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Abstract
We propose learning discrete structured represen-
tations from unlabeled data by maximizing the
mutual information between a structured latent
variable and a target variable. Calculating mutual
information is intractable in this setting. Our key
technical contribution is an adversarial objective
that can be used to tractably estimate mutual in-
formation assuming only the feasibility of cross
entropy calculation. We develop a concrete real-
ization of this general formulation with Markov
distributions over binary encodings. We report
critical and unexpected findings on practical as-
pects of the objective such as the choice of varia-
tional priors. We apply our model on document
hashing and show that it outperforms current best
baselines based on discrete and vector quantized
variational autoencoders. It also yields highly
compressed interpretable representations.

1. Introduction
Unsupervised learning of discrete representations is ap-
pealing because they correspond to natural symbolic rep-
resentations in many domains (e.g., phonemes in speech
signals, topics in text, and objects in images). However,
working with discrete variables comes with technical chal-
lenges such as non-differentiability and nontrivial combina-
torial optimization. Standard methods approach the problem
within the framework of variational autoencoding (Kingma
& Welling, 2014; Rezende et al., 2014) and bypass these
challenges by adopting some form of gradient approxima-
tion and possibly strong independence assumptions (Bengio
et al., 2013; van den Oord et al., 2017).

In this paper we are instead interested in a promising al-
ternative framework based on maximal mutual information
(MMI). Unlike autoencoding, MMI estimates a distribution
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over latent variables without modeling raw signals by max-
imizing the mutual information between the latent and a
target variable (Brown et al., 1992; Bell & Sejnowski, 1995;
Tishby et al., 1999). It is well motivated as a principled
approach to learning representations that retain only predic-
tive information and drop noise. Its neural extensions have
recently been quite successful in learning useful continuous
representations across domains (Oord et al., 2018; Belghazi
et al., 2018; Hjelm et al., 2019; Bachman et al., 2019).

We depart from these existing works on MMI in two impor-
tant ways. First, we learn discrete structured representations.
There are previous works on learning discrete representa-
tions with neural MMI (McAllester, 2018; Stratos, 2019),
but they only consider unstructured representations which
can transmit at most the log of the number of labels bits
of information. Breaking the log bottleneck in the discrete
regime requires making encodings structured, but it also
makes exact computation intractable. Thus the feasibility
of optimizing mutual information effectively in this setting
remains unclear. We develop a tractable formulation that
only requires tractable cross entropy by a combination of
mild structural assumptions and an appropriate loss function
(see below).

Second, we consider a new mutual information estimator
based on the difference of entropies for learning represen-
tations. This is a crucial departure from existing works
that optimize variational lower bounds (Poole et al., 2019).
Estimators of a lower bound on mutual information have
been shown to suffer fundamental limitations (McAllester &
Stratos, 2020), suggesting a need to investigate alternative
estimators. Our estimator is neither a lower bound nor an
upper bound, yet it can be optimized adversarially as in
generative adversarial networks (GANs) (Goodfellow et al.,
2014). We show for the first time that such adversarial
optimization of mutual information is a viable option for
learning meaningful representations.

Our proposed discrete structured MMI is novel and largely
uncharted in the literature. An important contribution of
this paper is charting practical considerations for this alien
approach by developing a concrete realization based on a
structured model over binary encodings. More specifically,
the model encodes an observation into a zero-one vector
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of length m, resulting in 2m possible encodings. We show
how mutual information can be estimated efficiently by
adversarial dynamic programming with controllable Markov
assumptions. One critical and unexpected finding is that
the expressiveness of a variational prior needs to be strictly
greater than that of the model (i.e., it has to be higher-order
Markovian).

To demonstrate the utility of our model in a real-world
problem, we apply it to unsupervised document hashing
(Dong et al., 2019; Shen et al., 2018; Chaidaroon et al.,
2018). The task is to compress an article into a drastically
smaller discrete encoding that preserves semantics. Our
model outperforms current state-of-the-art baselines based
on discrete VAEs (Kingma & Welling, 2014; Maddison
et al., 2017; Jang et al., 2017) and VQ-VAEs (van den Oord
et al., 2017) with Bernoulli priors. We additionally design a
predictive version of document hashing in which the model
is tasked with encoding a future article with the knowledge
of a past article. We find that our model achieves favor-
able performance with highly compressed and interpretable
representations.

2. Related Work
Many successful approaches to unsupervised representation
learning are based on density estimation. For instance, it is
now very common in natural language processing to make
use of continuous representations that are learned in the
process of modeling a conditional distribution pY |X , such
as the conditional distribution of a word Y given a context
window X (Mikolov et al., 2013; Peters et al., 2018; Devlin
et al., 2019). In this case the input pair (X,Y ) is easily
sampled from unlabeled data, by masking an observed word.
There is also much work that identifies representations, often
continuous, with the latent variables in an unconditional
density model of Y (Kingma & Welling, 2014; Rezende
et al., 2014; Higgins et al., 2017).

