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Abstract

Lagrangian methods are widely used algorithms

for constrained optimization problems, but their

learning dynamics exhibit oscillations and over-

shoot which, when applied to safe reinforcement

learning, leads to constraint-violating behavior

during agent training. We address this shortcom-

ing by proposing a novel Lagrange multiplier up-

date method that utilizes derivatives of the con-

straint function. We take a controls perspective,

wherein the traditional Lagrange multiplier up-

date behaves as integral control; our terms intro-

duce proportional and derivative control, achiev-

ing favorable learning dynamics through damp-

ing and predictive measures. We apply our PID

Lagrangian methods in deep RL, setting a new

state of the art in Safety Gym, a safe RL bench-

mark. Lastly, we introduce a new method to ease

controller tuning by providing invariance to the

relative numerical scales of reward and cost. Our

extensive experiments demonstrate improved per-

formance and hyperparameter robustness, while

our algorithms remain nearly as simple to derive

and implement as the traditional Lagrangian ap-

proach.

1. Introduction

Reinforcement learning has solved sequential decision tasks

of impressive difficulty by maximizing reward functions

through trial and error. Recent examples using deep learn-

ing range from robotic locomotion (Schulman et al., 2015;

Gu et al., 2016; Schulman et al., 2017; Levine et al., 2016)

to sophisticated video games (Mnih et al., 2013; Schulman

et al., 2017; OpenAI, 2018; Jaderberg et al., 2019). While

errors during training in these domains come without cost,

in some learning scenarios it is important to limit the rates of

hazardous outcomes. One example would be wear and tear
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on a robot’s components or its surroundings. It may not be

possible to impose such limits by prescribing constraints in

the action or state space directly; instead, hazard-avoiding

behavior must be learned. For this purpose, we use the

well-known framework of the constrained Markov decision

process (CMDP) (Altman, 1999), which limits the accumu-

lation of a “cost” signal which is analogous to the reward.

The optimal policy is one which maximizes the usual re-

turn while satisfying the cost constraint. In safe RL the

agent must avoid hazards not only at convergence, but also

throughout exploration and learning.

Lagrangian methods are a classic approach to solving con-

strained optimization problems. For example, the equality-

constrained problem over the real vector x:

min
x

f(x) s.t. g(x) = 0 (1)

is transformed into an unconstrained one by introduction

of a dual variable–the Lagrange multiplier, λ–to form the

Lagrangian: L(x, λ) = f(x)+λg(x), which is used to find

the solution as:

(x∗, λ∗) = argmax
λ

min
x

L(x, λ) (2)

Gradient-based algorithms iteratively update the primal and

dual variables:

−∇xL(x, λ) =−∇xf(x)− λ∇xg(x) (3)

∇λL(x, λ) = g(x) (4)

so that λ acts as a learned penalty coefficient in the objective,

leading eventually to a constraint-satisfying solution (see

e.g. Bertsekas (2014)). The Lagrangian multiplier method

is readily adapted to the constrained RL setting (Altman,

1998; Geibel & Wysotzki, 2011) and has become a popular

baseline in deep RL (Achiam et al., 2017; Chow et al., 2019)

for its simplicity and effectiveness.

Although they have been shown to converge to optimal,

constraint-satisfying policies (Tessler et al., 2018; Paternain

et al., 2019), a shortcoming of gradient Lagrangian methods

for safe RL is that intermediate iterates often violate con-

straints. Cost overshoot and oscillations are in fact inherent

to the learning dynamics (Platt & Barr, 1988; Wah et al.,

2000), and we witnessed numerous problematic cases in our

own experiments. Figure 1 (left) shows an example from a
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deep RL setting, where the cost and multiplier values oscil-

lated throughout training. Our key insight in relation to this

deficiency is that the traditional Lagrange multiplier update

in (4) amounts to integral control on the constraint. The

90-degree phase shift between the curves is characteristic

of ill-tuned integral controllers.

Our contribution is to expand the scope of possible Lagrange

multiplier update rules beyond (4), by interpreting the over-

all learning algorithm as a dynamical system. Specifically,

we employ the next simplest mechanisms, proportional and

derivative control, to λ, by adding terms corresponding to

derivatives of the constraint function into (4) (derivatives

with respect to learning iteration). To our knowledge, this

is the first time that an expanded update rule has been con-

sidered for a learned Lagrange multiplier. PID control is

an appealing enhancement, evidenced by the fact that it is

one of the most widely used and studied control techniques

(Åström & Hägglund, 2006). The result is a more respon-

sive safety mechanism, as demonstrated in Figure 1 (right),

where the cost oscillations have been damped, dramatically

reducing violations.
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Figure 1. Left: The traditional Lagrangian method exhibits oscilla-

tions with 90◦ phase shift between the constraint function and the

Lagrange multiplier, characteristic of integral control. Right: PID

control on the Lagrange multiplier damps oscillations and obeys

constraints. Environment: DOGGOBUTTON1, cost limit 200.

