-Madry 0.73 31.0 11.7 41.5 0.29 13.0 42.8

PGD Conf (L0, ε = 10)

Normal 0.74 48.9 7.4 55.5 0.59 8.3 57.4
AT-50% 0.74 29.7 15.1 44.3 0.35 16.6 45.1
AT-100% 0.72 25.2 18.3 42.3 0.29 19.4 43.3
CCAT 0.98 5.2 8.7 12.5 0.40 10.1 34.8
MSD 0.81 5.2 17.6 22.8 0.24 18.4 23.1
TRADES 0.80 18.0 13.2 30.8 0.30 15.2 33.2
AT-Madry 0.77 21.8 11.7 32.3 0.29 13.0 33.5

PGD CE (L0, ε = 10)

Normal 0.73 56.3 7.4 63.0 0.59 8.3 65.4
AT-50% 0.76 34.8 15.1 49.4 0.35 16.6 51.4
AT-100% 0.72 30.3 18.3 47.5 0.29 19.4 48.9
CCAT 1.00 0.3 8.7 7.6 0.40 10.1 79.3
MSD 0.82 5.9 17.6 23.5 0.24 18.4 23.9
TRADES 0.81 21.0 13.2 33.9 0.30 15.2 37.5
AT-Madry 0.77 26.7 11.7 37.2 0.29 13.0 39.2

Black-Box (L0, ε = 10)

Normal 0.94 66.1 7.4 72.9 0.59 8.3 96.2
AT-50% 0.91 54.2 15.1 69.6 0.35 16.6 75.7
AT-100% 0.83 52.8 18.3 70.3 0.29 19.4 72.4
CCAT 0.99 12.0 8.7 19.6 0.40 10.1 96.6
MSD 0.86 22.1 17.6 39.8 0.24 18.4 41.0
TRADES 0.84 8.4 13.2 20.9 0.30 15.2 24.3
AT-Madry 0.79 15.7 11.7 26.1 0.29 13.0 27.6

Adversarial Frames

Normal 0.28 89.7 7.4 96.7 0.59 8.3 96.9
AT-50% 0.40 63.6 15.1 78.5 0.35 16.6 78.7
AT-100% 0.39 62.0 18.3 79.4 0.29 19.4 79.6
CCAT 0.75 57.4 8.7 65.6 0.40 10.1 86.7
MSD 0.38 64.7 17.6 82.5 0.24 18.4 82.6
TRADES 0.45 57.5 13.2 71.3 0.30 15.2 72.1
AT-Madry 0.48 62.0 11.7 72.9 0.29 13.0 73.3

Table 17: Per-Attack Results on Cifar10, Part IV (L0, Adversarial Frames). Per-attack results considering PGD-CE,
as in (Madry et al., 2018), our PGD-Conf and the remaining black-box attacks for the L0 threat model and adversarial
frames. The used ε values are reported in the left-most column. For the black-box attacks, we report the per-example
worst-case across all black-box attacks. In addition to FPR and RErr we include ROC AUC, Err as well as Err and RErr in
the standard, non-thresholded setting, as reference.
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MNIST-C: Supplementary Results for Corruption

Detection Setting
τ@99%TPR

Standard
Setting
τ=0

Corruption Training ROC
AUC

FPR
in %

TNR
in %

Err
in %

τ
Err

in %

all

Normal 0.75 82.8 17.2 31.9 0.98 36.4
AT-50% 0.80 59.0 41.0 4.0 1.00 26.9
AT-100% 0.78 63.5 36.5 8.6 1.00 27.4
CCAT 0.96 29.0 71.0 6.7 0.85 41.5
MSD 0.75 75.0 25.0 5.4 0.51 14.0
TRADES 0.79 74.1 25.9 5.5 0.92 16.1

mean

Normal 0.75 82.8 17.2 32.8 1.0 36.3
AT-50% 0.80 59.0 41.0 12.6 1.0 26.9
AT-100% 0.78 63.5 36.5 17.6 1.0 27.4
CCAT 0.96 29.0 71.0 5.7 0.9 41.5
MSD 0.75 75.0 25.0 6.0 0.5 14.0
TRADES 0.79 74.1 25.9 7.9 0.9 16.1