Learning representations through density estimation, how-
ever, suffers from certain limitations. First, it may be unnec-
essary to fully model the density of noisy, raw data when
we are only interested in learning representations. Second,
many standard approaches to learning discrete-valued latent
representations in the context of density estimation require
the use of either biased gradient estimators (Bengio et al.,
2013; van den Oord et al., 2017) or high variance ones (Mnih
& Gregor, 2014; Mnih & Rezende, 2016).

Maximal mutual information (MMI) is a refreshingly dif-
ferent approach to unsupervised representation learning in
which we estimate a conditional distribution over latent rep-
resentations by maximizing mutual information under these
distributions. In contrast with density estimation, there is no
issue of modeling noise since the model never estimates a

distribution over raw signals (i.e., there is no decoder). The
mutual information objective has been shown to produce
state-of-the-art representations of images, speech, and text
(Bachman et al., 2019; Oord et al., 2018).

The focus with MMI so far has been largely limited to learn-
ing continuous representations. Existing works on learning
discrete representations with MMI only consider unstruc-
tured one-of-m-labels representations (McAllester, 2018;
Stratos, 2019) due to computational reasons. Our main con-
tribution is a tractable formulation for discrete structured
MMI. This involves an adversarial objective reminiscent
of GANs (Goodfellow et al., 2014) and radically different
from existing MMI objectives based on variational lower
bounds of mutual information (Poole et al., 2019). Other
than tractability reasons, the choice of the objective can be
theoretically motivated as avoiding statistical limitations of
estimating lower bounds on mutual information (McAllester
& Stratos, 2020).

3. Discrete Structured MMI
Let pXY denote an unknown but samplable joint distribution
over raw signals (X,Y ). We assume discrete (X,Y ) for
simplicity and relevance to our experimental setting (doc-
ument hashing), but the formulation can be easily adapted
to the continuous case. We introduce an encoder pψZ|Y that
defines a conditional distribution over a discrete latent vari-
able Z representing the encoding of Y and aim to maximize
Iψ(X,Z): the mutual information between X and Z under
pXY and pψZ|Y . By the data processing inequality, the ob-
jective is a lower bound on I(X,Y ) and can be viewed as
distilling the predictive information of Y about X into Z.

This formulation alone is meaningless since it admits the
trivial solution Z = Y . In order to achieve compression,
there are various options. In the information bottleneck
method (Tishby et al., 1999), we additionally regularize
the information rate of Z by simultaneously minimizing
Iψ(Y,Z). Here we advocate a more direct approach by
giving an explicit budget Hmax on the entropy of Z.

max
ψ: Hψ(Z)≤Hmax

Iψ(X,Z)

Equivalently, we can maximize Iψ(X,Z) with a finite en-
coding space Z such that |Z| ≤ 2Hmax . Even with small Z
the objective is intractable because it involves marginaliza-
tion over Y . Using that Iψ(X,Z) = Hψ(Z)−Hψ(Z|X),
we introduce a variational model qφZ|X and optimize

max
ψ,φ

Hψ(Z)−H+
ψ,φ(Z|X) (1)

where H+
ψ,φ(Z|X) denotes the cross entropy between pψZ|X

(i.e., the distribution over Z given X defined under pψZ|Y
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and pXY ) and qφZ|X . By the usual property of cross entropy,
H+
ψ,φ(Z|X) is an upper bound on Hψ(Z|X), hence the

objective (1) is a lower bound on Iψ(X,Z).

Unfortunately, the applicability of this variational lower
bound is critically limited to settings in which the entropy of
Z is tractable (McAllester, 2018; Stratos, 2019) or constant
with respect to learnable parameters (Chen et al., 2016;
Alemi et al., 2017). When Z is small, Hψ(Z) can be easily
estimated from N samples (x1, y1) . . . (xN , yN ) ∼ pXY as

Ĥψ(Z) =
∑

z∈Z

(∑
l p
ψ
Z|Y (z|yl)
N

)
log

(
N

∑
l p
ψ
Z|Y (z|yl)

)

(2)

But this explicit calculation is clearly infeasible for large
Z . Furthermore, the log bottleneck on the budget Hmax ≤
log |Z| then implies that it is infeasible to achieve a large
information rate using this naive formulation (e.g., even if
we specify |Z| to be a trillion we have Hmax ≤ 40).

3.1. Tractable Formulation

To allow for large Hmax, we propose to make Z structured.
A simplest example of structured Z is a binary vector of
length m which yields |Z| = 2m so that Hmax can be as
large as m. More generally, Z can be any structure whose
size is exponential in some controllable integer m.

3.1.1. TRACTABLE CROSS ENTROPY

The first key ingredient in deriving a tractable formulation
is the tractability of estimating the cross entropy between
pψZ|X and qφZ|X from samples.

Assumption 3.1. The cross entropy H+
ψ,φ(Z|X) between

pψZ|X and qφZ|X estimated from N iid samples of (X,Y )

Ĥ+
ψ,φ(Z|X) = − 1

N

N∑

l=1

(∑

z∈Z
pψZ|Y (z|yl) log qφZ|X(z|xl)

)

can be computed in time polynomial in m where |Z| =
O(2m).