Our contributions in this paper are outlined as follows. First,

we provide further context through related works and pre-

liminary definitions. In Section 4, we propose modified

Lagrangian multiplier methods and analyze their benefits

in the learning dynamics. Next, in Section 5, we cast con-

strained RL as a dynamical system with the Lagrange multi-

plier as a control input, to which we apply PID control as

a new algorithm. In Section 6, we adapt a leading deep RL

algorithm, Proximal Policy Optimization (PPO) (Schulman

et al., 2017) with our methods and achieve state of the art

performance in the OpenAI Safety-Gym suite of environ-

ments (Ray et al., 2019). Finally, in Section 7 we introduce

another novel technique that makes tuning easier by provid-

ing invariance to the relative numerical scales of rewards and

costs, and we demonstrate it in a further set of experiments.

Our extensive empirical results show that our algorithms,

which are intuitive and simple to implement, improve cost

performance and promote hyperparameter robustness in a

deep RL setting.

2. Related Work

Constrained Deep RL. Adaptations of the Lagrange multi-

plier method to the actor-critic RL setting have been shown

to converge to the optimal, constraint-satisfying solution

under certain assumptions (Tessler et al., 2018). Conver-

gence proofs have relied upon updating the multiplier more

slowly than the policy parameters (Tessler et al., 2018; Pa-

ternain et al., 2019), implying many constraint-violating

policy iterations may occur before the penalty comes into

full effect.

Several recent works have aimed at improving constraint

satisfaction in RL over the Lagrangian method, but they

tend to incur added complexity. Achiam et al. (2017) in-

troduced Constrained Policy Optimization (CPO), a policy

search algorithm with near-constraint satisfaction guaran-

tees at every iteration, based on a new bound on the expected

returns of two nearby policies. CPO includes a projection

step on the policy parameters, which in practice requires

a time-consuming backtracking line search. Yet, simple

Lagrangian-based algorithms performed as well or better in

a recent empirical comparison in Safety Gym (Ray et al.,

2019). Approaches to safe RL based on Lyapunov func-

tions have been developed in a series of studies (Chow et al.,

2018; 2019), resulting in algorithms that combine a projec-

tion step, as in CPO, with action-layer interventions like the

safety layer of Dalal et al. (2018). Experimentally, this line

of work showed mixed performance gains over Lagrangian

methods, at a nontrivial cost to implement and without clear

guidance for tuning. Liu et al. (2019) developed interior

point methods for RL, which augment the objective with

logarithmic barrier functions. These methods are shown

theoretically to provide suboptimal solutions. Furthermore,

they require tuning of the barrier strength and typically

assume already feasible iterates, the latter point possibly

being problematic for random agent initializations or under

noisy cost estimates. Most recently, Yang et al. (2020) ex-

tended CPO with a two-step projection-based optimization

approach. In contrast to these techniques, our method re-

mains nearly as simple to implement and compute as the

baseline Lagrangian method.

Dynamical Systems View of Optimization. Several recent

works have proposed different dynamical systems view-

points to analyze optimization algorithms, including those

often applied to deep learning. Hu & Lessard (2017) rein-

terpreted first-order gradient optimization as a dynamical

system; they likened the gradient of the objective, ∇xf ,

to the plant, which the controller aims to drive to zero to

arrive at the optimal parameters, x∗. Basic gradient de-
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scent then matches the form of integral control (on ∇xf ).

They extend the analogy to momentum-based methods, for

example linking Nesterov momentum to PID control with

lag compensation. In another example, An et al. (2018)

interpreted SGD as P-control and momentum methods as

PI-control. They introduced a derivative term, based on

the change in the gradient, and applied their resulting PID

controller to improve optimization of deep convolutional

networks. Other recent works bring yet other perspectives

from dynamical systems to deep learning and optimization,

see for example (Lessard et al., 2014; Nishihara et al., 2015;

Liu & Theodorou, 2019)). None of these works address con-

strained RL, however, necessitating our distinct formulation

for that problem.

Constrained Optimization. Decades’ worth of literature

have accumulated on Lagrangian methods. But even recent

textbooks on the topic (Bertsekas, 2014; Nocedal & Wright,

2006) only consider updating the Lagrange multiplier us-

ing the value of the constraint function, g(x), and miss

ever using its derivatives, ġ(x) or g̈(x), which we introduce.