brightness

Normal 0.36 100.0 0.0 90.2 0.98 90.2
AT-50% 0.99 0.9 99.1 36.4 1.00 84.3
AT-100% 0.97 35.4 64.6 82.2 1.00 90.9
CCAT 1.00 0.0 100.0 0.0 0.85 90.5
MSD 0.95 38.7 61.3 0.1 0.51 23.1
TRADES 0.95 43.7 56.3 67.3 0.92 77.2

canny edges

Normal 0.91 62.4 37.6 34.8 0.98 45.6
AT-50% 0.96 28.8 71.2 33.4 1.00 53.2
AT-100% 0.94 35.3 64.7 38.2 1.00 53.4
CCAT 0.99 34.3 65.7 70.5 0.85 61.9
MSD 0.87 63.4 36.6 5.5 0.51 17.8
TRADES 0.92 53.2 46.8 21.5 0.92 36.3

dotted line

Normal 0.76 85.4 14.6 2.4 0.98 7.6
AT-50% 0.77 72.8 27.2 0.9 1.00 7.9
AT-100% 0.75 74.5 25.5 0.9 1.00 6.4
CCAT 0.98 53.4 46.6 2.5 0.85 10.1
MSD 0.60 94.2 5.8 1.1 0.51 2.9
TRADES 0.73 84.5 15.5 0.5 0.92 4.2

fog

Normal 0.38 99.9 0.1 90.2 0.98 90.2
AT-50% 0.90 29.7 70.3 10.4 1.00 59.0
AT-100% 0.88 46.3 53.7 37.7 1.00 62.0
CCAT 1.00 0.0 100.0 0.0 0.85 90.3
MSD 0.92 46.8 53.2 4.3 0.51 26.1
TRADES 0.87 60.9 39.1 14.3 0.92 35.8

glass blur

Normal 0.87 71.6 28.4 57.2 0.98 56.2
AT-50% 0.82 67.4 32.6 1.2 1.00 11.0
AT-100% 0.77 70.5 29.5 1.1 1.00 8.5
CCAT 1.00 0.0 100.0 0.0 0.85 86.8
MSD 0.69 89.1 10.9 1.7 0.51 4.9
TRADES 0.81 80.9 19.1 0.6 0.92 6.0

impulse noise

Normal 0.87 72.4 27.6 79.2 0.98 81.3
AT-50% 0.98 13.9 86.1 18.8 1.00 61.4
AT-100% 0.97 18.8 81.2 12.8 1.00 56.2
CCAT 1.00 0.0 100.0 0.0 0.85 69.1
MSD 0.83 69.4 30.6 0.7 0.51 8.2
TRADES 0.91 57.3 42.7 2.2 0.92 17.2

motion blur

Normal 0.86 73.9 26.1 29.5 0.98 37.2
AT-50% 0.62 90.6 9.4 0.3 1.00 2.7
AT-100% 0.58 91.3 8.7 0.3 1.00 2.4
CCAT 1.00 0.0 100.0 0.0 0.85 75.6
MSD 0.74 83.1 16.9 3.6 0.51 9.1
TRADES 0.71 88.3 11.7 0.6 0.92 4.0

rotate

Normal 0.70 92.4 7.6 1.7 0.98 4.6
AT-50% 0.64 87.9 12.1 0.8 1.00 4.1
AT-100% 0.63 87.2 12.8 0.8 1.00 4.5
CCAT 0.98 41.5 58.5 0.3 0.85 4.4
MSD 0.64 90.7 9.3 5.7 0.51 9.7
TRADES 0.66 87.7 12.3 1.4 0.92 4.8

Table 18: Per-Corruptions Results on MNIST-C, PART I. Results on MNIST-C, broken down by individual corruptions
(first column); mean are the averaged results over all corruptions. We report ROC AUC, FPR and the true negative rate
(TNR) in addition to the thresholded and unthresholded Err on the corrupted examples. The table is continued in Tab. 19.
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MNIST-C: Supplementary Results for Corruption