There is a class of structured probabilistic models with
standard conditional independence assumptions such that
Assumption 3.1 holds. For instance, in the case of Z ∈
{0, 1}m, we may impose Markov assumptions and define
(with the convention zi = 0 for i < 1)

pψZ|Y (z|y) =

m∏

i=1

pψZi|Y Z<i(zi|y, i, zi−o:i−1)

qφZ|X(z|x) =

m∏

i=1

qφZi|XZ<i(zi|x, i, zi−h:i−1)

Algorithm 1 CrossEntropy

Input: p(zi|i, zi−o:i−1) for zi−o:i ∈ {0, 1}o+1 and i ∈
[m]; q(zi|i, zi−o′:i−1) for zi−o′:i ∈ {0, 1}o

′+1 and i ∈
[m] where o′ ≥ o
Subroutine: Forward(p) that computes π in O(m2o)
time such that π(zi−o:i−1|i) is the marginalized probabil-
ity of z̄ ∈ {0, 1}i−1 ending in zi−o:i−1 under p (given in
the supplementary material)
Output: Cross entropy between p and q

H(p, q) = −
∑

z∈{0,1}m
p(z) log q(z)

Runtime: O(m2o
′
)

Forward computation: π ← Forward(p)

Marginals: For i = 1 . . .m, for zi−o′:i ∈ {0, 1}o
′+1,

µ(zi−o′:i|i)← π(zi−o′:i−o′+o−1|i− o′ + o)

×




i∏

j=i−o′+o
p(zj |j, zj−o:j−1)




where we overwrite π(zi−o′:i−o′+o−1|i − o′ + o) =
p(zi−o′ |i− o′) if o = 0
Cross entropy: Set H(p, q) as the following scalar

−
m∑

i=1

∑

zi−o′:i∈{0,1}o
′+1

µ(zi−o′:i|i) log q(zi|i, zi−o′:i−1)

where zi:j = (zi . . . zj) and o ≤ h are the Markov orders of
pψZ|Y and qφZ|X . It can be easily verified that the estimate of
H+
ψ,φ(Z|X) based on a single sample (x, y) ∼ pXY is

−
m∑

i=1

∑

zi−h:i

µ(zi−h:i|i, y) log qφZi|XZ<i(zi|x, i, zi−h:i−1)

where µ(zi−h:i|i, y) is the marginal probability of the
length-(h + 1) sequence zi−h:i ∈ {0, 1}h+1 ending at po-
sition i under the conditional distribution pψZ|Y (·|y). These
marginals can be computed by applying a variant of the
forward algorithm (Rabiner, 1989) (see the supplementary
material). We give a general algorithm that computes the
cross entropy between any distributions over Z = {0, 1}m
with Markov orders o ≤ o′ in O(m2o

′
) time in Algorithm 1.

While we focus on the choice Z ∈ {0, 1}m for concrete-
ness, we emphasize that similar structural assumptions can
be made to consider others. For instance, the conditional en-
tropy of tree-structured Z can be computed using a variant
of the inside algorithm (Hwa, 2000). We leave exploring
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other types of structure as future work.

3.1.2. ADVERSARIAL OPTIMIZATION

Assumption 3.1 allows us to estimate the second term (cross
entropy) of the objective (1) Hψ(Z) −H+

ψ,φ(Z|X), but it
is still insufficient for estimating the objective since the
first term (entropy) remains intractable. Assumption 3.1
only imposes conditional independence: conditioning on
the input y, the probability of the i-th value of z is indepen-
dent of z<i−o under pψZ|Y . This independence breaks for

the unconditional distribution pψZ(z) = Ey∼pY [pψZ|Y (z|y)].
Consequently the entropy term Hψ(Z) does not decompose.
Note that while the conditional entropy Hψ(Z|Y ) remains
tractable, we cannot use it as a meaningful approximation
of Hψ(Z) since the error is exactly Iψ(Y,Z) which is zero
iff Z is independent of Y (i.e., vacuous encoding).

Thus we propose to introduce an additional variational
model qθZ to estimate the intractable distribution pψZ . We
would like to make the resulting variational approximation
a lower bound on Hψ(Z) so that the objective remains max-
imization over all models. Unfortunately, when entropy
is large (which is our setting) meaningful lower bounds
are impossible (McAllester & Stratos, 2020). This moti-
vates us to again consider the cross-entropy upper bound
H+
ψ,θ(Z) ≥ Hψ(Z) with the following assumption.

Assumption 3.2. The cross entropy H+
ψ,θ(Z) between pψZ

and qθZ estimated from N iid samples of Y

Ĥ+
ψ,θ(Z) = − 1

N

N∑

l=1

(∑

z∈Z
pψZ|Y (z|yl) log qθZ(z)

)

can be computed in time polynomial in m where |Z| =
O(2m).