The modification to the Lagrangian method most similar

in effect to our proportional control term (here using ġ(x))
is the quadratic penalty method (Hestenes (1969); Powell

(1969) see also e.g. Bertsekas (1976)), which we compare

in Section 4. Song & Leland (1998) proposed a controls

viewpoint (continuous-time) of optimizing neural networks

for constrained problems and arrived at proportional control

rules only. Related to our final experiments on reward-scale

invariance, Wah et al. (2000) developed an adaptive weight-

ing scheme for continuous-time Lagrangian objectives, but

it is an intricate procedure which is not straightforwardly

applied to safe RL.

3. Preliminaries

Constrained Reinforcement Learning Constrained

Markov Decision Processes (CMDP) (Altman, 1998)

extend MDPs (see Sutton & Barto (1998)) to incorporate

constraints into reinforcement learning. A CMDP is the

expanded tuple (S,A,R, T, µ, C0, C1, ..., d0, d1, ...), with

the cost functions Ci : S × A × S → R defined by the

same form as the reward, and di : R denoting limits on the

costs. For ease of notation, we will only consider a single,

all-encompassing cost.

The expected sum of discounted rewards over tra-

jectories, τ = (s0, a0, s1, a1, ...), induced by the

policy π(a|s) is a common performance objective:

J(π) = Eτ∼π [
∑∞

t=0
γtR(st, at, st+1)]. The analo-

gous value function for cost is defined as: JC(π) =
Eτ∼π [

∑∞

t=0
γtC(st, at, st+1)]. The constrained RL prob-

lem is to solve for the best feasible policy:

π∗ = argmax
π

J(π) s.t. JC(π) ≤ d (5)

Deep reinforcement learning uses a deep neural network

for the policy, πθ = π(·|s; θ) with parameter vector θ, and

policy gradient algorithms improve the policy iteratively

by gathering experience in the task to estimate the reward

objective gradient, ∇θJ(πθ). Thus our problem of interest

is better expressed as maximizing score at some iterate, πk,

while ideally obeying constraints at each iteration:

max
π

J(πk)

s.t. JC(πm) ≤ d m ∈ {0, 1, ..., k}
(6)

Practical settings often allow trading reward performance

against some constraint violations (e.g. the constraints them-

selves may include a safety margin). For this purpose we

introduce a constraint figure of merit with our experiments.

3.1. Dynamical Systems and Optimal Control

Dynamical systems are processes which can be subject to

an external influence, or control. A general formulation for

discrete-time systems with feedback control is:

xk+1 =F (xk,uk)

yk =Z(xk)

uk =h(y0, ...,yk)

(7)

with state vector x, dynamics function F , measurement

outputs y, applied control u, and the subscript denoting

the time step. The feedback rule h has access to past and

present measurements. A problem in optimal control is to

design a control rule, h, that results in a sequence y0:T
.
=

{y0, ...,yT } (or x0:T directly) that scores well according to

some cost function C. Examples include simply reaching

a goal condition, C = |yT − y|, or following close to a

desired trajectory, y0:T .

Systems with simpler dependence on the input are generally

easier to analyze and control (i.e. simpler h performs well),

even if the dependence on the state is complicated (Skelton,

1988). Control-affine systems are a broad class of dynamical

systems which are especially amenable to analysis (Isidori

et al., 1995). They take the form:

F (xk,uk) = f(xk) + g(xk)uk (8)

where f and g may be nonlinear in state, and are possibly

uncertain, meaning unknown. We will seek control-affine

form for ease of control and to support future analysis.

4. Modified Lagrangian Methods for

Constrained Optimization

Lagrangian methods are a classic family of approaches to

solving constrained optimization problems. We propose

an intuitive, previously overlooked form for the multiplier
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update and derive its beneficial effect on the learning dy-

namics. We begin by reviewing a prior formulation for the

equality-constrained problem.1

4.1. Review: “Basic Differential Multiplier Method”

We follow the development of Platt & Barr (1988), who

analyzed the dynamics of a continuous-time neural learning

system applied to this problem (our result can similarly be

derived for iterative gradient methods). They begin with the

component-wise differential equations:

ẋi = −
∂L(x, λ)

∂xi
= −

∂f

∂xi
− λ

∂g

∂xi
(9)

λ̇ = α
∂L(x, λ)

∂λ
= αg(x) (10)

where we have inserted the scalar constant α as a learning

rate on λ. Differentiating (9) and substituting with (10) leads

to the second-order dynamics, written in vector format:

ẍ+Aẋ+ αg(x)∇g = 0 (11)

which is a forced oscillator with damping matrix equal to

the weighted sum of Hessians:

Aij =
∂2f

∂xi∂xj
+ λ

∂2g

∂xi∂xj
, or, A = ∇2f + λ∇2g (12)

Platt & Barr (1988) showed that if A is positive definite,

then the system (11) converges to a solution that satisfies the

constraint. Platt & Barr (1988) also noted that the system

(9)-(10) is prone to oscillations as it converges into the

feasible region, with frequency and settling time depending

on α. We provide complete derivations of the dynamics in

(11) and for our upcoming methods in an appendix.