Detection Setting
τ@99%TPR

Standard
Setting
τ=0

Corruption Training ROC
AUC

FPR
in %

TNR
in %

Err
in %

τ
Err

in %

scale

Normal 0.84 89.5 10.5 0.7 0.98 3.1
AT-50% 0.86 78.5 21.5 0.1 1.00 3.0
AT-100% 0.80 82.1 17.9 0.4 1.00 3.0
CCAT 0.75 96.7 3.3 0.8 0.85 2.0
MSD 0.84 64.4 35.6 8.1 0.51 18.1
TRADES 0.82 84.4 15.6 0.3 0.92 2.9

shear

Normal 0.60 97.6 2.4 0.2 0.98 0.8
AT-50% 0.56 95.1 4.9 0.1 1.00 0.9
AT-100% 0.55 94.8 5.2 0.1 1.00 0.9
CCAT 0.98 27.4 72.6 0.0 0.85 1.1
MSD 0.56 95.9 4.1 1.9 0.51 3.2
TRADES 0.61 94.8 5.2 0.3 0.92 1.4

shot noise

Normal 0.74 93.0 7.0 1.4 0.98 3.6
AT-50% 0.62 91.3 8.7 0.2 1.00 1.9
AT-100% 0.57 92.6 7.4 0.2 1.00 1.8
CCAT 0.96 61.2 38.8 0.1 0.85 2.3
MSD 0.59 95.2 4.8 0.9 0.51 2.4
TRADES 0.65 94.9 5.1 0.2 0.92 1.4

spatter

Normal 0.85 72.8 27.2 18.9 0.98 28.1
AT-50% 0.65 88.3 11.7 0.6 1.00 3.6
AT-100% 0.61 90.3 9.7 0.4 1.00 2.7
CCAT 1.00 0.0 100.0 0.0 0.85 29.7
MSD 0.56 95.6 4.4 1.2 0.51 2.6
TRADES 0.63 90.4 9.6 0.7 0.92 3.3

stripe

Normal 0.92 61.1 38.9 69.6 0.98 70.2
AT-50% 0.98 12.2 87.8 83.8 1.00 81.3
AT-100% 0.99 12.4 87.6 88.2 1.00 87.4
CCAT 1.00 0.0 100.0 0.0 0.85 78.0
MSD 0.90 55.8 44.2 1.1 0.51 10.4
TRADES 0.88 72.9 27.1 0.6 0.92 5.9

translate

Normal 0.72 95.2 4.8 0.3 0.98 1.6
AT-50% 0.80 74.6 25.4 0.2 1.00 4.0
AT-100% 0.79 72.4 27.6 0.2 1.00 4.2
CCAT 0.84 95.3 4.7 0.3 0.85 1.4
MSD 0.88 59.3 40.7 44.7 0.51 55.2
TRADES 0.94 42.3 57.7 6.3 0.92 28.1

zigzag

Normal 0.85 74.5 25.5 16.3 0.98 24.8
AT-50% 0.87 53.6 46.4 10.9 1.00 24.9
AT-100% 0.87 48.3 51.7 10.1 1.00 25.8
CCAT 0.99 25.6 74.4 9.8 0.85 18.6
MSD 0.70 83.5 16.5 9.7 0.51 15.8
TRADES 0.76 75.2 24.8 4.9 0.92 13.8

Table 19: Per-Corruptions Results on MNIST-C, PART II. Continued results of Tab. 18 including results on MNIST-C
focusing on individual corruptions. textttmean are the averaged results over all corruptions. We report ROC AUC, FPR and
the true negative rate (TNR) in addition to the thresholded and unthresholded Err on the corrupted examples.
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CIFAR10-C: Supplementary Results for Corruption

