On the Generalization Benefit of Noise in Stochastic Gradient Descent

A. Deriving the linear scaling rule for small
batch sizes

In section 3 of the main text, we applied the central limit
theorem to approximate a single SGD step by,

Awi = ((.L)H_l — wi) ~ *6% + \/51/, (4)
The temperature T' = ¢/B, E(r;) = 0 and E (z/iujT) =
F(w;)é;5, where F(w) is the empirical Fisher information
matrix and d;; is the dirac delta function. Equation 4 holds
so long as the gradient of each training example is an inde-
pendent and uncorrelated sample from an underlying short
tailed distribution. Additionally, it assumes that the training
set size N > B and the batch size B > 1. To derive
the linear scaling rule, we consider the total change in the
parameters over n consecutive SGD parameter updates,
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The noise &; = (1/y/n) Z?;Ol Vit+;. When the product of
the number of steps n and the learning rate ¢ is much smaller
than the critical learning rate, ne < €., the parameters
do not move far enough for the gradients to significantly
change, and therefore for all {j, j'} greater than 0 and less
than n,
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Using equation 6, we can rewrite equation 5 as
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Equation 7 implies that E (¢;) = 0 and E (§,¢) ~ F(w;).
We therefore conclude that £ and v are both Gaussian ran-
dom variables from the same distribution. Comparing equa-
tion 4 and equation 8, we conclude that n SGD updates at
temperature 1" with learning rate € is equivalent to a single
SGD step at temperature 7" with learning rate ne. Since the
temperature 7' = €/ B, this implies that when ¢ < €.z,
then simultaneously doubling both the learning rate and the
batch size should draw samples from the same distribution
over parameters after the same number of training epochs.

This prediction is known as the linear scaling rule
(Krizhevsky, 2014; Goyal et al., 2017; Mandt et al., 2017;
Smith & Le, 2017; Jastrzebski et al., 2017; Chaudhari &
Soatto, 2018; McCandlish et al., 2018; Shallue et al., 2018).
Since this linear scaling rule assumes that € < €., it usu-
ally holds when the batch size is small, which appears to con-
tradict the assumption B > 1 above. Crucially however, the

distribution of v; does not matter in practice, since our dy-
namics is governed by the combined influence of noise over
multiple consecutive updates, & = (1/y/n) Z?;Ol Vigj-

In other words, we do not require that equation 4 is an
accurate model of an single SGD step, we only require
that equation 8 is an accurate model of n SGD steps. We
therefore conclude that v; does not need to be Gaussian, we
only require that &; is Gaussian. The central limit theorem
predicts that, if v; is an independent random sample from
a short-tailed distribution, &; will be Gaussian if N > 1,
nB > land nB < N. If € < €., then we can choose
1 < n < N, and discard the assumption B > 1.

B. Additional experimental details

In this section, we provide additional details about the ex-
perimental setup and models considered in our study.

B.1. Our learning rate decay schedule

We illustrate our default learning rate decay schedule in
figure 4. As specified in the main text, if the epoch budget is
Nepochs» we hold the learning rate constant for Nepochs /2,
before decaying the learning rate by a factor of ~ every
Nepochs/20. Unless specified otherwise, v = 2. Note
that in our constant step experiments, the epoch budget is
proportional to the batch size, which ensures that all batch
sizes decay the learning rate after the same number of steps.
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Figure 4. Our default learning rate schedule with v = 2.

B.2. Additional models used

In addition to the 16-4 Wide-ResNet model on CIFAR-10
presented in the main paper (Zagoruyko & Komodakis,
2016), we provide additional experiments in the appendix
using ResNet-50 on ImageNet (He et al., 2016), 28-10 Wide-
ResNet on CIFAR-100 (Zagoruyko & Komodakis, 2016),
LSTMs on Penn TreeBank (Zaremba et al., 2014) and au-
toencoders on MNIST (Sutskever et al., 2013).