4.2. Proportional-Integral Multiplier Method

In (10), λ simply integrates the constraint. To improve the

dynamics towards more rapid and stable satisfaction of con-

straints, we introduce a new term in λ that is proportional to

the current constraint value. In the differential equation for

λ, this term appears as the time-derivative of the constraint:

λ̇ = αg(x) + βġ(x) = αg(x) + β
∑

j

∂g

∂xj
ẋj (13)

with strength coefficient, β. Replacing (10) by (13) and

combining with (9) yields similar second-order dynamics as

(11), except with an additional term in the damping matrix:

ẍ+
(

A+ β∇g∇⊤g
)

ẋ+ αg(x)∇g = 0 (14)

1Standard techniques extend our results to inequality con-
straints, and multiple constraints, as in Platt & Barr (1988), and
notation is simplest for an equality constraint.

The new term is beneficial because it is positive semi-

definite—being the outer product of a vector with itself—so

it can increase the damping eignevalues, boosting conver-

gence. The results of (Platt & Barr, 1988) hold under (13,

14), because the conditions of the solution, namely ẋ = 0
and g(x) = 0, remain unaffected and extend immediately to

ġ(x) = 0 (and for the sequel, to g̈(x) = 0). To our knowl-

edge, this is the first time that a proportional-integral update

rule has been considered for a learned Lagrange multiplier.

The well-known penalty method (Hestenes, 1969; Powell,

1969) augments the Lagrangian with an additional term,
c
2
g(x)2, which produces a similar effect on the damping

matrix, as shown in (Platt & Barr, 1988):

Apenalty = A+ c∇g∇⊤g + cg(x)∇2g (15)

Our approach appears to provide the same benefit, with-

out the following two complications of the penalty method.

First, the penalty term must be implemented in the deriva-

tive ẋ, whereas our methods do not modify the Lagrangian

nor the derivative in (9). Second, the penalty introduces

another instance of the hessian∇2g in the damping matrix,

which might not be positive semi-definite but shares the

proportionality factor, c, with the desired term.

4.3. Integral-Derivative Multiplier Method

A similar analysis extends to the addition of a term in λ
based on the derivative of the constraint value. It appears in

λ̇ as the second derivative of the constraint:

λ̇ = αg(x) + γg̈(x) (16)

with strength coefficient γ. The resulting dynamics are:

ẍ+B−1Aẋ+
(

αg(x) + γẋ⊤∇2gẋ
)

B−1∇g = 0 (17)

with B =
(

I + γ∇g∇⊤g
)

, and I the identity matrix.

The effects of the derivative update method are two-fold.

First, since the eigenvalues of the matrix B−1 will be less

than 1, both the damping (A) and forcing (∇g) terms are

weakened (and rotated, generally). Second, the new forcing

term can be interpreted as a drag quadratic in the speed and

modulated by the curvature of the constraint along the direc-

tion of motion. To illustrate cases, if the curvature of g is

positive along the direction of travel, then this term becomes

a force for decreasing g. If at the same time g(x) > 0, then

the traditional force will also be directed to decrease g, so

the two will add. On the other hand, if g curves negatively

along the velocity, then the new force promotes increasing

g; if g(x) > 0, then the two forces subtract, weakening the

acceleration ẍ. By using curvature, the derivative method

acts predictively, but may be prone to instability.

The proportional-integral-derivative multiplier method

is the combination of the previous two developments, which
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induced independent changes in the dynamics (i.e. insert

the damping matrix of (14) into (17)). We leave for future

work a more rigorous analysis of the effects of the new

terms, along with theoretical considerations of the values of

coefficients α, β, and γ. In the next section, we carry the

intuitions from our analysis to make practical enhancements

to Lagrangian-based constrained RL algorithms.

