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Abstract
It has long been argued that minibatch stochastic
gradient descent can generalize better than large
batch gradient descent in deep neural networks.
However recent papers have questioned this claim,
arguing that this effect is simply a consequence of
suboptimal hyperparameter tuning or insufficient
compute budgets when the batch size is large. In
this paper, we perform carefully designed experi-
ments and rigorous hyperparameter sweeps on a
range of popular models, which verify that small
or moderately large batch sizes can substantially
outperform very large batches on the test set. This
occurs even when both models are trained for
the same number of iterations and large batches
achieve smaller training losses. Our results con-
firm that the noise in stochastic gradients can en-
hance generalization. We study how the optimal
learning rate schedule changes as the epoch bud-
get grows, and we provide a theoretical account
of our observations based on the stochastic differ-
ential equation perspective of SGD dynamics.

1. Introduction
It has long been believed that stochastic gradient descent
can generalize better than full batch gradient descent in deep
learning (Heskes & Kappen, 1993; LeCun et al., 2012). This
topic was revived by Keskar et al. (2016), who showed that
the test accuracy often falls if one holds the learning rate
constant and increases the batch size, even if one continues
training until the loss ceases to fall. A number of recent pa-
pers have studied this effect (Smith & Le, 2017; Jastrzębski
et al., 2017; Chaudhari & Soatto, 2018). However this phe-
nomenon has also been questioned by many authors (Hoffer
et al., 2017; Shallue et al., 2018; Zhang et al., 2019). In
a widely read work, Shallue et al. (2018) argue that much
of the generalization benefit of small batches arises either
because the learning rate is not properly tuned for large
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batches, or because authors often compare different batch
sizes under a constant epoch budget (such that small batches
are allowed to take more parameter steps). To our knowl-
edge, no previous authors have observed a generalization
gap between small and large batch training under a constant
step budget after properly tuning the learning rate schedule.

This debate is particularly challenging to resolve, because
there is no consensus regarding how SGD hyperparameters
should be tuned. While large research labs can afford to run
complete grid searches over multiple dimensions (Shallue
et al., 2018), this option is unrealistic for most researchers.
Many authors have proposed a linear scaling rule between
learning rate and batch size (Krizhevsky, 2014; Goyal et al.,
2017; Smith et al., 2017; McCandlish et al., 2018), while
others propose a square root rule (Hoffer et al., 2017) or
argue that no single scaling rule is reliable across multiple
architectures (Shallue et al., 2018). Some authors argue
that SGD with Momentum significantly outperforms vanilla
SGD (Sutskever et al., 2013), while others claim that SGD
with and without Momentum are equivalent if one maintains
a constant “effective learning rate” (Mandt et al., 2017;
Kidambi et al., 2018; Liu & Belkin, 2018a). Goyal et al.
(2017) found that learning rate warmup enables us to scale
training efficiently to larger batch sizes, and Shallue et al.
(2018) emphasized that the optimal scaling strategy may
change, depending on whether one scales the batch size
under a constant epoch budget or a constant step budget.

Fortuntely, recent theoretical work suggests a consensus
may be within reach (Ma et al., 2017; Zhang et al., 2019).
These papers clarify the debate, by observing that SGD has
two regimes with different behaviours. We refer to these two
regimes as the “noise dominated” regime, which arises when
the batch size is small or the loss is well conditioned, and the
“curvature dominated” regime, which arises when the batch
size is large or the loss is poorly conditioned. Under certain
assumptions, the linear scaling rule will hold in the noise
dominated regime for constant epoch budgets (Ma et al.,
2017; Smith & Le, 2017; Zhang et al., 2019). However this
rule does not hold in the curvature dominated regime. Sim-
ilarly, SGD with and without Momentum achieve similar
performance in the noise dominated regime if one maintains
a constant effective learning rate (Smith et al., 2019; Zhang
et al., 2019), but SGD with Momentum performs better in
the curvature dominated regime (Shallue et al., 2018).
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However, these works primarily consider convergence on
the training set, often for convex losses. They do not re-
solve the debate regarding the role of stochastic gradients
in promoting generalization. It is also not clear that hyper-
parameter tuning strategies derived to optimize the conver-
gence rate will apply if one wishes to maximize the valida-
tion accuracy. In this paper, we make progress on both of
these open questions. We list our main contributions below.

• We use the analogy between SGD and stochastic differ-
ential equations (SDEs) (Gardiner et al., 1985; Welling
& Teh, 2011; Mandt et al., 2017; Li et al., 2017) to
describe the noise dominated and curvature dominated
regimes of SGD in section 3. Although similar con-
clusions can be derived from convergence bounds (Ma
et al., 2017; Zhang et al., 2019), the SDE perspective
will help us make explicit predictions about the perfor-
mance of SGD on the test set. We verify the existence
of two regimes of SGD on a range of models under a
constant epoch budget in section 5 and appendix C.