In the binary vector setting Z ∈ {0, 1}m, we can define qθZ
to be a Markov model of order r ≥ o

qθZ(z) =

m∏

i=1

qθZi|Z<i(zi|i, zi−r:i−1)

Then Algorithm 1 can be used to estimate H+
ψ,θ(Z) in

O(m2r) time.

This gives our final objective

max
ψ,φ

min
θ

H+
ψ,θ(Z)−H+

ψ,φ(Z|X) (3)

which is tractable by Assumption 3.1 and 3.2. Note that for
any choice of ψ, exact optimization over φ and θ recovers
the original objective Iψ(X,Z). It can be interpreted as
a simultaneously collaborative and adversarial game. The
second term (cross entropy minimization) encourages ψ and
φ to agree on the encoding Z of Y . The first term (entropy

Algorithm 2 AdversarialMMI

Input: Models pψZ|Y , qφZ|X , qθZ satisfying Assumption 3.1
and 3.2; samplable pXY ; gradient update function Step;
validation task T
Hyperparameters: Initialization range α, batch size N ,
number of adversarial gradient steps G, adversarial learn-
ing rate η′, learning rate η, entropy weight β

ψ, φ, θ ← Unif(−α, α)
repeat

for S ∼ pNXY do
For G times: θ ← Step

(
Ĥ+
ψ,θ(Z), θ, η′

)

ψ, φ← Step
(
Ĥ+
ψ,φ(Z|X)− βĤ+

ψ,θ(Z), {ψ, φ} , η
)

end for
until T (ψ, φ, θ) stops improving

maximization) encourages ψ to diversify its prediction of Z
but also use information from Y to thwart the opponent θ
who does not have access to Y .

A notable aspect of the objective is that it is neither an upper
bound nor a lower bound on Iψ(X,Z); we cannot guarantee
that H+

ψ,θ(Z)−H+
ψ,φ(Z|X) estimated from N samples is

larger or smaller than Iψ(X,Z). While we lack guarantees,
theoretical and empirical evidence that this bypasses lim-
itations of lower bounds on mutual information has been
shown in McAllester & Stratos (2020).

Inference At test time, given input y we calculate

z∗ ∈ arg max
z∈Z

pψZ|Y (z|y)

and use z∗ as a discrete structured representation of y. In
the current setting in which pψZ|Y is an order-o Markov dis-
tribution over Z = {0, 1}m, we can calculate z∗ in O(m2o)
time using a variant of the Viterbi algorithm (Viterbi, 1967).

3.2. Practical Issues

We give details of the proposed adversarial MMI training
procedure in Algorithm 2. As input we assume model defi-
nitions pψZ|Y , qφZ|X , and qθZ that satisfy Assumption 3.1 and
3.2, samplable pXY , gradient update function Step (we use
Adam for all our experiments (Kingma & Ba, 2014)), and a
validation task T . The validation task evaluates the quality
of the representation predicted by pψZ|Y and is particularly
needed since the running estimate of the adversarial objec-
tive (3) may not reflect actual progress. We delineate certain
practical issues that are important in making Algorithm 2
effective.

Expressive variational prior We find that it is critical to
make the variational prior qθZ strictly more expressive than
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the posterior pψZ|Y . That is, there exist distributions over Z
that can be modeled by qθZ but not by pψZ|Y (conditioning on
any y). In the context of Markov models over binary vectors
Z ∈ {0, 1}m, this means the Markov order r of qθZ is strictly
greater than the Markov order o of pψZ|Y (Algorithm 1 al-
lows for any r ≥ o). Recall that Z1 . . . Zm are conditionally
independent under pψZ|Y but not independent under pψZ (Sec-

tion 3.1.2). Thus we must model pψZ using a distribution qθZ
that is strictly more powerful than pψZ|Y . The benefit of this
explicit joint entropy maximization is suggested in exper-
iments later in which we show that our approach is more
effective at learning representations than discrete VAEs or
VQ-VAEs (which do not explicitly maximize entropy) as m
becomes larger.

We also find it helpful to overparameterize qθZ . We use a
feedforward network with� m2r parameters and a tunable
number of ReLU layers to define the distribution.

Aggressive inner-loop optimization The adversarial ob-
jective (3) reduces to the non-adversarial objective (1) if
the inner minimization over θ is solved exactly. We find
it important to mimic this by taking multiple (G) gradient
steps for θ with large learning rate η′ before taking a gra-
dient step for {ψ, φ}. Aggressive inner-loop optimization
has been shown helpful in other contexts such as VAEs (He
et al., 2019). Note that θ is still carried across batches and
not learned from scratch at every batch.

Entropy weight Finally, we find it useful to introduce
a tunable weight β ≥ 1 for the entropy term, akin to the
weight for KL divergence in β-VAEs (Higgins et al., 2017).
Note that optimizing this weighted objective is equivalent
to optimizing Iψ(X,Z) + (β − 1)Hψ(Z). The weight can
be used to determine a task-specific trade-off between pre-
dictiveness and diversity in Z.