5. Feedback Control for Constrained RL

We advance the broader consideration of possible multiplier

update rules by reinterpreting constrained RL as a dynam-

ical system; the adaptive penalty coefficient is a control

input, and the cost threshold is a setpoint which the system

should maintain. As the agent learns for rewards, the up-

ward pressure on costs from reward-learning can change,

requiring dynamic response. In practical Lagrangian RL,

the iterates λk may deviate from the optimal value, even for

lucky initialization λ0 = λ∗, as the policy is only partially

optimized at each iteration. Adaptive sequences λ0, ..., λK
other than those prescribed by the Lagrangian method may

achieve superior cost control for Problem (6). In this section

we relate the Lagrangian method to a dynamical system,

formalizing how to incorporate generic update rules using

feedback. We return to the case of an inequality constrained

CMDP to present our main algorithmic contribution—the

use of PID control to adapt the penalty coefficient.

5.1. Constrained RL as a Dynamical System

We write constrained RL as the first-order dynamical sys-

tem:
θk+1 =F (θk, λk)

yk =JC(πθk)

λk =h(y0, ..., yk, d)

(18)

where F is an unknown nonlinear function2 corresponding

to the RL algorithm policy update on the agent’s parameter

vector, θ. The cost-objective serves as the system measure,

y, which is supplied to the feedback control rule, h, along

with cost limit, d. From this general starting point, both the

RL algorithm, F , and penalty coefficient update rule, h, can

be tailored for solving Problem (6).

The reward and cost policy gradients of the first-order3

Lagrangian method,∇θL(θ, λ) = ∇θJ(πθ)−λ∇θJC(πθ),
can be organized into the form of (18) as:

F (θk, λk) = f(θk) + g(θk)λk (19)

f(θk) = θk + η∇θJ(πθk) (20)

2Known as an “uncertain” nonlinear function in the control
literature, meaning we lack an analytical expression for it.

3We discuss only the first-order case, which provides sufficient
clarity for our developments.

g(θk) = −η∇θJC(πθk) (21)

with SGD learning rate η. The role of the controller is to

drive inequality constraint violations (Jc − d)+ to zero in

the presence of drift from reward-learning due to f . The

Lagrange multiplier update rule for an inequality constraint

uses subgradient descent:

λk+1 = (λk +KI(JC − d))+ (22)

with learning rate KI and projection into λ ≥ 0. This

update step is clearly an integral control rule, for h.

5.2. Constraint-Controlled RL

Our general procedure, constraint-controlled RL, is given in

Algorithm 1. It follows the typical minibatch-RL scheme,

and sampled estimates of the cost criterion, ĴC are fed back

to control the Lagrange multiplier. In contrast to prior work

(Tessler et al., 2018; Paternain et al., 2019) which uses a

single value approximator and treats r + λc as the reward,

we use separate value- and cost-value approximators, since

λ may change rapidly.

When λ is large, the update in (19) can cause excessively

large change in parameters, θ, destabilizing learning. To

maintain consistent step size, we use a re-scaled objective

for the θ-learning loop:

θ∗(λ) = argmax
θ

J − λJC = argmax
θ

1

1 + λ
(J − λJC)

This convex combination of objectives yields the policy

gradient used in Algorithm 1. Our experiments use this

re-scaling, including for traditional Lagrangian baselines.

Algorithm 1

Constraint-Controlled Reinforcement Learning

1: procedure CONSTRAINED RL(πθ0(·|s), d)

2: Initialize control rule (as needed)

3: JC ← {} ⊲ cost measurement history

4: repeat

5: Sample environment: ⊲ a minibatch

6: a ∼ π(·|s; θ), s′ ∼ T (s, a),
7: r ∼ R(s, a, s′), c ∼ C(s, a, s′)
8: Apply feedback control:

9: Store sample estimate ĴC into JC
10: λ← h(JC , d), λ ≥ 0
11: Update π by RL: ⊲ by Lagrangian objective

12: Update critics, Vφ(s), VC,ψ(s) ⊲ if using

13: ∇θL = 1

1+λ

(

∇θĴ(πθ)− λ∇θĴC(πθ)
)

14: until converged

15: return πθ
16: end procedure

As an aside, we note that it is possible to maintain the

control-affine form of (19) with this re-scaling, by reparam-



Responsive Safety in RL by PID Lagrangian Methods

eterizing the control as 0 ≤ u = λ
1+λ
≤ 1 and substituting

for (21) with:

g(θk) = −η∇θ (J(πθk) + JC(πθk)) (23)

This parameterization simply weights the reward and cost

gradients in the Lagrangian objective as:

∇θL(θ, λ) = (1− u)∇θJ(πθ)− u∇θJC(πθ) (24)

It may provide superior performance in some cases, as it

will behave differently in relation to the nonlinearity in

control which arises from the inequality constraint. We

leave experimentation with direct control on u ∈ [0, 1] to

future work.