• We confirm empirically that small and moderately large
batch sizes outperform very large batches on the test set
in some models, even if all batch sizes are trained for
the same number of iterations and large batches reach
smaller training losses (see section 6 and appendix D).
We perform a grid search over learning rates at each
batch size. The batch size at which the test accuracy
begins to degrade can be larger than previously thought.
For example, we find that the test accuracy of a 16-4
Wide-ResNet (Zagoruyko & Komodakis, 2016) trained
on CIFAR-10 for 9725 updates falls from 94.9% at a
batch size of 2048 to 92.5% at a batch size of 16384.

• We find that the optimal learning rates, which either
minimize the training loss or maximize the test set
accuracy, scale differently as the epoch budget rises.
This effect is not captured by existing convergence
bounds. Although the learning rate that minimizes the
training loss falls rapidly as the epoch budget rises,
the learning rate that maximizes the test set accuracy
decays very slowly. For example, for the same 16-
4 Wide-ResNet on CIFAR-10 at batch size 64, the
optimal learning rate to maximize the test accuracy
only decays by a factor of 2 when the epoch budget is
increased by a factor of 128, while the optimal learning
rate to minimize the training loss decays by a factor
of 16 (see section 7). We give a simple explanation
from the SDE perspective: SGD seeks to maintain an
“optimal temperature” early in training, independent of
compute budget. This maximizes the generalization
benefit arising from gradient noise, and results in a
large initial learning rate, even if the epoch budget is
also large. We also explore optimizing the initial and
final learning rates independently (see section 7.1).

2. Preliminaries of Empirical Analysis of SGD
The ith update of minibatch gradient descent is given by

ωi+1 = ωi − εi
B

∑B
j=1

dL(yj ,xj ,ωi)
dω , (1)

where (x, y) denotes the inputs and labels of a training
set of size N , B is the batch size, εi is the learning rate
used on the ith step, and L(yj , xj , ω) is the loss of the jth

training example. For simplicity we assume the indices j are
randomly reshuffled between each update, such that training
batches are sampled randomly without replacement. When
B = N , we get the full batch gradient descent update. We
denote the full batch loss by C(ω) = 1

N

∑N
j=1 L(yj , xj , ω).

It is clear from equation 1 that the dynamics of SGD depend
heavily on the learning rate schedule {εi} and the batch
size B. In many of the experiments in this paper we will
sweep over the batch size on a logarithmic grid, in order
to understand the effect of noise in the gradient estimate
on the final performance of models trained with SGD. To
ensure our conclusions are robust, we have chosen a single
simple learning rate decay schedule which performs well
across all of the architectures and datasets considered in this
work (see section 4). This schedule is defined by a single
free parameter, the initial learning rate (usually referred to
simply as the learning rate). We always perform a grid
search over learning rates for each batch size.

Furthermore, the conclusions of any empirical SGD study
will depend on the choice of compute budget used for the
experiments (Shallue et al., 2018). There are three popular
compute budgets often considered in previous work, shown
below. We explore all three compute budgets in this work.

• Constant epoch budget: Here the computational cost
is independent of the batch size, but the number of
steps is inversely proportional to the batch size.

• Constant step budget: Here the computational cost
is proportional to the batch size, but the number of
training steps is independent of the batch size.

• Unlimited compute budget: Here we train for as long
as needed to maximize the test accuracy, or until a
predetermined threshold performance target is reached.

3. A Stochastic Differential Equation
Perspective on the Two Regimes of SGD

In this section, we discuss the noise dominated and curva-
ture dominated regimes of SGD, from the perspective of the
analogy between SGD and stochastic differential equations
(SDEs) (Gardiner et al., 1985; Welling & Teh, 2011; Mandt
et al., 2017; Li et al., 2017). Although the two regimes are
also visible within existing convergence bounds (Ma et al.,
2017; Zhang et al., 2019), the SDE perspective will help us
make explicit predictions about the test set behaviour.
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3.1. Full batch gradients

When training with full batch gradients, the learning rate
that minimizes the training loss fastest is determined by
the curvature of the loss function. To minimize this loss as
quickly as possible, we usually set the learning rate early in
training as large as possible while avoiding divergences or
instabilities. To build our intuition for this, we approximate
the loss by a strictly convex quadratic, C(ω) ≈ 1

2ω
>Hω.

Substituting this approximation into the gradient descent
parameter update, we conclude that ωi+1 = ωi − εHωi.
In the eigenbasis of H , the updates are θi+1 = θi(I − εΛ).
Here θi = V >ωi, where V is a matrix whose columns are
the eigenvectors ofH , I is the identity matrix and Λ denotes
a diagonal matrix comprising the eigenvalues of H . The
iterates will converge if the learning rate ε < εcrit, where
εcrit = 2/λmax is the critical learning rate, and λmax is
the largest Hessian eigenvalue (Nesterov, 2013). We call
this inequality the curvature constraint, and the optimal
initial learning rate with full batch gradients will be just
below εcrit. Although the critical learning rate will perform
poorly for high curvature directions of the loss, we can
introduce learning rate decay to minimize the loss along
these directions later in training (Ge et al., 2019). Of course,
in realistic loss landscapes εcrit may change during training.