Detection Setting
τ@99%TPR

Standard
Setting
τ=0

Corruption Training ROC
AUC

FPR
in %

TNR
in %

Err
in %

τ
Err

in %

all

Normal 0.57 97.1 2.9 12.2 0.59 13.7
AT-50% 0.53 96.2 3.8 16.2 0.35 18.1
AT-100% 0.53 97.2 2.8 19.6 0.29 20.9
CCAT 0.66 72.1 27.9 10.4 0.40 27.2
MSD 0.53 98.2 1.8 19.2 0.24 20.2
TRADES 0.53 95.8 4.2 15.0 0.30 17.3
AT-Madry 0.53 96.3 3.7 12.8 0.29 14.7

mean

Normal 0.57 97.1 2.9 12.3 0.6 13.7
AT-50% 0.53 96.2 3.8 16.2 0.3 18.1
AT-100% 0.53 97.2 2.8 19.6 0.3 21.0
CCAT 0.66 72.1 27.9 8.5 0.4 27.2
MSD 0.53 98.2 1.8 19.3 0.2 20.2
TRADES 0.53 95.8 4.2 15.0 0.3 17.3
AT-Madry 0.53 96.3 3.7 12.9 0.3 14.7

brightness

Normal 0.50 98.1 1.9 7.5 0.59 8.4
AT-50% 0.50 97.0 3.0 14.9 0.35 16.5
AT-100% 0.50 97.9 2.1 18.2 0.29 19.2
CCAT 0.54 94.8 5.2 8.2 0.40 10.4
MSD 0.50 98.6 1.4 17.8 0.24 18.5
TRADES 0.49 96.8 3.2 13.1 0.30 14.9
AT-Madry 0.49 97.5 2.5 11.2 0.29 12.5

contrast

Normal 0.52 98.1 1.9 8.4 0.59 9.4
AT-50% 0.60 94.1 5.9 17.1 0.35 20.0
AT-100% 0.60 95.2 4.8 21.1 0.29 23.5
CCAT 0.55 96.6 3.4 10.3 0.40 11.9
MSD 0.60 97.3 2.7 22.2 0.24 23.5
TRADES 0.58 94.4 5.6 17.2 0.30 20.2
AT-Madry 0.58 94.6 5.4 13.5 0.29 16.3

defocus blur

Normal 0.50 98.1 1.9 7.4 0.59 8.4
AT-50% 0.51 96.8 3.2 15.5 0.35 17.2
AT-100% 0.51 97.7 2.3 18.6 0.29 19.7
CCAT 0.49 97.5 2.5 9.2 0.40 10.5
MSD 0.51 98.5 1.5 18.2 0.24 19.0
TRADES 0.51 96.3 3.7 13.7 0.30 15.7
AT-Madry 0.51 96.9 3.1 12.0 0.29 13.6

elastic transform

Normal 0.60 97.3 2.7 12.1 0.59 13.5
AT-50% 0.57 95.8 4.2 19.0 0.35 21.1
AT-100% 0.57 96.7 3.3 22.0 0.29 23.6
CCAT 0.54 96.5 3.5 13.2 0.40 14.9
MSD 0.57 98.0 2.0 21.0 0.24 22.2
TRADES 0.56 95.0 5.0 17.5 0.30 20.0
AT-Madry 0.58 96.0 4.0 15.5 0.29 17.6

fog

Normal 0.51 98.0 2.0 7.9 0.59 8.8
AT-50% 0.57 94.7 5.3 15.7 0.35 18.3
AT-100% 0.57 96.1 3.9 19.5 0.29 21.5
CCAT 0.55 96.0 4.0 9.0 0.40 11.1
MSD 0.57 97.5 2.5 19.7 0.24 21.0
TRADES 0.55 95.2 4.8 15.0 0.30 17.5
AT-Madry 0.55 95.3 4.7 12.2 0.29 14.7

frost

Normal 0.57 97.2 2.8 11.5 0.59 12.8
AT-50% 0.53 95.9 4.1 16.0 0.35 18.0
AT-100% 0.53 96.9 3.1 20.1 0.29 21.6
CCAT 0.65 88.1 11.9 9.0 0.40 12.5
MSD 0.52 98.2 1.8 20.6 0.24 21.4
TRADES 0.51 96.0 4.0 14.7 0.30 16.8
AT-Madry 0.51 96.7 3.3 12.1 0.29 13.6