ResNet50 on ImageNet: We follow the modified ResNet-
50 implementation of Goyal et al. (2017) for training on
ImageNet, and we use our default learning rate schedule
without learning rate warmup (see appendix B.1). Due to
the large compute budget required for these models, we train
a single model for each batch size/learning rate pair.
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Figure 5. A 16-4 Wide-ResNet, trained with batch normalization on CIFAR-10 for 200 epochs. For completeness, we provide the
performance at a range of learning rates for two batch sizes, 64 and 1024 (the performance for a range of batch sizes at the optimal
learning rate is shown in figure 1). The smaller batch size is in the noise dominated regime, while the larger batch size is in the curvature
dominated regime. We provide the final test accuracies in figures a and b, and the final training losses at in figures c and d. SGD and
SGD with Momentum always achieve similar final performance in the small learning rate limit, while SGD performs poorly when the
learning rate is large. When the batch size is small, the optimal learning rate is also small, and so both methods have similar optimal test
accuracy/training loss. When the batch size is large, the optimal learning rate is large, and SGD with Momentum performs better.
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Figure 6. A 16-4 Wide-ResNet, trained without batch normalization using Regularized SkipInit (De & Smith, 2020) on CIFAR-10 for 200
epochs. We report the performance of SGD and SGD with Momentum. We perform a grid search to identify the optimal learning rate
which maximizes the test accuracy, and report the mean performance of the best 12 of 15 runs. a) The test accuracy is independent of
batch size when the batch size is small, but begins to fall when the batch size is sufficiently large (B 2, 8 for SGD and B 2 256 for SGD
with Momentum. b) The training loss at the optimal effective learning rate is independent of batch size when the batch size is small, but
rises rapidly when the batch size is sufficiently large. c) The optimal effective learning rate is proportional to batch size when the batch
size is small for both both SGD and SGD with Momentum, while it is independent of batch size when the batch size is sufficiently large.

28-10 Wide-ResNet on CIFAR100: We train 28-10 Wide-  Autoencoder on MNIST: We train a fully-connected
ResNets on CIFAR-100 (Zagoruyko & Komodakis, 2016).  autoencoder on MNIST. Our network architec-
We use our default learning rate schedule, as described in ture is described by the sequence of layer widths
appendix B.1, which reaches the same test set accuracy as {784,1000, 500, 250, 30, 250, 500, 1000, 784}, where 784
is reported by Zagoruyko & Komodakis (2016). denotes the input and output dimensions. For more details

LSTM on Penn TreeBank: We train a word-level LSTM on this architecture, we refer to Sutske'vef et ?11. (2013). This
language model on the Penn TreeBank dataset (PTB), fol- model has often been u.sed'as an o ptimization benchmark
lowing the implementation described in Zaremba et al. (Sutskey er.et al., 2013; Kidambi et al'LgOlg)' The 1.2
(2014). The LSTM model used has two layers with 650 regularlzathn parameter was set at .10 . We Use our
units per layer. The parameters are initialized uniformly in default learning rate schedule, as described in appendix B.1.
[—0.05,0.05]. We apply gradient clipping at 5, as well as

dropout with probability 0.5 on the non-recurrent connec- C. Additional results under constant epoch
tions. We train the LSTM using an unroll step of 35, and use budgets

the learning rate decay schedule described in appendix B.1.
As with the other models tested in this paper, this learning
rate schedule reaches the same test perplexity performance
as the original schedules reported in (Zaremba et al., 2014).

In this section, we provide additional experimental results to
verify the existence of two regimes of SGD under a constant
epoch budget. In all cases, we observe a transition from a
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Table 2. ResNet-50, trained on ImageNet for 90 epochs. We follow the implementation of Goyal et al. (2017), however we introduce
our modified learning rate schedule defined in appendix B.1. We perform a grid search to identify the optimal effective learning
rate and report the performance of a single training run. The test accuracies achieved by SGD and Momentum are equal when the
batch size is small, but Momentum outperforms SGD when the batch size is large. For SGD with Momentum, the optimal effec-
tive learning rate is proportional to batch size for all batch sizes considered, while this linear scaling rule breaks at large batch sizes for SGD.