4. Experiments
We now study empirical aspects of our proposed adver-
sarial MMI approach (henceforth AMMI) with extensive
experiments.1 We consider unsupervised document hashing
(Chaidaroon et al., 2018) as a main testbed for evaluating
the quality of learned representations. The task is to com-
press an article into a drastically smaller discrete encoding
that preserves semantics and formulated as an autoencoding
problem. To study methods in a predictive setting, we also
develop a variant of this task in which the representation of
an article is learned to be predictive of the encoding of a
related article.

1Code: https://github.com/karlstratos/ammi

4.1. Unsupervised Document Hashing

Let Y be a random variable corresponding to a document.
The goal is to learn a document encoder qZ|Y that defines
a conditional distribution over binary hashes Z ∈ {0, 1}m.
The quality of document encodings is evaluated by the aver-
age top-100 precision. Specifically, given a document at test
time, we retrieve 100 nearest neighbors from the training set
under the encoding measured by the Hamming distance and
check how many of the neighbors have overlapping topic
labels (thus we assume annotation only for evaluation).

In the literature this is typically approached as an autoen-
coding problem in which qZ|Y is estimated by maximizing
the evidence lower bound (ELBO) on the marginalized log
likelihood of training documents

max
qZ|Y ,pY |Z

E
y∼pY
z∼qZ|Y

[
log pY |Z(y|z)

]
−DKL

(
qZ|Y

∣∣∣∣pZ
)

(4)

where pZ is a fixed prior suitable for the task. For example,
the current state-of-the-art model (BMSH) defines pZ as a
mixture of Bernoulli distributions (Dong et al., 2019). Here
qZ|Y is treated as a variational model that estimates the
intractable posterior pZ|Y under the model pY Z(y, z) =
pY |Z(y|z)pZ(z).

In contrast, we propose to learn a document encoder pψZ|Y
by the following adversarial formulation of the mutual in-
formation between Y and Z:

max
ψ

min
θ

H+
ψ,θ(Z)−Hψ(Z|Y ) (5)

where qθZ is a variational model that estimates the intractable
prior pψZ under the model pψY Z(y, z) = pψZ|Y (z|y)pY (y).
This can be seen as a single-variable variant of the more
general objective (3) in which X = Y and φ is tied with ψ.
Note the absence of a decoder (Section 2).

4.1.1. MODELS

BMSH We follow the standard setting in BMSH for all
our models (Dong et al., 2019). The raw document repre-
sentation y is a high-dimensional TFIDF vector computed
from preprocessed corpora (TMC, NG20, and Reuters) pro-
vided by Chaidaroon et al. (2018). We aim to learn an
m-dimensional binary vector representation z ∈ {0, 1}m
where we vary the number of bits m = 16, 32, 64, 128. All
VAE-based models compute a continuous embedding z̃ by
feeding y through a feedforward layer (FF) and apply some
discretization operation on z̃ to obtain z. BMSH computes
z̃ = σ(FF(y)) ∈ Rm and samples z ∼ Bernoulli(z̃) from
which y is reconstructed.2 The ELBO objective (4) is opti-

2We refer to Dong et al. (2019) for details of the decoder and
the Bernoulli mixture prior since they are not needed for AMMI.

https://github.com/karlstratos/ammi
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mized by straight-through estimation (Bengio et al., 2013).3

DVQ We are interested in comparing AMMI to main-
stream discrete representation learning techniques. Thus we
additionally consider vector quantized VAEs (VQ-VAEs)
which substitute sampling with a nearest neighbor lookup
and are shown to be useful in many tasks (van den Oord
et al., 2017; Razavi et al., 2019). In particular, we adopt
the decomposed vector quantization (DVQ) proposed in
Kaiser et al. (2018). The model learns m codebooks
C1 . . . Cm ∈ R2×D where the row index in Ci corresponds
to zi ∈ {0, 1}. The encoder computes z̃ = FF(y) ∈ RmD
and quantizes the i-th segments in z̃ against Ci (implicitly
yielding z) from which the decoder reconstructs y. DVQ is
trained by minimizing the reconstruction loss and the vector
quantization loss. It can be seen as optimizing the ELBO
objective (4) with a uniform prior over Z and a point-mass
posterior qZ|Y .

AMMI Our model consists of an encoder pψZ|Y and a
variational prior qθZ , which are respectively parameterized
by order-o and order-r Markov models over {0, 1}m. The
encoder computes pψZ|Y (·|y) = σ(FF(y)) ∈ Rm2o which
gives the model’s probability of zi = 1 conditioning on each
value of zi−o:i−1 for every i ∈ [m]. Similarly, the prior
computes qθZ = σ(FF(Θ)) ∈ Rm2r where Θ ∈ Rm×H is a
learnable embedding dictionary with dimension H . We can
then use Algorithm 1 to calculate

Ĥ+
ψ,θ(Z) = CrossEntropy

(
pψZ|Y (·|y), qθZ

)

Ĥψ(Z|Y ) = CrossEntropy
(
pψZ|Y (·|y), pψZ|Y (·|y)

)

where in practice we use a batch of samples y1 . . . yN to
estimate these quantities. The algorithm can be batched
efficiently.