gaussian blur

Normal 0.50 98.0 2.0 7.4 0.59 8.4
AT-50% 0.51 96.8 3.2 15.5 0.35 17.1
AT-100% 0.51 97.7 2.3 18.6 0.29 19.7
CCAT 0.49 97.4 2.6 9.2 0.40 10.4
MSD 0.51 98.5 1.5 18.1 0.24 19.0
TRADES 0.51 96.3 3.7 13.7 0.30 15.7
AT-Madry 0.51 96.9 3.1 12.0 0.29 13.5

gaussian noise

Normal 0.62 96.2 3.8 15.7 0.59 17.7
AT-50% 0.51 96.8 3.2 15.5 0.35 17.0
AT-100% 0.51 97.7 2.3 18.6 0.29 19.8
CCAT 1.00 0.0 100.0 0.0 0.40 84.9
MSD 0.51 98.5 1.5 18.6 0.24 19.3
TRADES 0.52 96.0 4.0 14.3 0.30 16.5
AT-Madry 0.52 96.7 3.3 12.2 0.29 13.9

glass blur

Normal 0.76 92.5 7.5 40.8 0.59 43.1
AT-50% 0.58 95.4 4.6 18.0 0.35 20.2
AT-100% 0.56 97.2 2.8 21.1 0.29 22.4
CCAT 0.93 31.1 68.9 14.7 0.40 31.8
MSD 0.56 98.1 1.9 21.0 0.24 22.0
TRADES 0.56 95.1 4.9 17.6 0.30 20.1
AT-Madry 0.58 95.5 4.5 15.4 0.29 17.6

Table 20: Per-Corruptions Results on Cifar10-C, PART I. Results on Cifar10-C focusing on individual corruptions (first
column); textttmean are the averaged results over all corruptions. We report ROC AUC, FPR and the true negative rate
(TNR) in addition to the thresholded and unthresholded Err on the corrupted examples. The table is continued in Tab. 21.
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CIFAR10-C: Supplementary Results for Corruption

Detection Setting
τ@99%TPR

Standard
Setting
τ=0

Corruption Training ROC
AUC

FPR
in %

TNR
in %

Err
in %

τ
Err

in %

impulse noise

Normal 0.59 97.0 3.0 13.1 0.59 14.5
AT-50% 0.53 96.4 3.6 16.4 0.35 17.9
AT-100% 0.52 97.6 2.4 19.8 0.29 21.1
CCAT 1.00 0.1 99.9 0.0 0.40 61.0
MSD 0.51 98.4 1.6 18.3 0.24 19.2
TRADES 0.54 94.9 5.1 15.7 0.30 18.4
AT-Madry 0.53 96.1 3.9 13.3 0.29 15.3

jpeg compression

Normal 0.59 96.9 3.1 12.3 0.59 13.7
AT-50% 0.51 96.8 3.2 15.5 0.35 17.0
AT-100% 0.51 97.6 2.4 18.9 0.29 20.2
CCAT 0.59 93.3 6.7 9.3 0.40 12.1
MSD 0.51 98.3 1.7 18.3 0.24 19.3
TRADES 0.51 96.3 3.7 14.4 0.30 16.6
AT-Madry 0.52 96.5 3.5 12.6 0.29 14.4

motion blur

Normal 0.58 97.3 2.7 10.9 0.59 12.2
AT-50% 0.55 95.9 4.1 16.8 0.35 18.9
AT-100% 0.54 97.1 2.9 19.9 0.29 21.3
CCAT 0.52 96.5 3.5 11.9 0.40 13.6
MSD 0.54 98.1 1.9 19.7 0.24 20.7
TRADES 0.54 95.8 4.2 15.7 0.30 17.9
AT-Madry 0.55 95.9 4.1 13.3 0.29 15.6