Batch size | Optimal test accuracy (%) | Training loss | Optimal effective learning rate
256 77.0 2.25 1.0
SGD 1024 76.7 2.25 4.0
4096 76.1 2.30 8.0
256 77.0 2.25 1.0
Momentum 1024 76.8 2.25 4.0
4096 76.8 2.25 16.0
90+ o+t v 322 Sl
e - 2" 44 sep Lo
E 88- ¢—¢ Momentum -‘g 30- ¢—¢ Momentum E‘ o2 R T I |
o a s .
L 86- gjza— 8 . = ‘\\“
4 £ g e
- 84- T 26- S 50 e R
= i = # L -~
gaz}**ﬁ—«e——o——:\ s B EM’ T o “EZL— e 1
8_ - [ :_,,___2_&_9/ o s g e
e e e e e e e T T e e O e P e T i e e e e e e e e
20 2t 2z 23 2% 25 28 27 28 39 20 21 22 23 2% 25 26 27 28 29 O 20 2t 22 23 2% 25 28 27 28 29
Batch Size Batch Size Batch Size

(a) (b) (©)

Figure 7. A word-level LSTM language model trained on PTB for 40 epochs. We report the performance of SGD and SGD with
Momentum. We perform a grid search to identify the optimal learning rate which maximizes the test set perplexity, and report the mean
performance of the best 5 of 7 runs. a) The test set perplexity of SGD with Momentum is independent of batch size when the batch size is
small, but begins to rise when the batch size exceeds 128. The test set perplexity of vanilla SGD starts rising for batch sizes exceeding 64.
b) We see similar phenomena on the training set perplexity. ¢) Surprisingly, the optimal effective learning rate is proportional to square
root of the batch size when the batch size is small, while it levels off for larger batch sizes. We note that the gradients of consecutive
minibatches in a language model are not independent, which violates the assumptions required to derive the linear scaling rule.

small batch regime, where the learning rate increases with and Momentum in the small learning rate limit when the
the batch size and SGD with Momentum does not outper-  momentum parameter is kept fixed (Orr & Leen, 1994; Qian,
form SGD, to a large batch regime, where the learning rate 1999; Yuan et al., 2016). Meanwhile, SGD performs poorly
is independent of the batch size and SGD with Momentum compared to SGD with Momentum when the learning rate
outperforms SGD. Under a constant epoch budget, both the is large. When the batch size is small, the optimal learn-
training loss and the optimal test accuracy are independent  ing rates for both methods are also small, and so the two
of batch size in the noise dominated regime, but begin to methods have the same optimal test accuracy. However

degrade when one enters the curvature dominated regime. when the batch size is large, the optimal learning rate is
large, and consequently SGD with Momentum outperforms
C.1. Learning rate sweep with batch normalization for vanilla SGD. These results are entirely consistent with the

two batch sizes on CIFAR-10 Wide-ResNet model two regimes of SGD discussed in section 3.

In figure 5, we provide additional results with the 16-4 Wide-
ResNet, trained with batch normalization on CIFAR-10 for
200 epochs. Here we provide the final test set accuracies
and the final training set losses for a full learning rate sweep In figure 6 we present results when training our 16-4 Wide-
at two batch sizes, 64 and 1024. From figure 5, we see ResNet (Zagoruyko & Komodakis, 2016). We follow the
that SGD and Momentum always achieve similar final per-  same setup and learning rate schedule described in sec-
formance in the small learning rate limit. This confirms tion 4, and we train for 200 epochs. However we remove
previous theoretical work showing the equivalence of SGD batch normalization, and introduce the Regularized Skip-