Acceleration methods like Heavy-Ball Momentum (referred
to as “Momentum” hereon) (Polyak, 1964) were designed
to enable faster convergence on poorly conditioned losses
with full batch gradients. Momentum takes an exponen-
tial moving average of previous gradients, ωi+1 = ωi −
ε
∑i
j=0m

i−j dC
dω

∣∣
w=wi

, where m denotes the momentum
coefficient. Gradients in high curvature directions, which of-
ten switch sign between updates, partially cancel out. This
enables Momentum to take larger steps in low curvature
directions while remaining stable in high curvature direc-
tions. This allows Momentum to minimize the training loss
in fewer steps than full batch gradient descent (Goh, 2017).

3.2. Minibatch gradients

In practice, we do not compute a full batch gradient, and in-
stead estimate the gradient over a minibatch (Bottou, 2010).
This introduces noise into our parameter updates. However
when the batch size is large, and the number of training
epochs is finite, the noise in the parameter updates is low,
and therefore training is still governed by the curvature of
the loss landscape (similar to full batch gradient descent).
We call this large batch training regime curvature domi-
nated. When the batch size is in the curvature dominated
regime, we expect the optimal initial learning rate to be
determined by the critical learning rate εcrit. On the other
hand, when the batch size is small, we expect the optimal
learning rate to be controlled by the noise in the parameter
updates, and we call this training regime noise dominated.

To build a model of the training dynamics in the noise dom-
inated regime, we must make some assumptions. Following
previous work (Mandt et al., 2017; Li et al., 2017; Smith &
Le, 2017; Jastrzębski et al., 2017), we assume the gradients
of individual examples are independent samples from an un-
derlying distribution, and that this distribution is not heavy
tailed. When the training set size N � B and the batch size
B � 1, we can apply the central limit theorem to model
the noise in a gradient update by a Gaussian noise source,
whose covariance is inversely proportional to the batch size,

(ωi+1 − ωi) ≈ −ε
(
dC
dω

∣∣∣
ω=ωi

+ νi√
B

)
. (2)

The noise source ν has mean E(νi) = 0 and covariance
E(νiν

>
j ) = F (ωi)δij , where F (ω) is the empirical Fisher

information matrix and δij is the dirac delta function. We
may now introduce the temperature T = ε/B to obtain:

(ωi+1 − ωi) ≈ −εdCdω
∣∣∣
ω=ωi

+
√
εTνi. (3)

Equation 3 describes the discretization of a stochastic dif-
ferential equation (SDE) with step size ε and temperature
T (Gardiner et al., 1985). We expect the dynamics of SGD
to follow the underlying SDE if the learning rate ε� εcrit
and the assumptions above are satisfied. When equation 3
holds and ε � εcrit, any two training runs with the same
temperature and the same epoch budget should achieve sim-
ilar performance on both the training set and the test set (see
appendix A or Li et al. (2017) for details). Consequently,
we usually expect the learning rate to scale linearly with
the batch size in the noise dominated regime. This was ob-
served in many empirical studies (Krizhevsky, 2014; Goyal
et al., 2017; McCandlish et al., 2018). For completeness, we
derive this linear scaling rule in appendix A, where we show
that it can be derived without assuming that the noise in a
gradient update is Gaussian or that the batch size B � 1.
This scaling rule also arises within an analysis of conver-
gence rates on quadratic losses (Zhang et al., 2019). The
linear scaling rule may not hold if the noise is long tailed or
one of the other assumptions above is not satisfied (Shallue
et al., 2018; Simsekli et al., 2019). We give an example of a
model that does not obey linear scaling in appendix C.3.

In the noise dominated regime, the optimal learning rate
increases as the batch size rises, and therefore when the
batch size rises, we will eventually invalidate the assump-
tion ε � εcrit and enter the curvature dominated regime.
There may be a transition phase at the boundary between
the two regimes (Liu & Belkin, 2018b), however one of
the surprising conclusions from our experiments is that in
practice this transition is often very sharp (see section 5).

The gradients of individual examples are not independent if
batch normalization is used (Ioffe & Szegedy, 2015). The
linear scaling rule will therefore hold only if the batch statis-
tics are computed over a fixed number of training examples
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independent of the batch size. This scheme, known as ghost
batch normalization (Hoffer et al., 2017), is often used by
default when large batches are partitioned over multiple de-
vices. In this work, we use ghost batch normalization in all
experiments that include batch normalization layers.