pixelate

Normal 0.54 97.6 2.4 9.7 0.59 10.9
AT-50% 0.51 96.7 3.3 15.3 0.35 17.0
AT-100% 0.51 97.8 2.2 18.6 0.29 19.7
CCAT 0.52 97.0 3.0 9.2 0.40 10.8
MSD 0.51 98.4 1.6 18.2 0.24 19.1
TRADES 0.51 96.4 3.6 14.0 0.30 16.0
AT-Madry 0.51 97.1 2.9 12.1 0.29 13.6

saturate

Normal 0.55 97.5 2.5 10.0 0.59 11.3
AT-50% 0.55 95.3 4.7 18.2 0.35 20.5
AT-100% 0.54 96.0 4.0 21.3 0.29 23.3
CCAT 0.48 97.6 2.4 11.8 0.40 13.0
MSD 0.55 97.3 2.7 20.9 0.24 22.1
TRADES 0.53 95.0 5.0 15.6 0.30 18.2
AT-Madry 0.54 95.2 4.8 14.2 0.29 16.4

shot noise

Normal 0.58 97.0 3.0 12.1 0.59 13.7
AT-50% 0.51 97.1 2.9 15.4 0.35 16.7
AT-100% 0.50 97.7 2.3 18.5 0.29 19.6
CCAT 1.00 0.0 100.0 0.0 0.40 84.5
MSD 0.51 98.5 1.5 18.1 0.24 18.9
TRADES 0.51 96.2 3.8 13.7 0.30 15.8
AT-Madry 0.51 97.1 2.9 11.8 0.29 13.4

snow

Normal 0.57 97.3 2.7 12.1 0.59 13.5
AT-50% 0.51 96.7 3.3 15.3 0.35 17.0
AT-100% 0.51 97.5 2.5 18.8 0.29 20.1
CCAT 0.58 95.6 4.4 11.2 0.40 13.3
MSD 0.51 98.4 1.6 18.7 0.24 19.6
TRADES 0.50 96.3 3.7 14.1 0.30 16.1
AT-Madry 0.51 97.0 3.0 12.3 0.29 13.8

spatter

Normal 0.54 97.5 2.5 9.4 0.59 10.6
AT-50% 0.51 96.8 3.2 15.5 0.35 17.2
AT-100% 0.51 97.6 2.4 18.5 0.29 19.8
CCAT 0.58 95.2 4.8 9.3 0.40 11.6
MSD 0.51 98.3 1.7 18.0 0.24 18.8
TRADES 0.51 96.0 4.0 14.2 0.30 16.4
AT-Madry 0.51 96.7 3.3 12.3 0.29 13.9

speckle noise

Normal 0.57 97.0 3.0 12.4 0.59 13.8
AT-50% 0.51 97.1 2.9 15.2 0.35 16.7
AT-100% 0.51 97.7 2.3 18.4 0.29 19.5
CCAT 1.00 0.0 100.0 0.0 0.40 83.0
MSD 0.51 98.4 1.6 17.9 0.24 18.8
TRADES 0.51 96.4 3.6 13.8 0.30 15.9
AT-Madry 0.51 96.9 3.1 12.0 0.29 13.4

zoom blur

Normal 0.61 96.7 3.3 12.9 0.59 14.6
AT-50% 0.56 95.7 4.3 17.2 0.35 19.2
AT-100% 0.56 97.0 3.0 21.1 0.29 22.4
CCAT 0.52 97.1 2.9 13.9 0.40 15.6
MSD 0.56 98.0 2.0 20.5 0.24 21.5
TRADES 0.55 95.4 4.6 17.0 0.30 19.2
AT-Madry 0.56 95.7 4.3 14.3 0.29 16.4

Table 21: Per-Corruptions Results on Cifar10-C, PART II Continued results of Tab. 20 including results on Cifar10-C
focusing on individual corruptions. textttmean are the averaged results over all corruptions. We report ROC AUC, FPR and
the true negative rate (TNR) in addition to the thresholded and unthresholded Err on the corrupted examples.
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