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S1. Derivation of the empirical dual estimator
The arguments given here are a simplification of the class of duality arguments from Duchi et al. (2019). Recall that the
inner maximization suph2HL

E[h(x, c)(E[`(✓; (x, y))|x, c]� ⌘)] admits a plug-in estimator which can be written as a linear
objective with Lipschitz smoothness and L2 norm constraints,
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where D 2 Rn⇥n is a matrix with entries Dij = kxi � xjk+ kci � cjk. From strong duality, the primal optimal value (1)
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+,��0,B2Rn⇥n
+

suph L(h, �,�, B).
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Substituting these values and taking the infimum over �, � � 0, we obtain
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Taking the infimum over B, ⌘ and substituting this expression into the inner supremum of RL gives the desired estimator.
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S2. Distortion Proof
Terminology in this section generally follows that of the main text. We will use c to describe some true set of unmeasured
variables, and c to describe the elicited set. All notation with overhead lines are defined in this space of elicited unmeasured
variables (e.g. h, HL).

Additionally we will define a forward map from true unmeasured variables to elicited ones, f : C ! C and a reverse map
from elicited unmeasured variables to true ones g : C ! C.

For convenience, define the following risk functionals for the DRO problem under the true unmeasured variables

RL(✓) := inf
⌘

sup
h2HL

1

↵
Ex,y,c[h(x, c)`(x, y)� ⌘] + ⌘,

and under the estimated ones
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We can define the upper bound for the Lipschitz case,

Proposition. Let f : C ! C define ĥ(x, c) := h(x, f(c)) such that 1
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The equality follows the change of variables property of pushforward measures. Now rewriting the risk measure in terms of
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First inequality follows from Hölder’s inequality, and the fact that 0  `(x, y)  M . The second one follows from the
assertion that 1

Kf
ĥ 2 HL, and the last inequality follows from the fact that h is L-Lipschitz, and utilizing the pushforward

measure form of �.
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An analogous argument shows the other side of this bound given by,

RL(✓)  KgRL(✓) +
LMEXY W1(c|xy, g(c|xy))

↵
.

This shows that our DRO estimator achieves multiplicative error scaling with Kf ,Kg and additive error scaling with the
Wasserstein distance between the true and the estimated unmeasured variables.

Our assumptions on Kf and Kg are easily fulfilled in the case where there is a single bi-Lipschitz bijection f : C ! C. In
this case, g = f�1 and Kf = Kg = K.

We can interpret this bound as capturing two sources of error: our metric can be inappropriate and our estimates of C can
be inherently noisy. For the first term, note that a map with higher metric distortion (e.g. bi-Lipschitz maps with large
constants) results in a looser bound. This is because the Lipshcitz function assumption in the original space C does not
correspond closely to Lipschitz functions in C.

For the second term, we incur error whenever W1(c|xy, g(c|xy)) is large. The alignment map g takes our elicited unmeasured
variables and approximates the true ones. However, if c does not contain enough information to reconstruct c then no
function g can exactly map c to c, and we incur an approximation error that scales as the transport distance between the two.

We can now provide a simple lemma that bounds the quality of the model estimate under the approximation c compared to
the minimizer of the exact unmeasured variables c.

For convenience we will use the following shorthand for the additive error terms,
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↵
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↵
.
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Proof. By Proposition S2, we have both
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By definition of ✓
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as the minimizer of RL, we obtain
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which gives the stated result.

The corollary shows that the best model under the estimated unmeasured variables c performs well under the true DRO risk
measure RL as long as KfKg ⇡ 1 and Af , Ag are small. There are two sources of error: the metric distortion results in a
relative error that scales as KfKg, and the noise in estimation (Af , Ag) results in additive error. The KgAf scaling term
arises from the fact that error is measured with respect to the metric over c, not over c.

Importantly, these bounds show that we need not directly estimate the true unmeasured variables c using c - our estimated
unmeasured variables can live in an entirely different space, and as long as there exists some low-distortion alignment
functions f, g that align the two spaces, the implied risk functions are similar.
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Figure S1. Decreasing crowdsourcing quality by randomly shuffling results in a highly correlated decrease in accuracy over both MNIST
(left) and stop-and-frisk(right) datasets.

S3. Effect of Crowdsourcing Quality
We empirically evaluate the role of crowdsourcing data quality on UV-DRO performance to complement our theoretical
bound in Section 4. We previously showed a significant performance gap when we shuffle 100% of the crowdsourced
unmeasured variables, causing random associations that impact the crowdsourcing quality. We further investigate this gap
by shuffling [0, 2, 5, 10, 20, 50, 75]% of the crowdsourced unmeasured variables, and find a highly correlated accuracy
drop for both MNIST (R2 = .89) and stop-and-frisk datasets (R2 = .91), as seen in Figure S1. This demonstrates a linear
relationship between crowdsourcing quality and robust performance.