3.3. Consequences of the two regimes

Many previous works have established that SGD with and
without Momentum are equivalent in the small learning rate
limit when m is fixed (Orr & Leen, 1994; Qian, 1999; Yuan
et al., 2016). In this limit, the speed of convergence of
SGD with Momentum is governed by the effective learning
rate εeff = ε/(1 −m), and the temperature T = εeff/B
(Mandt et al., 2017; Smith & Le, 2017). We therefore expect
SGD with and without Momentum to achieve the same final
training losses and test accuracies in the noise dominated
regime (where εeff � εcrit), while SGD with Momentum
should outperform vanilla SGD in the curvature dominated
regime. This was previously observed by Shallue et al.
(2018). More generally, as proposed by Zhang et al. (2019),
we typically expect that any optimizer which was designed
for faster optimization on poorly conditioned loss surfaces
will only outperform SGD if the batch size is large enough.

Goyal et al. (2017) introduced learning rate warmup, and
found that it enabled stable training with larger batch sizes
for some architectures/datasets. This procedure has a
straightforward interpretation within the two regimes: if
the critical learning rate increases early in training, then
learning rate warmup will enable us to achieve larger learn-
ing rates without diverging at the start of training, which in
turn enables efficient training with larger minibatches.

3.4. On learning rate schedules and compute budgets

Note that, with a very carefully tuned learning rate schedule,
many batch sizes might exhibit both the curvature dominated
regime (typically early in training) and the noise dominated
regime (late in training) (Sutskever et al., 2013; De et al.,
2017; Zhang et al., 2019). However it is usually not possible
to identify schedules of this type within a realistic com-
putation budget. Practitioners prefer simple learning rate
schedules, often parameterized by an initial learning rate
and a few sharp drops (He et al., 2016). These schedules
are easy to tune, and they are also thought to generalize
well (Smith et al., 2017; Li et al., 2019). For these popular
schedules, the optimal learning rate is generally determined
by whether the initial phase of training is noise dominated
or curvature dominated. We refer to entire training runs
as being noise or curvature dominated for simplicity. Note
that, in the noise dominated regime, these schedules are best
thought of not as a sequence of learning rates, but rather as
a sequence of temperatures, each of which are maintained
for a given number of epochs (Smith et al., 2017). Just as

we refer to the initial learning rate as the learning rate, we
often refer to the initial temperature as the temperature.

Throughout this paper, we assume the compute budget is
finite but reasonably large. For very small compute bud-
gets, training may be curvature dominated at all batch sizes
(McCandlish et al., 2018). Meanwhile, for infinitely large
compute budgets, the noise in the gradients might dominate
asymptotically, and therefore training may be noise domi-
nated for any batch size B < N (Sutskever et al., 2013).

3.5. The generalization benefit of noise

The primary difference between convergence bounds and the
SDE perspective of SGD arises when we consider whether
SGD has a beneficial influence on generalization (Mandt
et al., 2017; Jastrzębski et al., 2017; Park et al., 2019). Con-
vergence bounds on convex losses predict that we should
always achieve smaller training losses if we increase the
batch size and train for the same number of steps (Ma et al.,
2017; Zhang et al., 2019). However if we believe that SGD
noise can enhance generalization from train to test, then the
test accuracy achieved may fall as the batch size rises.

According to the SDE perspective, the influence of gradient
noise on training in the noise dominated regime is described
by the temperature, while the parameters at the end of train-
ing are sampled from a probability distribution that depends
on the temperature and the epoch budget. We therefore
expect two training runs in the noise dominated regime to
experience a similar generalization benefit from noise if
their temperatures are equal. However if the batch size is
large enough to enter the curvature dominated regime, we
will not be able to maintain a constant temperature while
keeping the learning rate below the critical learning rate.
This suggests that to verify whether SGD noise is beneficial
for generalization, we should compare small batch training
to very large batch sizes in the curvature dominated regime.

Furthermore, since the influence of gradient noise is de-
scribed by the temperature, and since we argue that this
noise plays an important role in generalization, we conjec-
ture that that the optimal temperature that maximizes the
test accuracy will be independent of the epoch budget. This
implies that, for a fixed batch size, the optimal learning rate
will not decay as the epoch budget increases. We emphasize
that the benefits of noise primarily arise early in training (see
section 7). Decaying the learning rate (temperature) later in
training often substantially enhances the test set accuracy.

4. Experimental Setup
In this paper, we will study how the performance on both
the training and the test set, as well as how the optimal
learning rate, depend on the batch size under different com-
pute budgets (when using a realistic learning rate decay
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(a) (b) (c)

Figure 1. A 16-4 Wide-ResNet, trained with ghost batch normalization on CIFAR-10 for 200 epochs. We report the performance of SGD
with and without Momentum, and we perform a grid search to identify the optimal learning rate which maximizes the test set accuracy. a)
The test accuracy of vanilla SGD is independent of batch size when the batch size is small, but falls when the batch size exceeds 512. SGD
with Momentum matches the performance of vanilla SGD for batch sizes B . 512 but outperforms vanilla SGD for batch sizes B & 512.
b) Very similar observations can be made for the final training loss. c) The optimal effective learning rate is proportional to batch size
when the batch size is small, but is constant when the batch size is large. SGD with Momentum can scale to larger effective learning rates.