4.1.2. HYPERPARAMETER TUNING

All hyperparameters for AMMI are shown in Algorithm 2.
We perform random grid search on the validation por-
tion of each dataset. We find that an effective range
of values is: initialization α = 0.1, batch size N ∈
{16, 32, 64, 128}, adversarial step G ∈ {1, 2, 4}, adversar-
ial learning rate η′ ∈ {0.03, 0.01, 0.003, 0.001}, learning
rate η ∈ {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}, and en-
tropy weight β ∈ {1, 1.5, 2, 2.5, 3, 3.5}. We similarly per-
form random grid search on all hyperparameters of BMSH
and DVQ. We use an NVIDIA Quadro RTX 6000 with
24GB memory.

The Markov orders o and r of the encoder and the prior
are also controllable hyperparameters in AMMI. We find

3That is, the decoder receives (z − z̃).detach() + z̃ to back-
propagate gradients directly to z̃.
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Figure 1. Behavior of the model using different Markov orders r
for the variational prior qθZ ; we use m = 16 bits and o = 0 as the
Markov order of pψZ|Y . For each choice of r all hyperparameters
of the variational model are fully optimized. (a) shows the cross-
entropy upper bound estimated on a fixed batch of samples. (b)
shows the validation precision on Reuters. The blue line addition-
ally shows the result using o = 1. The gray line corresponds to
the setting in which we calculate the entropy by brute-force.

that setting o = 0 is sufficient for this task (i.e., bits are
independent conditioning on the document). But the choice
of r is crucial, as we show below.

4.1.3. IMPORTANCE OF THE MARKOV ORDER OF THE
VARIATIONAL PRIOR

We first examine the feasibility of variational approximation
of the prior. To this end, we consider the small-bit setting
m = 16 in which we can explicitly enumerate 216 values of
Z to estimate the entropy Hψ(Z) using equation (2). In this
case the objective becomes non-adversarial. We refer to this
model as BMMI (brute-force MMI) which only consists of
pψZ|Y trained by maxψHψ(Z)−Hψ(Z|Y ).

Figure 1 shows two experiments that illustrate the impor-
tance of the Markov order r of the variational prior qθZ . First,
we fix a BMMI with order o = 0 partially trained on Reuters
and a random batch of samples to calculate the empirical
entropy Ĥψ(Z) by brute-force. Then for each choice of
r = 0, 1, . . . , 13, we minimize the empirical cross entropy
Ĥ+
ψ,θ(Z) between pψZ|Y and qθZ over θ with full hyperpa-

rameter tuning. Figure 1(a) shows that we need r � o to
achieve a realistic estimate of the empirical entropy. The
necessary value of r clearly depends on pψZ|Y : r > 10 yields
an accurate estimate for the partially trained BMMI used in
this experiment.

Next, we examine the best achievable validation precision
on Reuters across different values of r. We perform full
hyperparameter tuning for BMMI (o = 0) and for AMMI
with r = 0, 1, . . . , 10. We see that the performance is poor
for r = o = 0, but it quickly becomes competitive as
r > 0 and even surpasses the performance of BMMI. We
hypothesize that the adversarial formulation has beneficial
regularization effects in addition to making the objective
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Table 1. Results on unsupervised document hashing. For each dataset we show test precisions of the top 100 retrieved documents using
{16, 32, 64, 128}-bit binary vector encoding. See the main text for task and model descriptions.

DATA TMC NG20 REUTERS AVG
16B 32B 64B 128B 16B 32B 64B 128B 16B 32B 64B 128B

BOW 50.86 9.22 57.62 39.23

LSH 43.93 45.14 45.53 47.73 5.97 6.66 7.70 9.49 32.15 38.62 46.67 51.94 31.79
S-RBM 51.08 51.66 51.90 51.37 6.04 5.33 6.23 6.42 57.40 61.54 61.77 64.52 39.61
SPH 60.55 62.81 61.43 58.91 32.00 37.09 31.96 27.16 63.40 65.13 62.90 60.45 51.98
STH 39.47 41.05 41.81 41.23 52.37 58.60 58.06 54.33 73.51 75.54 73.50 69.86 56.61
VDSH 68.53 71.08 44.10 58.47 39.04 43.27 17.31 5.22 71.65 77.53 74.56 73.18 53.66
NASH 65.73 69.21 65.48 59.98 51.08 56.71 50.71 46.64 76.24 79.93 78.12 75.59 64.62
GMSH 67.36 70.24 70.86 72.37 48.55 53.81 58.69 55.83 76.72 81.83 82.12 78.46 68.07
DVQ 71.47 73.27 75.17 76.24 47.23 54.45 58.77 62.10 79.57 83.43 83.73 86.27 70.98
BMSH 70.62 74.81 75.19 74.50 58.12 61.00 60.08 58.02 79.54 82.86 82.26 79.41 71.37

AMMI 70.96 74.16 75.22 76.27 55.18 59.56 63.98 66.18 81.73 84.46 85.06 86.02 73.23
BMMI 70.52 49.74 79.97

tractable for large m: we leave a deeper investigation of
this phenomenon as future work. We use r = 3 for all our
experiments.

