
When Explanations Lie: Why Many Modified BP Attributions Fail

A. Proof of Theorem 1
In (Friedland, 2006) the theorem is proven for square matrices. In fact Theorem 1 can be deduced from this case by the
following argument:

For a sequence of non-square matrices (Ak)k∈N ∈ Rmk×lk of finite size mk, lk ≤ L we can always find a finite set of
subsequent matrices that when multiplied together are a square matrix.

A1 · ... ·An1︸ ︷︷ ︸
=:Ā1∈Rm×m

·An1+1 · ... ·An2︸ ︷︷ ︸
=:Ā2∈Rm×m

·An2+1 · ... ·An3︸ ︷︷ ︸
=:Ā3∈Rm×m

·... (17)

The matrices Ā1, Ā2, Ā3, ... define a sequence of non-negative square matrices that fulfill the conditions in (Friedland, 2006)
and therefore converge to a rank-1 matrix.

Our proof requires no knowledge of algebraic geometry and uses the cosine similarity to show convergence. First, we
outline the conditions on the matrix sequence An. Then, we state the theorem again and sketch our proof to give the reader
a better overview. Finally, we prove the theorem in 5 steps.

Conditions on An The first obvious condition is that the (An)n∈N is a sequence of non-negative matrices such that Ai,
Ai+1 have the correct size to be multiplied together. Secondly, as we calculate angles between column vector in our proof,
no column of An should be zero. The angle between a zero vector and any other vector is undefined. Finally, the size of An
should not increase infinitely, i.e. an upper bound on the size of the Ai’s exists such that Ai ∈ Rm×l where m, l ≤ L for
some L ∈ N.

Definition 1. We say limn→∞An exists, if for allm, l ∈ N the subsequencesAnk(m,l)
∈ Rm×l that consist of all terms that

have size m× l converge elementwise. Note that even if there only finitely many, say AN is the last term with An ∈ Rm×l,
we say limk→∞Ank(l,m)

= AN .

Theorem 1. Let A1, A2, A3 . . . be a sequence of non-negative matrices as described above such that limn→∞An exists.
We exclude the cases where one column of limn→∞An is the zero vector or two columns are orthogonal to each other. Then
the product of all terms of the sequence converges to a rank-1 matrix C̄:

C̄ :=

∞∏
i=1

Ai = c̄γT . (18)

Matrices of this form are excluded for limn→∞An:
︸ ︷︷ ︸

arbitrary

v1 ... vl ︸ ︷︷ ︸
orthogonal

vl+1 ... vm ︸ ︷︷ ︸
vi = 0

vm+1 ... vn




0 1
1 1
1 1
1 1

1 0
0 0
1 0
0 1

0 0
0 0
0 0
0 0



Theory Example

up to ordering of the columns.

Proof sketch To show that
∏∞
i Ai converges to a rank-1 matrix, we do the following steps:

(1) We define a sequence sn as the cosine of the maximum angle between the column vectors of Mn :=
∏n
i=1Ai.

(2) We show that the sequence sn is monotonic and bounded and therefore converging.

(3) We assume limn→∞ sn 6= 1 and analyze two cases where we do not get a contradiction. Each case yields an equation
on limn→∞An.

(4) In both cases, we find lower bounds on sn: αnsn−1 and α′nsn−1 that are becoming infinitely large, unless we have
limn→∞ αn = 1 (case 1) or limn→∞ α′n = 1 (case 2).
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(5) The lower bounds lead to equations on limn→∞An for non-convergence. The only solutions, we obtain for
limn→∞An, are those explicitly excluded in the theorem. We still get a contradiction and limn→∞ sn = 1 ⇒∏∞
i Ai = c̄γT .