schedule). For clarity, in the main text we only report ex-
periments using Wide-ResNets on CIFAR-10 (Zagoruyko &
Komodakis, 2016), however we provide additional experi-
ments using ResNet-50 (He et al., 2016), LSTMs (Zaremba
et al., 2014) and autoencoders (Sutskever et al., 2013) in
the appendices. We describe the other models we study in
appendix B. We use the same learning rate schedule for all
architectures. We hold the learning rate constant for the
first Nepochs/2 epochs, where Nepochs denote the number
of training epochs. Then for the remainder of training, we
reduce the learning rate by a factor of γ every Nepochs/20
epochs. In almost all of our experiments, we fix γ = 2, such
that this scheme has a single hyperparameter, the initial
learning rate ε. We illustrate this schedule in appendix B.1,
and we found that it reliably meets or exceeds the perfor-
mance of the schedules used by the authors of the original
papers. We tune ε and γ simultaneously in section 7.1.

We evaluate the optimal test accuracy and the optimal learn-
ing rate for a range of batch sizes and compute budgets.
For each batch size, we train the Wide-ResNet model 15
times for a range of learning rates on a logarithmic grid. For
each learning rate in this grid, we take the best 12 runs and
evaluate the mean and standard deviation of their test accu-
racy. The optimal test accuracy is defined by the maximum
value of this mean, and the corresponding learning rate is
the optimal learning rate. This procedure ensures our results
are not corrupted by outliers or failed training runs. To de-
fine error bars on the optimal learning rate, we include any
learning rate whose mean accuracy was within one standard
deviation of the mean accuracy of the optimal learning rate,
and we always verify that both the optimal learning rate and
the error bars are not at the boundary of our learning rate
grid. We apply data augmentation including padding, ran-
dom crops and left-right flips. The momentum coefficient
m = 0.9, the L2 regularization coefficient is 5× 10−4, and

when batch normalization is used we set the ghost batch
size to 64 (Hoffer et al., 2017). We also report the mean
final training loss at the optimal learning rate. We note that
although we tune the learning rate on the test set, our goal
in this paper is not to report state of the art performance, but
rather to compare the performance at different batch sizes
and with different training procedures. We apply the same
experimental protocol in each case (Shallue et al., 2018).

5. SGD under a Constant Epoch Budget
In order to verify empirically that the two regimes of SGD
arise on the test set as well as the training set, we perform
a sweep over batch sizes under a fixed epoch budget. We
train for the same number of epochs reported in the original
papers, i.e., 200 epochs for Wide-ResNet on CIFAR-10.

In figure 1(a), we plot the optimal test accuracy for a range
of batch sizes with a 16-4 Wide-ResNet, trained with batch
normalization using SGD with and without Momentum.
Both methods have the same optimal test accuracy when
the batch size is small, but SGD with Momentum performs
better when the batch size is large. The optimal test accuracy
is independent of batch size when the batch size is small,
but begins to falls when the batch size is sufficiently large.
A similar trend is observed for the final training loss at the
optimal effective learning rate in figure 1(b). To understand
these results, we plot the optimal effective learning rate
against batch size in figure 1(c) (for SGD, εeff = ε). For
SGD without Momentum, the learning rate is proportional
to the batch size below B ≈ 512, beyond which the optimal
learning rate is constant. SGD with Momentum has the
same optimal effective learning rate in the small batch limit,
but it is able to scale to larger effective learning rates when
B & 512. All of these results exactly match theoretical
predictions based on convergence bounds (Ma et al., 2017;
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Table 1. The optimal test accuracy and final training loss for a range of batch sizes under a constant step budget. For each batch size, we
train a 16-4 Wide-ResNet with ghost batch normalization for 9765 updates, and we perform a grid search to identify the optimal learning
rate which maximizes the test set accuracy. The final training loss falls as the batch size increases, but the optimal test accuracy drops
significantly for batch sizes greater than 2048. This strongly supports that claim that minibatch gradient noise can enhance generalization.

Batch size Optimal test accuracy (%) Final training loss Optimal effective learning rate
256 93.5± 0.1 0.232± 0.001 22 (21 to 22)
512 94.2± 0.1 0.171± 0.001 22 (22 to 23)
1024 94.5± 0.1 0.107± 0.001 23 (23 to 23)
2048 94.9± 0.1 0.058± 0.000 23 (23 to 23)
4096 94.7± 0.1 0.025± 0.000 24 (24 to 25)
8192 94.6± 0.1 0.017± 0.000 22 (22 to 22)

16384 92.5± 0.6 0.019± 0.004 25 (24 to 25)
32768 89.9± 0.7 0.039± 0.011 25 (20 to 25)

Zhang et al., 2019) or the SDE analogy (See section 3).