4.1.4. RESULTS

Table 1 shows top-100 precisions on the test portion of each
dataset TMC, NG20, and Reuters usingm = 16, 32, 64, 128
bits. Baselines include locality sensitive hashing (LSH)
(Datar et al., 2004), stack restricted Boltzmann machines
(S-RBMs) (Hinton, 2012), spectral hashing (SpH) (Weiss
et al., 2009), self-taught hashing (STH) (Zhang et al., 2010),
variational deep semantic hashing (VDSH) (Chaidaroon
et al., 2018), and neural architecture for semantic hash-
ing (NASH) (Shen et al., 2018), as well as BMSH (Dong
et al., 2019) and DVQ described in Section 4.1.1. The naive
baseline BOW refers to the bag-of-words representation
BOW(y) ∈ {0, 1}|V | that indicates presence of words in
document y.4

We see that AMMI performs favorably to current state-of-
the-art methods, yielding the best average precision across
datasets and settings. In particular, the precision of AMMI
is significantly higher than the best previous result given by
BMSH when m is large. With 128 bits, AMMI achieves
76.27 vs 74.50, 66.18 vs 58.02, and 86.02 vs 79.41 on TMC,
NG20, and Reuters. We hypothesize that this is partly due to
the explicit entropy maximization in AMMI that considers
all bits jointly via dynamic programming. While this is
implicitly enforced in the mixture prior in BMSH, direct
entropy maximization seems to be more effective.

In the case of 16 bits, we also report precisions of BMMI

4The vocabulary size |V | is 20000, 9988, and 7164 for TMC,
NG20, and Reuters.

that estimates entropy exactly by brute-force (it is computa-
tionally intractable to train BMMI with larger than 16 bits).
We see that AMMI is again able to achieve better results
potentially due to regularization effects. Finally, we observe
that the newly proposed DVQ baseline is quite competitive
with BMSH and also achieves higher precision when m is
large; we suspect that the decomposed encoding allows the
model to make better use of multiple codebooks as reported
in Kaiser et al. (2018).

4.2. Predictive Document Hashing

Unsupervised document hashing only considers a single
variable Y and does not test the conditional formulation
Y |X . Hence we introduce a new task, predictive document
hashing, in which (X,Y ) represent distinct articles that
discuss the same event. It is clear that I(X,Y ) is large: the
large uncertainty of a random article is dramatically reduced
given a related article.

We construct such article pairs from the Who-Did-What
dataset (Onishi et al., 2016). We remove all overlapping
articles so that each article appears only once in the entire
training/validation/test data containing 104404/8928/7326
document pairs. We give more details of the dataset in
the supplementary material. Similarly as before, we use
20000-dimensional TFIDF representations as raw input and
consider the task of compressing them into m = 128 binary
bits. The quality of the binary encodings is measured by top-
100 matching precision: given a test article y, we check if
the correct corresponding article x is included in 100 nearest
neighbors of y under the encoding based on the Hamming
distance.
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Table 2. Qualitative analysis of AMMI document representations learned by predictive document hashing. For each considered document
(top row), we show documents with Hamming distance at least 1, 5, 10, 20, 50, and 90 under the representations to examine their semantic
differences.

Distance Document

0 O.J. Simpson lashed out at the family of the late Ronald Goldman, a day after they won the rights to Simpson’s canceled "If I Did It" book about the slayings of Goldman
1 News Corp. on Monday announced that it will cancel the release of a new book by former American football star O.J. Simpson and a related exclusive television interview
5 Phil Spector’s lawyers have asked the judge to tell jurors they must find the record producer either guilty or not guilty of murder with no option to find lesser offenses
10 Sen. Ted Stevens’ defense lawyer bore in on the prosecution’s chief witness on Tuesday, portraying him to a jury as someone who betrayed a longtime friend to protect his fortune.
20 Words that cannot be said on American television are not often uttered at the U.S. Supreme Court, at least not by high-priced lawyers and the justices themselves.
50 Cols 1-6: Sending a strong message that the faltering economy will be his top focus, President-elect Barack Obama on Friday urged Congress to pass an economic stimulus package
90 President Hu Jintao’s upcoming visits to Latin America and Greece would boost bilateral relations and deepen cooperation

0 Ukrainian President Leonid Kuchma had a meeting on Monday evening with Polish President Alexander Kwasniewski and Lithuanian President Valdas Adamkus
1 Radical Ukrainian opposition figure Yulia Timoshenko Wednesday ventured into the hostile eastern mining bastion of Prime Minister Viktor Yanukovich
5 Ukrainian President Viktor Yushchenko was forced into an emergency landing Thursday and seized the aircraft of his bitter political foe, Prime Minister Yulia Tymoshenko
10 On a clearing in this disputed city, where enemy homes were bulldozed after the conflict in August, Mayor Yuri M. Luzhkov promised this month to build a new neighborhood
20 Barack Obama is the "American Gorbachev" who will ultimately destroy the United States, militant Russian nationalist Vladimir Zhirinovsky said Tuesday.
50 Ministers from Pacific Rim nations warned Thursday that imposing trade barriers in reaction to the global economic downturn would only deepen the crisis.
90 We shall move the following graphics: US IRAQ QAEDA Graphic with portraits of Osama bin Laden and Colin Powell, examining US claims that the latest bin Laden tape reinforces