S4. Annotation Unigrams Analysis Table

Table S1. Exploratory analysis on the annotations collected over stop-and-frisk data by training a logistic regression model to predict
location from a selection of annotation unigrams.

BROOKLYN MANHATTAN

UNIGRAM WEIGHT UNIGRAM WEIGHT
DISCRIMINATION -1.22 WEAPON 0.82
RACIST -0.29 GUN 0.21
RACIAL -0.19 ARMED 0.89
HOMELESS -0.84 DRUG 0.43
UNRELATED -1.68 GANG 1.03
CLEARED -0.98 DANGEROUS 0.79
EVIDENCE -0.12 WITNESS 0.81

S5. Reproducibility & Experiment Details
All experiments and data described below are available on CodaLab: https://bit.ly/uvdro-codalab.

S5.1. Simulated Medical Diagnosis Task

We simulate our data (n=1,000) using the following generation procedure:

1. qtrain = .05, .1, .2, .3, .4, .5, .6, .7, .8 and qtest = 0.8.

2. c is sampled from the c ⇠ 1� 2 Bernoulli(q).

3. y is sampled from y ⇠ N (0, 2), independent from from train or test.

4. For each (c, y) sample, set x1 = c ⇤ y and x2 = y + ✏ where ✏ ⇠ N (0, 4).

For both ERM and UV-DRO, we trained a linear regression model over p(y|x1, x2), optimized using batch gradient descent
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over 3k steps with AdaGrad with an optimal learning rate of .0001. We set UV-DRO parameter ↵ = 0.2, and tune ⌘ via
grid-search for each qtrain value. We present results (Mean Squared Error) on the same held-out test set for all models.

S5.2. MNIST Digit Classification with Confounding Transformations

We use the popular MNIST dataset (http://yann.lecun.com/exdb/mnist/). We train on only a subset (n=4000)
of the training data due to the cost of collecting annotations, and tune parameters on a separate validation set. For all data
points, we treat the pixels of a (possibly transformed) image as the features x, the fact of whether a transformation occurred
as the unmeasured variable c, and the MNIST digit as label y. We simulate a shift in an unmeasured rotation confounding
variable using the following procedure:

1. qtrain = .05, .1, .2, .4, .6 and qtest = 1.0.

2. c is sampled from the c ⇠ Bernoulli(q), where c = 1 means the image was rotated.

3. For each (x, y) pair in the dataset, we rotate the original MNIST image x by 180 degrees if c = 1.

For all ERM, DRO, and UV-DRO models, we trained a logistic regression model, optimized with batch gradient descent
using AdaGrad and an optimal learning rate of .001. The optimal l2 penalty found for ERM models was 25. Optimal
UV-DRO parameters (tuned on 20% of data as valid) include l2 penalty of 50, a Lipschitz constant L of 1, ↵ = 0.2, and we
explicitly solve for the minimizer of ⌘ with regards to the empirical distribution at each gradient step. We present results
(Log-Loss, Accuracy) on the same held-out test set for all models.

S5.3. Police Stop Analysis with Confounding Locations

We use a dataset of NYPD police stops (https://www.nyclu.org/en/stop-and-frisk-data). We train on
only a subset (n=2000) of the training data due to the cost of collecting annotations, and tune parameters on a separate
validation set. For all data points, we filter out all variables except for 26 police stop observation as features x (i.e. ”in a
high crime area”), the NYC borough as the unmeasured location variable c, and the label for arrest y. We simulate a shift in
the location variable (c) using the following procedure:

1. qtrain = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and qtest = 1.0.

2. c is sampled from the c ⇠ Bernoulli(q), where c = 1 means the location is Brooklyn.

3. We build the dataset by drawing from the entire dataset a (x, y, c = c0) example for each c0 sampled.

For all ERM, DRO, and UV-DRO models, we trained a logistic regression model optimized with batch gradient descent
using AdaGrad and an optimal learning rate of .005. The optimal l2 penalty found for ERM models was 0. Optimal
UV-DRO (tuned on 20% of data as valid) parameters include l2 penalty of 50, a Lipschitz constant L of 1, ↵ = 0.2, and we
explicitly solve for the minimizer of ⌘ with regards to the empirical distribution at each gradient step. We present results
(Log-Loss, Accuracy) on the same held-out test set for all models.
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