5.3. The PID Lagrangian Method

We now specify a new control rule for use in Algorithm

1. To overcome the shortcomings of integral-only control,

we follow the developments of the previous section and

introduce the next simplest components: proportional and

derivative terms. Our PID update rule to replace (22) is

shown in Algorithm 2. The proportional term will hasten

the response to constraint violations and dampen oscilla-

tions, as derived in Section 4. Unlike the Lagrangian update,

derivative control can act in anticipation of violations. It

can both prevent cost overshoot and limit the rate of cost

increases within the feasible region, useful when monitor-

ing a system for further safety interventions. Our derivative

term is projected as (·)+ so that it acts against increases in

cost but does not impede decreases. Overall, PID control

provides a much richer set of controllers while remaining

nearly as simple to implement; setting KP = KD = 0 re-

covers the traditional Lagrangian method. The integral term

remains necessary for eliminating steady-state violations

at convergence. Our experiments mainly focus on the ef-

fects of proportional and derivative control of the Lagrange

multiplier in constrained deep RL.

Algorithm 2 PID-Controlled Lagrange Multiplier

1: Choose tuning parameters: KP ,KI ,KD ≥ 0
2: Integral: I ← 0
3: Previous Cost: JC,prev ← 0
4: repeat at each iteration k
5: Receive cost JC
6: ∆← JC − d
7: ∂ ← (JC − JC,prev)+
8: I ← (I +∆)+
9: λ← (KP∆+KII +KD∂)+

10: JC,prev ← JC
11: return λ

6. PID Control Experiments

We investigated the performance of our algorithms on Prob-

lem (6) in a deep RL setting. In particular, we show the

effectiveness of PID control at reducing constraint viola-

tions from oscillations and overshoot present in the base-

line Lagrangian method. Both maximum performance and

robustness to hyperparameter selection are considered. Al-

though many methods exist for tuning PID parameters, we

elected to do so manually, demonstrating ease of use.

6.1. Environments: Safety-Gym

We use the recent Safety-Gym suite (Ray et al., 2019), which

consists of robot locomotion tasks built on the MuJoCo sim-

ulator (Todorov et al., 2012). The robots range in complexity

from a simple Point robot to the 12-jointed Doggo, and they

move in an open arena floor. Rewards have a small, dense

component encouraging movement toward the goal, and a

large, sparse component for achieving it. When a goal is

achieved, a new goal location is randomly generated, and

the episode continues until the time limit at 1,000 steps.

Each task has multiple difficulty levels corresponding to

density and type of hazards, which induce a cost when

contacted by the robot (without necessarily hindering its

movement). Hazards are placed randomly at each episode

and often lay in the path to the goal. Hence the aims of

achieving high rewards and low costs are in opposition. The

robot senses the position of hazards and the goal through a

coarse, LIDAR-like mode. The output of this sensor, along

with internal readings like the joint positions and velocities,

comprises the state fed to the agent. Figure 2 displays a

scene from the DOGGOGOAL1 environment.

Figure 2. Rendering from the DOGGOGOAL1 environment from

Safety Gym. The red, four-legged robot must walk to the green

cylinder while avoiding other objects, and receives coarse egocen-

tric sensor readings of their locations.

6.2. Algorithm: Constraint-Controlled PPO

We implemented Algorithm 1 on top of Proximal Policy Op-

timization (PPO) (Schulman et al., 2017) to make constraint-

controlled PPO (CPPO). CPPO uses an analogous clipped

surrogate objective for the cost as for the reward. Our
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policy is a 2-layer MLP followed by an LSTM with a

skip connection. We applied smoothing to proportional

and derivative controls to accommodate noisy estimates.

The environments’ finite horizons allowed use of non-

discounted episodic costs as the constraint and input to the

controller. Additional training details can be found in sup-

plementary materials, and our implementation is available

at https://github.com/astooke/safe-rlpyt.

6.3. Main Results

We compare PID controller performance against the La-

grangian baseline under a wide range of settings. Plots

showing the performance of the unconstrained analogue

confirm that constraints are not trivially satisfied, and they

appear in supplementary material.

6.3.1. ROBUST SAFETY WITH PI CONTROL

We observed cost oscillations or overshoot with slow settling

time in a majority of Safety Gym environments when using

the Lagrangian method. Figure 3 shows an example where

PI-control eliminated this behavior while maintaining good

reward performance, in the challenging DOGGOBUTTON1

environment. Individual runs are plotted for different cost

limits.
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Figure 3. Oscillations in episodic costs (and returns) from the La-

grangian method, KP = 0,KI = 10
−2, are damped by propor-

tional control, KP = 1 (ours), at cost limits 50, 100, 150, 200

(curves shaded) in DOGGOBUTTON1.