0 NASCAR has a new rivalry: Carl Edwards vs. Kyle Busch. Edwards called the latest installment payback and Busch promised that retribution will come down the road.
1 Penske Racing teammates Ryan Briscoe and Helio Castroneves filled the front-row Friday for Edmonton Indy, repeating their 1-2 finish in last week’s IndyCar race
5 Brazilian race-car driver Helio Castroneves upset Spice Girl Melanie Brown to capture the fifth "Dancing With the Stars" mirrorball trophy in the television dance competition.
10 Audi overcame the challenge of two Peugeot cars and wet racing conditions Sunday to win the 24 Hours of Le Mans for the fourth straight year.
20 The president of cycling’s governing body Monday insists the doping problems in his sport do not threaten its place in the Olympics.
50 Robert Pattinson, who stars as the vampire heartthrob Edward Cullen in the forthcoming movie "Twilight," stepped onto a riser at the King of Prussia Mall
90 Australian Prime Minister John Howard reshuffled his cabinet Tuesday, appointing Education Minister Brendan Nelson to the defence portfolio.

0 How did that Van Halen song go? “I found the simple life ain’t so simple ... ” The iconic Los Angeles metal band is set to be inducted Monday night into
8 The boys from Van Halen, most notably mercurial guitarist Eddie Van Halen, showed up as promised at a news conference Monday to announce their fall tour with original singer
20 The PG-13-rated thriller gave 20th Century Fox its first No. 1 launch in seven months. The opening-night crowd was heavily male and young, matching the video-game
50 Due to Wednesday night’s victory, a mathematician and avid Vasco soccer fan calculated on Thursday that the team’s chances of being dropped into the second division fell by
90 A top Iranian minister who admitted to faking his university degree will face a motion of no confidence on Tuesday on charges that he tried to bribe members of Parliament

Table 3. Results on predictive document hashing. For each model
we show the representation dimension, number of distinct codes
(i.e., clusters) induced on 208808 training documents, and top-100
precision on the test set.

Dim # Distinct Codes Precision

BOW 20000 208808 26.66
BMSH 128 208004 75.77
DVQ 128 208655 76.80

AMMI 128 153123 79.14

4.2.1. MODELS

AMMI now consists of a pair of encoders pψZ|Y and pφZ|X as
well as a variational prior qθZ , which are respectively param-
eterized by order-o, order-h, and order-r Markov models
over {0, 1}m. Based on our findings in the previous section
we use o = h = 0 and r = 3. We train the model with
Algorithm 2.

To compare with VAEs, we consider a conditional vari-
ant which optimizes the ELBO objective under the joint
distribution pXY Z(x, y, z) = pY (y)pZ|Y (z|y)pX|Z(x|z)
with an approximation of the true posterior qZ|Y (z|y) ≈
pZ|XY (z|x, y) which can be used as a document encoder. In
this setting, training for BMSH remains unchanged except
that the the model predicts X instead of Y for reconstruc-
tion and uses conditional prior pZ|Y in the KL regularization
term. The DVQ model likewise simply predicts X instead
of Y but loses its ELBO interpretation. We tune hyperpa-

rameters of all models similarly as before.

4.2.2. RESULTS AND QUALITATIVE ANALYSIS

Table 1 shows top-100 precisions on the test portion. We
see that AMMI again achieves the best performance in com-
parison to BMSH and DVQ. We also report the number of
distinct values of z induced on the 208808 training articles
(union of X and Y ). We see that AMMI learns the most
compact clustering which nonetheless generalizes best.

We conduct qualitative analysis of the document encodings
by examining articles with increasing Hamming distance
(i.e., semantic drift). Table 2 shows illustrative examples.
The article about the O.J. Simpson trial drifts to the Phil
Spector trial, the Ted Stevens trial, and eventually other
unrelated subjects in politics and economy. The article about
NASCAR drifts to other racing reports, cycling, movie stars
and politics.

5. Conclusions
We have presented AMMI, an approach to learning discrete
structured representations by adversarially maximizing mu-
tual information. It obviates the intractability of entropy
estimation by making mild structural assumptions that ap-
ply to a wide class of models and optimizing the difference
of cross-entropy upper bounds. We have derived a concrete
instance of the approach based on Markov models and iden-
tified important practical issues such as the expressiveness
of the variational prior. We have demonstrated its utility on
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unsupervised document hashing by outperforming current
best results. We have also proposed the predictive document
hashing task and showed that AMMI yields high-quality
semantic representations. Future work includes extending
AMMI to other structured models and extending it to cases
in which even cross entropy calculation is intractable.
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