C.2. Results without batch normalization on CIFAR-10
Wide-ResNet
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Figure 8. A fully connected autoencoder, trained on MNIST for 200 epochs. We report the performance of SGD and SGD w/ Momentum.
We perform a grid search to identify the optimal learning rate which maximizes the mean-squared error (MSE) on the test set, and report
the mean performance of the best 5 of 7 runs. a) The test MSE of SGD w/ Momentum is initially independent of batch size, but it begins
to rise when the batch size exceeds 128. The test MSE of vanilla SGD starts rising for batch sizes exceeding 16. b) We see similar
phenomena on the training set MSE. c¢) The optimal effective learning rate is proportional to batch size when the batch size is small for
both vanilla SGD and SGD w/ Momentum, while it becomes independent of batch size for larger batch sizes. The optimal effective
learning rate in the curvature dominated regime is larger for SGD w/ Momentum.

Init initialization scheme proposed by De & Smith (2020).
This initialization scheme enables the training of very deep
networks, and it reduces the gap in test accuracy between
networks trained with and without batch normalization.

We observe remarkably similar trends to those observed
in section 5 of the main text, although the critical learning
rate, beyond which the optimal learning rate of SGD is in-
dependent of batch size, is significantly smaller when batch
normalization is not used. The performance of SGD on both
the training and the test set is independent of batch size for
very small batch sizes B < 8, while the performance of
SGD with Momentum is constant for batch sizes B < 256.
Above these thresholds, the performance of both methods
degrades rapidly. These observations are explained by the
optimal effective learning rates in figure 6(c). SGD with Mo-
mentum has a significantly larger maximum stable learning
rate, enabling it to scale to larger batch sizes.

C.3. Results from additional models

In table 2, we provide results for ResNet-50 trained on
ImageNet for 90 epochs at a small range of batch sizes. SGD
with and without Momentum achieve similar test accuracies
when the batch size is small, but SGD with Momentum
outperforms SGD without Momentum when the batch size
is large. The optimal effective learning rate is proportional
to batch size for all batch sizes considered when using SGD
with Momentum, but not when using vanilla SGD.

In figure 7, we present results for the LSTM on PTB trained
for 40 epochs. Once again, we see that SGD and SGD with
Momentum have similar performance for small batch sizes.
Performance for SGD starts degrading for batch sizes ex-
ceeding 64, whereas performance for SGD with Momentum

starts degrading for batch sizes exceeding 128. However,
unlike our previous experiments, we notice that the optimal
learning rate increases as square root of the batch size for
small batch sizes, before leveling off at a constant value for
larger batch sizes. The square root scaling observed here
could be due to correlations between consecutive data sam-
ples when training the LSTM, which violate the assumptions
used to derive the linear scaling rule in section 3.

In figure 8, we present results on training the fully-connected
autoencoder on MNIST for 200 epochs. As before, we
notice that for small batch sizes, the performance of both
SGD and SGD with Momentum is independent of batch
size, while performance begins to degrade when the batch
size is large. On this model, the performance of SGD begins
to degrade at much smaller batch sizes than we observed
in normalized residual networks, and consequently SGD
with Momentum starts outperforming SGD at much smaller
batch sizes. This is likely due to the poor conditioning of
the model due to the bottleneck structure of its architecture.

D. Additional results under constant step
budgets

In this section, we provide additional results studying how
the optimal test accuracy depends on the batch size under a
constant step budget for a range of models. We train with
SGD with Momentum. In each case, we set the number of
training steps to be equal to the number of training steps
taken by the largest batch size before performance starts
degrading under our constant epoch budget experiments.