As predicted in (Platt & Barr, 1988), we found the severity

of cost overshoot and oscillations to depend on the penalty

coefficient learning rate, KI . The top left panel of Figure

4 shows example cost curves from DOGGOGOAL2 under

I-control, over a wide range of values for KI (we refer to

varying KI , assuming KI = 1; the two are interchangeable

in our design). With increasing KI , the period and ampli-

tude of cost oscillations decrease and eventually disappear.

The bottom left of Figure 4, however, shows that larger KI

also brings diminishing returns. We study this effect in the

next section. The center and right columns of Figure 4 show

the cost and return when using PI-control, with KP = 0.25
and KP = 1, respectively. Proportional control stabilized

the cost, with most oscillations reduced to the noise floor

for KI > 10−4. Yet returns remained relatively high over

a wide range, KI < 10−1. Similar curves for other Safety

Gym environments are included in an appendix.
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Figure 4. Top row: Constraint-violating oscillations decrease in

magnitude and period from increases in the Lagrange multiplier

learning rate, KI . At all levels, oscillations are damped by PI-

control, KP = 0.25, 1. Bottom row: Returns diminish for large

KI ; proportional control maintains high returns while reducing

constraint violations. Environment: DOGGOGOAL2, cost limit 50.

We examine the trade-off between reward and constraint vio-

lation by forming an overall cost figure of merit (FOM). We

use the sum of non-discounted constraint violations over the

learning iterates, CFOM =
∑

k(D(πθk) − d)+, D(πθ) =

Eτ∼π

[

∑T
t=0

C(st, at, s
′
t)
]

, and estimate it online from the

learning data. Figure 5 compares final returns against this

cost FOM for the same set of experiments as in Figure 4.

Each point represents a different setting of KI , averaged

over four runs. PI-control expanded the Pareto frontier of

this trade-off into a new region of high rewards at rela-

tively low cost which was inaccessible using the Lagrangian

method. These results constitute a new state of the art over

the benchmarks in Ray et al. (2019).

We performed similar experiments on several Safety Gym

environments in addition to DOGGOGOAL2: POINTGOAL1,

the simplest domain with a point-like robot, CARBUTTON1,

for slightly more challenging locomotive control, and DOG-

GOBUTTON1 for another challenging task (see appendix

for learning curves like Figure 4). Figure 6 plots the cost

figure of merit over the same range of values for KI , and
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Figure 5. Pareto frontier of return versus cost FOM, which im-

proves (up and to the left) with PI-control, KP = 0.25, 1. Each

point is a different setting of KI (see Figure 4).

for two strengths of added proportional control, for these

environments. PI-control clearly improved the cost FOM

(lower is better) for KI < 10−1, above which the fast in-

tegral control dominated. Hence robustness to the value

for KI was significantly improved in all the learning tasks

studied.
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Figure 6. Learning run cost FOM versus penalty learning rate, KI ,

from four environments spanning the robots in Safety Gym. Each

point is an average over four runs. In all cases, PI-control improves

performance (lower is better) over a wide and useful range of KI ,

easing selection of that hyperparameter.

6.3.2. CONTROL EFFICIENCY

We further investigated why increasing the penalty learning

rate, KI , eventually reduces reward performance, as was

seen in the robustness study. Figure 7 shows learning curves

for three settings: I- and PI-control with the same, moderate

KI = 10−3, and I-control with high KI = 10−1. The high-

KI setting achieved responsive cost performance but lower

long-term returns, which appears to result from wildly fluc-

tuating control. In contrast, PI-control held relatively steady,

despite the noise, allowing the agent to do reward-learning

at every iteration. The bottom panel displays individual

control iterates, here displayed as u = λ/(1 + λ), over the

first 7M environment steps, while the others show smoothed

curves over the entire learning run, over 40M steps.
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Figure 7. I- and PI-control with moderate KI = 10
−3 and I-

control with fast KI = 10
−1 (IKI+). Top Returns diminished for

fast-KI , but high for PI. Second Cost oscillations mostly damped

by PI, removed by fast-KI . Third Control (smoothed) varies more

rapidly under fast-KI , is relatively steady for PI. Bottom Con-

trol over first 500 RL iterations; fast-KI slams the control to the

extremes, causing the diminished returns. Environment: DOG-

GOBUTTON1, cost limit 200.