The behaviour of SGD is strongly influenced by batch
normalization (Bjorck et al., 2018; Santurkar et al., 2018;
Sankararaman et al., 2019; Park et al., 2019). We therefore
repeat this experiment without normalization in appendix
C.2. To ensure training is stable without batch normalization
we use the “Regularized SkipInit” initialization scheme (De
& Smith, 2020). We provide the full results of a learning
rate sweep at two batch sizes in appendix C.1, as well as
similar experiments for a range of models in appendix C.3.

6. SGD under a Constant Step Budget
In the section above, we studied training under a constant
epoch budget, and we saw that SGD transitions between
two regimes with different behaviours in a range of popular
architectures. However, the results of the previous section
do not tell us whether small batch training/minibatch noise
has a generalization benefit which enhances the test set ac-
curacy, because under a constant epoch budget large batches
perform worse on both the training set and the test set.

To establish whether minibatch noise enhances generaliza-
tion, we now evaluate how the optimal test accuracy depends
on the batch size under a constant step budget. This scheme
ensures that large batch sizes have equal opportunity to min-
imize the training loss. In table 1, we report the optimal test
accuracy of the 16-4 Wide-ResNet on CIFAR-10 at batch
sizes ranging from 256 to 32768. For each batch size, we
train for 9765 updates using SGD with Momentum (this
corresponds to 200 epochs when the batch size is 1024).
Following our previous learning rate schedule, we hold the
learning rate constant for 4882 updates, and then decay the
learning rate by a factor of 2 every 488 steps. We find that
the optimal test accuracy initially increases with increasing
batch size, but it then begins to fall sharply. The optimal test
accuracy at batch size 2048 is 94.9%, but the optimal test ac-
curacy at batch size 16384 is just 92.5%. For completeness,

we have verified that batch size 16384 does not achieve
higher test accuracies with smaller step budgets. We also
report the final training loss, which falls as the batch size
increases, as one would expect from convergence bounds
(Zhang et al., 2019). To our surprise, the final training loss
did rise at the largest batch size considered of 32768 exam-
ples, however we note that the training loss at this batch size
is still smaller than the training loss achieved at batch size
2048, despite the test accuracy being 5% lower.

All experiments in table 1 use a ghost batch size of 64 (Hof-
fer et al., 2017), which ensures that the noise arising from
estimating the batch statistics on a subset of the training
set does not change when the batch size rises. Hoffer et al.
(2017) and De & Smith (2020) showed that the test accu-
racy degrades when the ghost batch size is too large. In
appendix D, we also observed a drop in the test accuracy for
very large batch sizes (under constant step budgets) when
training a 16-4 Wide-ResNet without batch normalization
on CIFAR-10, a 28-10 Wide-ResNet with or without batch
normalization on CIFAR-100, as well as the autoencoder
and LSTM tasks. These results confirm that stochastic gra-
dient noise can enhance generalization. Although this effect
was observed previously (Keskar et al., 2016; Smith & Le,
2017; Jastrzębski et al., 2017), our experiment is the first to
confirm it when training a popular model with a properly
tuned learning rate schedule and a fixed step budget.

Shallue et al. (2018) argued that small batch sizes perform
better under constant epoch budgets and large batch sizes
perform better under constant step budgets. Our results
clarify this claim, demonstrating that the test accuracy under
constant step budgets initially improves with batch size but
may degrade for very large batches. We note that Shallue
et al. (2018) already observed that large batch sizes perform
worse on the test set for ResNet-50/ImageNet, providing
further evidence for our claims. They argue the performance
gap between small and large batch sizes in this setup can be
reduced by introducing additional explicit regularization.
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(a) (b) (c) (d)

Figure 2. A 16-4 Wide-ResNet trained on CIFAR-10 at batch size of 64 for a range of epoch budgets. We train with and without batch
normalization. We identify both the optimal effective learning rate which maximizes the test accuracy and the optimal effective learning
rate which minimizes the training loss. a) Initially the test accuracy rises as the epoch budget increases, however when training without
batch normalization it begins to fall beyond 400 training epochs, while with batch normalization it saturates after 800 epochs. b) The
training loss falls monotonically as the epoch budget rises. c) With batch normalization, the learning rate which minimizes the training
loss falls rapidly as the epoch budget rises, while the learning rate which maximizes the test accuracy only varies by a factor of 2 when the
epoch budget rises over two orders of magnitude. d) Similarly, without batch normalization, the learning rate which minimizes the training
loss falls as the epoch budget rises while the learning rate which maximizes the test accuracy is constant for all epoch budgets considered.

7. SGD with an Unlimited Epoch Budget
We established in section 6 that, in some popular archi-
tectures and datasets, the noise introduced by stochastic
gradients does enhance generalization. This motivates the
following question: if the batch size is fixed, how does the
optimal test accuracy and optimal learning rate depend on
the epoch budget? In particular, is the optimal training tem-
perature (T = ε/B) independent of the epoch budget, or
does it fall as the number of training epochs increases?