In table 3, we show results for training a 16-4 Wide-ResNet
on CIFAR-10 without batch normalization using Regular-
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Table 3. The optimal test accuracy and final training loss for a range of batch sizes under a constant step budget. For each batch size, we
train a 16-4 Wide-ResNet without batch normalization on CIFAR-10 using Regularized Skiplnit (De & Smith, 2020) for 156,250 updates.
We perform a grid search to identify the optimal learning rate which maximizes the test accuracy, and we provide the average performance
of the best 12 out of 15 training runs. The final test accuracy falls for very large batches. We note that, although the final training loss rises
slightly at batch size 2048, the training loss remains lower than that achieved at batch size 128 (for which the test accuracy was maximized).

Batch size | Optimal test accuracy | Final training loss | Optimal effective learning rate
16 92.6 +0.2 0.349 £ 0.004 2=1 (27710 27?)
32 93.9+0.1 0.269 £ 0.004 273 (273 t0272)
64 94.44+0.1 0.192 + 0.002 272 (272t0271)
128 94.6 £ 0.1 0.122 £ 0.000 271 (2710 271)
256 94.4+0.1 0.071 £ 0.001 271 (271 10 29)
512 94.1+0.1 0.043 £ 0.000 270 (2710 2!)
1024 93.8+0.1 0.028 £ 0.000 271 (27110 29)
2048 93.0+0.6 0.054 £ 0.050 271 (27110 29)

Table 4. The optimal test accuracy and final training loss for a range of batch sizes under a constant step budget. For each batch size, we
train a 28-10 Wide-ResNet with batch normalization on CIFAR-100 for 9765 updates. We perform a grid search to identify the optimal
learning rate which maximizes the test accuracy, and we provide the average performance of the best 12 out of 15 training runs. The test
accuracy initially rises as the batch size rises, but it falls for very large batches. The training loss also rises at the largest batch size
considered of 16384 but remains comparable to that observed at batch size 2048 (for which the test accuracy was maximized).

Batch size | Optimal test accuracy (%) | Final training loss | Optimal effective learning rate

256 789+0.1 0.609 + 0.004 22 (22 t0 22)

512 79.9+0.2 0.462 + 0.008 23 (22 to 23)

1024 80.1£0.2 0.274 +0.003 24 (23 to 24)

2048 80.2£0.2 0.132 4+ 0.002 24 (24 to 24)

4096 79.6 £0.2 0.073 +0.001 25 (2° to 2°)

8192 78.14+0.4 0.045 4+ 0.001 25 (21 to 2%)
16384 72.2+£0.2 0.156 +0.036 21 (21 to 22)

ized SkipInit (De & Smith, 2020) for 156250 updates. This
corresponds to 200 epochs when the batch size is 64. The
final training loss falls as the batch size rises, while the test
accuracy drops for large batch sizes. At the largest batch size
considered, both the test accuracy and the training loss ex-
hibit a large standard deviation across different training runs
(at the optimal learning rate). At this batch size, we note
that the variance is much lower at lower learning rates (at
which the training loss is also lower), however these smaller
learning rates also achieve lower mean test accuracy.

In table 4, we train a 28-10 Wide-ResNet on CIFAR-100
with batch normalization for 9765 steps at a range of batch
sizes (which corresponds to 200 epochs when the batch size
is 1024), while in table 5 we train a 28-10 Wide-ResNet
on CIFAR-100 without batch normalization (using Regular-
ized Skiplnit) for 156,250 steps (which corresponds to 200
epochs when the batch size is 64). In both cases the test ac-
curacy drops significantly when the batch size is very large.
In table 4 the training loss falls as the batch size rises, while
in 5 the training loss rises slightly for very large batches.

In table 6, we train the word-level LSTM on the Penn Tree-

Bank (PTB) dataset (Zaremba et al., 2014) for 16560 up-
dates. This corresponds to 40 epochs at batch size 64. We
described this model in appendix B, and we train using the
learning rate schedule defined in appendix B.1 using SGD
with Momentum. The test perplexity increases as the batch
size increases, while the training perplexity falls.