6.3.3. PREDICTIVE CONTROL BY DERIVATIVES

Figure 8 demonstrates the predictive capabilities of deriva-

tive cost control in a noisy deep RL setting. It removed

cost overshoot from both the I- and PI-controlled baselines.

It was further able to slow the approach of the cost curve

towards the limit, a desirable behavior for online learning

systems requiring safety monitoring. Curves for other envi-

ronments are available in an appendix.

7. Reward-Scale Invariance

In the preceding sections, we showed that PID control im-

proves hyperparameter robustness in every constrained RL

environment we tested. Here we propose a complemen-

tary method to promote robustness both within and across

environments. Specifically, it addresses the sensitivity of

learning dynamics to the relative numerical scale of reward

and cost objectives.

Consider two CMDPs that are identical except that in one

the rewards are scaled by a constant factor, ρ. The opti-

mal policy parameters, θ∗ remain unchanged, but clearly λ∗

must scale by ρ. To attain the same learning dynamics, all
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Figure 8. Derivative control can prevent cost overshoot and slow

the rate of cost increase within feasible regions, which the La-

grangian method cannot do. Environment: DOGGOBUTTON1,

cost limit 200.

controller settings, λ0,KI ,KP , and KD must therefore be

scaled by ρ. This situation might feature naturally within

a collection of related learning environments. Addition-

ally, within the course of learning an individual CMDP, the

balance between reward and cost magnitudes can change

considerably, placing burden on the controller to track the

necessary changes in the scale of λ.

One way to promote performance of a single choice of

controller settings across these cases would be to maintain

a fixed meaning for the value of λ in terms of the relative

influence of reward versus cost on the parameter update. To

this end, we introduce an adjustable scaling factor, βk, in

the policy gradient:

∇θL = (1− uk)∇θJ(πθk)− ukβk∇θJC(πθk) (25)

A conspicuous choice for βk is the ratio of un-scaled policy

gradients:

β∇,k =
||∇θJ(πθk)||

||∇θJC(πθk)||
(26)

since it balances the total gradient to have equal-magnitude

contribution from reward- and cost-objectives at λ = 1 and

encourages λ∗ = 1. Furthermore, β∇ is easily computed

with existing algorithm components.

To test this method, we ran experiments on Safety Gym en-

vironments with their rewards scaled up or down by a factor

of 10. Figure 9 shows a representative cross-section of re-

sults from the POINTGOAL1 environment using PI-control.

The different curves within each plot correspond to different

reward scaling. Without objective-scaling (i.e. β = 1), the

dynamics under ρ = 10 are as if controller parameters were

instead divided by 10, and likewise for ρ = 0.1. Note the

near-logarithmic spacing of λ (λρ=10 has not converged to

its full value). Using β∇, on the other hand, the learning

dynamics are nearly identical across two orders of magni-

tude of reward scale. λ0 = 1 becomes an obvious choice for

initialization, a point where previous theory provides little

guidance (Chow et al., 2019) (although here we left λ0 = 0).

Experiments in other environments and controller settings

yielded similar results and are included in supplementary

materials. Other methods, such running normalization of

rewards and costs, could achieve similar effects and are

worth investigating, but our simple technique is surprisingly

effective and is not specific to RL.
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Figure 9. Costs, returns, and Lagrange multiplier with rewards

scaled by ρ ∈ {0.1, 1, 10}; PI-control with KI = 1e− 3,KP =

0.1. Left column: without objective-weighting, learning dynam-

ics differ dramatically due to required scale of λ. Right column:

with objective-weighting, learning dynamics are nearly identical.

Environment: POINTGOAL1, cost limit 25.

8. Conclusion

Starting from a novel development in classic Lagrangian

methods, we introduced a new set of constrained RL solu-

tions which are straightforward to understand and imple-

ment, and we have shown them to be effective when paired

with deep learning.

Several opportunities for further work lay ahead. Analysis

of the modified Lagrangian method and constrained RL as

a dynamical system may relax theoretical requirements for

a slowly-changing multiplier. The mature field of control

theory (and practice) provides tools for tuning controller

parameters. Lastly, the control-affine form may assist in

both analysis (see Liang-Liang Xie & Lei Guo (2000) and

Galbraith & Vinter (2003) for controllability properties for

uncertain nonlinear dynamics) and by opening to further

control techniques such as feedback linearization.

Our contributions improve perhaps the most commonly used

constrained RL algorithm, which is a workhorse baseline.

We have addressed its primary shortcoming while preserving

its simplicity and even making it easier to use—a compelling

combination to assist in a wide range of applications.
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