To answer this question, we select a fixed batch size of
64, and we evaluate both the optimal test accuracy and the
optimal training loss for a range of epoch budgets using
SGD with Momentum. To study the effect of the optimal
training temperature, we now independently measure both
the optimal learning rate to maximize the test accuracy, and
the optimal learning rate to minimize the training loss. The
optimal test accuracy and optimal training loss are shown in
figures 2(a) and 2(b). We train both with batch normalization
and without batch normalization (using Regularized SkipInit
(De & Smith, 2020)), and we provide the optimal learning
rates with batch normalization in figure 2(c), and the optimal
learning rates without batch normalization in figure 2(d).

In figure 2(a), we see that the optimal test accuracy initially
increases, but then saturates or begins to fall as we increase
the epoch budget further. This is similar to the well-known
phenomenon of early stopping (Prechelt, 1998; Caruana
et al., 2001). Furthermore, in figure 2(b), we find that the
optimal training loss falls monotonically as the epoch budget
increases, consistent with classical optimization theory.

Figures 2(c) and 2(d) are more surprising. The learning
rate that minimizes the training loss falls rapidly as the
epoch budget rises. This is exactly what one would expect
from convergence bounds on convex losses (Ma et al., 2017;

Zhang et al., 2019). Strikingly however, when training with
batch normalization, the learning rate that maximizes the
test accuracy only falls by a factor of 2 when we increase
the epoch budget from 50 to 6400 epochs. Meanwhile
when training without batch normalization, the learning rate
that maximizes the test accuracy is constant for all epoch
budgets considered. These results support the claim that
when training deep networks on classification tasks, there
is an optimal temperature (Smith & Le, 2017; Park et al.,
2019), which biases small batch SGD towards parameters
that perform well on the test set. We provide additional
experimental results on other architectures in appendix E.

7.1. Checking the robustness of our conclusions

In the previous section, we show that there may be an opti-
mal temperature during training that promotes good gener-
alization performance. However the learning rate schedules
used for these experiments have the property that the ini-
tial learning rate (denoted by say ε0) is coupled with the
final learning rate (denoted by say εf ). More specifically,
we have εf = ε0 · γ−10, where γ denotes the decay factor,
which we set to 2 in our experiments (see appendix B.1).

Although common practice, coupling the initial and final
learning rates makes it unclear whether the optimal tempera-
ture arises at the start or the end of training. It also does not
optimize the decay factor. In figure 3, we present the results
of experiments with varying epoch budgets where we tune
the initial and final learning rates independently. As in our
previous experiments, when training forNepochs epochs, we
use the initial learning rate for the first Nepochs/2 epochs,
and then decay the learning rate by a factor of γ every
Nepochs/20 epochs. To define γ, we select an initial learn-
ing rate ε0 and a final learning rate εf , and we then set
γ = (ε0/εf )1/10. These experiments require a very large
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Figure 3. A 16-4 Wide-ResNet with batch normalization trained on CIFAR-10 at a batch size of 64 for a range of epoch budgets. We tune
the initial and the final learning rates independently. We plot both the optimal initial and final learning rates for maximizing the test set
accuracy, as well as the optimal initial and final learning rates for minimizing the training set loss. a) The test accuracy initially increases
with increasing compute budget before saturating for epochs budgets greater than 800. b) Meanwhile the training loss falls monotonically
as the epoch budget rises. c) The optimal initial learning rate which maximizes the test accuracy is constant for epoch budgets greater
than 400, while the optimal final learning rate decays rapidly as the epoch budget increases. d) The optimal initial learning rate which
minimizes the training loss decays slowly as the epoch budget increases, while the optimal final learning rate decays more rapidly.

compute budget, and so we only study the 16-4 Wide-
ResNet model with batch normalization at a batch size of 64
using SGD with Momentum. We consider epoch budgets
between 50 and 6400 epochs, and we evaluate the optimal
initial and final learning rates independently to both maxi-
mize the test accuracy and minimize the training loss. We
evaluate the average performance of the best 5 out of 7 runs.

From figure 3, we see that our main claims in the previous
section still hold. In addition, we make several observations
from figures 3(c) and 3(d). We see that the optimal initial
learning rate for maximizing the test set accuracy decays
very slowly as the epoch budget rises, and it is constant
for epoch budgets greater than 400. This supports the exis-
tence of an optimal temperature early in training that boosts
generalization performance. Meanwhile, the optimal final
learning rate for maximizing the test set accuracy does decay
rapidly as the epoch budget increases, which is likely help-
ful to prevent overfitting at late times. We note that the error
bars on the final learning rate are much larger than those
on the initial learning rate, suggesting that it is the initial
learning rate which is most important to tune in practice.

Furthermore, the optimal initial learning rate for maximiz-
ing the test accuracy is consistently higher than the optimal
initial learning rate for minimizing the training loss, while
the optimal final learning rate for maximizing the test accu-
racy is consistently lower than the optimal final learning rate
for minimizing the training loss. These two observations
support the widely held belief that learning rate schedules
that maintain a high temperature at early times, and then
decay the learning rate rapidly at late times, generalize
well (Li et al., 2019). There is a natural analogy between
schedules of this type and simulated annealing (Smith et al.,
2017). Rapidly decaying the temperature after an initial
large learning rate phase ensures that the final parameters
do not “forget” the influence of noise early in training.