In table 7, we train a fully connected auto-encoder on
MNIST for 156,250 updates (Sutskever et al., 2013). This
corresponds to 200 epochs when the batch size is 64. We
described this model in appendix B, and we train using the
learning rate schedule defined in appendix B.1 using SGD
with Momentum. The test set MSE increases slightly as the
batch size increases, while the training set MSE falls as the
batch size rises. Although the training set MSE does appear
to rise slightly for a batch size of 4096, we note that the
training loss in this case is similar to that achieved with a
batch size of 64, while the test set MSE in this case is worse
than that at batch size 64. The optimal effective learning rate
is independent of the batch size, suggesting that the learning
rate may be close to curvature dominated regime. We note
that the benefits of noise appear to be significantly smaller
in this architecture than for the Wide-ResNet or LSTM.
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Table 5. The optimal test accuracy and final training loss for a range of batch sizes under a constant step budget. For each batch size, we
train a 28-10 Wide-ResNet on CIFAR-100 without batch normalization using Regularized Skiplnit for 156,250 updates. We perform a
grid search to identify the optimal learning rate which maximizes the test accuracy, and we provide the average performance of the best 12
out of 15 training runs. The final test accuracy falls for very large batches, while surprisingly the training loss also rises slightly.

Batch size | Optimal test accuracy | Final training loss | Optimal effective learning rate

32 77.9+0.2 0.0512 4+ 0.0611 0.025 (0.025 to 0.050)

64 79.0+£0.2 0.0141 +0.0281 0.050 (0.050 to 0.050)

128 79.4+0.1 0.0011 £ 0.0004 0.100 (0.100 to 0.100)

256 78.9+0.1 0.0191 £ 0.0221 0.200 (0.200 to 0.200)

512 77.7+0.1 0.0022 £ 0.0035 0.200 (0.200 to 0.200)
1024 76.0£0.1 0.0009 + 0.0012 0.200 (0.200 to 0.200)
2048 74.24+0.3 0.0029 £ 0.0025 0.200 (0.200 to 0.200)

Table 6. The optimal test set perplexity and final training set perplexity for a range of batch sizes under a constant step budget. For each
batch size, we train a word-level LSTM on PTB for 16560 updates. We perform a grid search to identify the optimal learning rate which
maximizes the test set perplexity, and we provide the average performance of the best 5 out of 7 training runs. The optimal test perplexity

increases as the batch size rises, while the training perplexity falls.

Batch size | Optimal test perplexity | Final training perplexity | Optimal effective learning rate
16 88.06 £ 0.26 35.85+0.06 1.4 (1.4t01.4)
32 82.50+0.13 28.99 +0.03 2.0 (2.0t02.0)
64 81.67 +0.26 23.25+0.05 2.8 (2.8t02.8)
128 86.04 £ 0.49 21.16 £ 0.06 5.6 (5.6t05.6)
256 92.19 +0.26 15.74 +£0.03 5.6 (5.6t05.6)

E. Additional results with a fixed batch size
and variable epoch budget

We now provide additional experimental results to accom-
pany those provided in section 7, where we study whether
the optimal training temperature is independent of the epoch
budget. We use SGD with Momentum with the momentum
parameter m = 0.9 for all our experiments in this section.

In figure 9, we present results on a word-level LSTM on the
PTB dataset for a batch size of 64 and for varying epoch
budgets. Note that the original LSTM model in Zaremba
et al. (2014) was trained for 39 epochs. The results in figure
9 are remarkably similar to those presented in figure 2. As
the epoch budget rises, the test set perplexity first falls but
then begins to increase. The training set perplexity falls
monotonically as the epoch budget increases. Finally, the
optimal learning rate which minimizes the test set perplexity
is independent of the epoch budget once this epoch bud-
get is not too small, while the optimal learning rate which
minimizes the training set perplexity falls.

In figure 10, we present results on a fully connected autoen-
coder trained on MNIST for a batch size of 32 and for a
range of epoch budgets. Note that the autoencoder results
presented in section C were trained for 200 epochs. Fig-
ures 10(a) and 10(b) are similar to figures 2(a) and 2(b) in
the main text. Initially the test set MSE falls as the epoch

budget increases, but then it starts increasing. The training
set MSE falls monotonically as the epoch budget rises. In
figure 10(c) however, we notice that the learning rate that
minimizes the test set MSE decreases as the epoch budget
rises. This is the opposite of what we observed in figures
2 and 9. To further investigate this, in figure 10(d) we plot
the mean test set MSE during training for an epoch budget
of 800 for learning rates e = 0.004 and ¢ = 0.002. We
notice that for the larger learning rate ¢ = 0.004, the model
overfits faster on the training set, causing the test set MSE to
rise by the time of the first learning rate drop at 400 epochs.
This is consistently the case for all epoch budgets over 200
epochs. To avoid the test set MSE from rising, the optimal
learning rate for the test MSE drops to slow down training
sufficiently such that there is no overfitting before the first
learning rate decay. Meanwhile the optimal learning rate
to minimize the training loss is more or less constant. This
suggests that early stopping is particularly important in this
architecture and dataset, and that it has more influence on
the final test performance than stochastic gradient noise.
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Table 7. The optimal test set MSE and final training set MSE for a range of batch sizes under a constant step budget. For each batch size,
we train a fully connected autoencoder on MNIST for 156,250 updates. We perform a grid search to identify the optimal learning rate
which maximizes the test set MSE, and we provide the average performance of the best 5 out of 7 training runs. The final test MSE falls
for large batch sizes, although this effect is rather weak in this model.

Batch size | Optimal test set MSE | Final training set MSE | Optimal effective learning rate

64 291 £0.01 2.017 £0.003 0.08 (0.08 to 0.08)
256 2.95+0.01 2.010 £0.005 0.08 (0.08 to 0.08)
1024 2.96 +0.01 2.005 £ 0.011 0.08 (0.08 to 0.08)
4096 2.98 £0.01 2.018 £0.008 0.08 (0.08 to 0.08)
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Figure 9. The performance of a word-level LSTM language model trained on the Penn TreeBank dataset using SGD with Momentum and
a batch size of 64 at a range of epoch budgets. We identify both the optimal effective learning rate which minimizes the test set perplexity
and the optimal effective learning rate which minimizes the training set perplexity, and we present the mean performance of the best 5 out
of 7 runs. a) Initially the test set perplexity falls as the epoch budget increases, however it begins to rise beyond 56 training epochs. b) The
training set perplexity falls monotonically as the epoch budget rises. ¢) The learning rate that minimizes the training set perplexity falls as
the epoch budget rises, while the learning rate that minimizes the test set perplexity only varies by a factor of 2 when the epoch budget
rises over two orders of magnitude.
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Figure 10. The performance of a fully connected autoencoder on MNIST using SGD with Momentum and a batch size of 32 at a range of
epoch budgets. We identify both the optimal effective learning rate which minimizes the test set MSE and the optimal effective learning
rate which minimizes the training set MSE, and we present the mean performance of the best 5 out of 7 runs. a) Initially the test set MSE
falls as the epoch budget increases, before rising slightly for large epoch budgets. b) The train set MSE falls monotonically as the the
epoch budget rises. c) The learning rate that minimizes the test set MSE decreases, while the learning rate that minimizes the train set
MSE remains constant as the epoch budget rises. This is contrary to what we observe in figures 2 and 9. The reason for this is apparent
from figure d), where we plot the test set MSE during training for all 7 runs for an epoch budget of 800 for learning rate ¢ = 0.004 and
€ = 0.002. We notice that for a larger learning rate, the model overfits on the training set faster, causing the test set MSE to rise by the
time of the first learning rate drop at 400 epochs. This suggests that early stopping has more influence on the final test performance in this
architecture than stochastic gradient noise.