8. Discussion
In this paper, we study the generalization benefit of noise
in stochastic gradient descent. We demonstrate that smaller
batch sizes can outperform very large batch sizes on the test
set under both constant epoch and constant step budgets,
even after careful hyper-parameter tuning. Furthermore,
when considering unlimited compute budgets, we find evi-
dence of an “optimal temperature” that promotes generaliza-
tion (Smith & Le, 2017; Park et al., 2019). In most models,
this temperature is defined by the ratio of the learning rate
to the batch size early in training. Consequently, for a fixed
batch size the existence of an optimal temperature implies
that the optimal learning rate early in training will remain
large even for very large compute budgets (Li et al., 2019).

Although we have been careful in designing our experiments
and in performing rigorous hyperparameter tuning, our con-
clusions are only valid for the learning rate schedule we
used and the architectures we considered. We designed our
schedule to ensure these conclusions are likely to apply to
the popular schedules used by practitioners. However, given
enough compute, it may be possible to design schedules that
work equally well but do not follow our main claims.

Our results suggest that, given a limited compute budget,
one should save resources by choosing a schedule parame-
terized solely by the initial learning rate (e.g. fixing γ = 2
in our default schedule). One can also save resources by
estimating the optimal learning rate on a logarithmic grid for
a small epoch budget, before increasing the epoch budget to
fine-tune. Given additional resources, one should also tune
the final learning rate, but this usually has less influence on
the test accuracy. If one wishes to reduce the wall clock time
by parallelizing over large batches, a good rule of thumb
is to train near the boundary between the noise and curva-
ture dominated regimes (McCandlish et al., 2018). One can
estimate the location of this boundary by first running a
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cheap sweep over a few epochs to identify the largest stable
learning rate, before scaling the batch size accordingly.

Despite a great deal of research, SGD with Momentum
remains the most popular optimization algorithm in deep
learning. Our research suggests two explanations for this.
First, most optimization research designs algorithms for
poorly conditioned losses. However typical batch sizes,
32 . B . 128, are often in the noise dominated regime. In
this regime, the training dynamics is governed by gradient
noise, not conditioning. Algorithms designed to tackle cur-
vature are more likely to help when the batch size is large
(Zhang et al., 2019), but this large batch regime is primar-
ily of interest to large organizations which can parallelize
training over multiple devices. Second, if we wanted to find
algorithms that outperform SGD with small batches and
finite compute budgets, the most promising methods would
be those that reduce the variance of stochastic gradients
(Le Roux et al., 2012). These algorithms converge signifi-
cantly faster on convex losses. However, our work confirms
that gradient noise has a generalization benefit early in train-
ing which leads to higher test accuracies. This may explain
why it is difficult to design optimization algorithms for the
noise dominated regime that perform well on the test set.

Acknowledgements
We thank Brendan O’Donoghue, Andriy Mnih, Chris Maddi-
son, James Martens, Navid Azizan, Tom Goldstein, Razvan
Pascanu, Esme Sutherland and Yee Whye Teh for various
discussions that have helped improve the paper.

References
Bjorck, N., Gomes, C. P., Selman, B., and Weinberger,

K. Q. Understanding batch normalization. In Advances in
Neural Information Processing Systems, pp. 7694–7705,
2018.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010,
pp. 177–186. Springer, 2010.

Caruana, R., Lawrence, S., and Giles, C. L. Overfitting in
neural nets: Backpropagation, conjugate gradient, and
early stopping. In Advances in neural information pro-
cessing systems, pp. 402–408, 2001.

Chaudhari, P. and Soatto, S. Stochastic gradient descent
performs variational inference, converges to limit cycles
for deep networks. In 2018 Information Theory and
Applications Workshop (ITA), pp. 1–10. IEEE, 2018.

De, S. and Smith, S. L. Batch normalization biases residual
blocks towards the identity function in deep networks.
arXiv preprint arXiv:2002.10444, 2020.

De, S., Yadav, A., Jacobs, D., and Goldstein, T. Automated
inference with adaptive batches. In Artificial Intelligence
and Statistics, pp. 1504–1513, 2017.

Gardiner, C. W. et al. Handbook of stochastic methods,
volume 3. springer Berlin, 1985.

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P.
The step decay schedule: A near optimal, geometri-
cally decaying learning rate procedure. arXiv preprint
arXiv:1904.12838, 2019.

Goh, G. Why momentum really works. Distill, 2(4):e6,
2017.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heskes, T. M. and Kappen, B. On-line learning processes in
artificial neural networks. In North-Holland Mathemati-
cal Library, volume 51, pp. 199–233. Elsevier, 1993.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 1731–1741, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.
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