Proof (1) Let Mn :=
∏n
i=1Ai be the product of the matrices A1 · . . . ·An. We define a sequence on the angles of column

vectors of Mn using the cosine similarity. Let v1(n), ...,vk(n)(n) be the column vectors of Mn. Note, the angles are well
defined between the columns of Mn. The columns of Mn cannot be a zero vector as we required An to have no zero
columns. Let sn be the cosine of the maximal angle between the columns of Mn:

sn = mini6=j scos(vi(n),vj(n)) := min
i,j

〈vi(n),vj(n)〉
‖vi(n)‖‖vj(n)‖

, (19)

where 〈·, ·〉 denotes the dot product. We show that the maximal angle converges to 0 as limn→∞ sn = 1, which is equivalent
to Mn converging to a rank-1 matrix. In the following, we take a look at two consecutive elements of the sequence sn and
check by how much the sequence increases.

(2) We show that the sequence sn is monotonic and bounded and therefore converging. Assume an+1 and bn+1 are the two
columns of An+1 which produce the columns vm(n+ 1) and vm′(n+ 1) of Mn+1 with the maximum angle:

sn+1 = scos(vm(n+ 1),vm′(n+ 1)) = scos(Mnan+1,Mnbn+1). (20)

We also assume that ‖vi(n)‖ = 1 for all i, since the angle is independent of length. To declutter notation, we write
vi(n) =: vi, an = a = (a1, ..., ak)T and bn = b = (b1, ..., bk)T . We now show that sn is monotonic and use the definition
of the cosine similarity:

sn+1 =

∑
ij aibj〈vi,vj〉

‖
∑
i aivi‖‖

∑
i bivi‖

(21)

Using the triangle inequality ‖
∑
i aivi‖ ≤

∑
i ai‖vi‖ we get:

sn+1 ≥
∑
ij aibj〈vi,vj〉

(
∑
i ai‖vi‖)(

∑
i bi‖vi‖)

(22)

As we assumed that the ‖vi‖ = 1, we know that 〈vi,vj〉 = scos(vi,vj) which must be greater than the smallest cosine
similarity sn:

sn+1 ≥
∑
ij aibj〈vi,vj〉

(
∑
i ai)(

∑
i bi)

≥
∑
ij aibj

(
∑
i ai)(

∑
i bi)

sn = sn (23)

Therefore sn is monotonically increasing and upper-bounded by 1 as the cosine. Due to the monotone convergence theorem,
it will converge. The rest of the proof investigates if the sequence sn converges to 1 and if so, under which conditions.

(3) We look at two consecutive sequence elements and measure the factor α by which they increase: sn+1 ≥ αsn. We are
using proof by contradiction and assume that sn does not converge to 1. We get two cases, each with a lower bound on the
factor of increase. For both cases, we find a lower bound for α > 1 for all n which would mean that sn is diverging to
∞ – a contradiction. Under certain conditions on limn→∞An, we do not find a lower bound α > 1. We find that these
conditions correspond to the conditions explicitly excluded in the theorem and therefore Mn converges to a rank-1 matrix.

Case 1: Let tn := 〈vl(n),vm(n)〉 (l 6= m) and assume that there exists a subsequence tnk
of tn that does not converge to

limn→∞ sn. So there is an ε > 0 such that 〈vl(nk),vm(nk)〉 ≥ (1 + ε)snk
for all k ≥ K for some K ∈ N.

We multiply the first lower bound of equation 23 by 1 = sn
sn

and get:

sn+1 ≥
∑
ij aibj〈vi,vj〉

(
∑
i ai) (

∑
i bi)

=

∑
ij aibj

〈vi,vj〉
sn

(
∑
i ai) (

∑
i bi)

sn, (24)
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We will now pull terms corresponding to the pair (l,m) out of the sum and for all terms in the sum, we lower bound
〈vi,vj〉
sn

≥ 1 by one. Let the set I := {(i, j) | (i, j) 6= (l,m), (m, l)} index all other terms:

sn+1 ≥
∑
I aibj + (albm + ambl)

〈vl,vm〉
sn

(
∑
i ai) (

∑
i bi)

sn (25)

We know that 〈vl(nk),vm(nk)〉 ≥ (1 + ε)snk
:

snk+1
≥ snk+1 ≥

∑
I aibj + (albm + ambl)(1 + ε)

(
∑
i ai) (

∑
i bi)

snk
(26)

We absorb the m, l factors back into the sum:

snk+1
≥
∑
ij aibj +

=:rnk︷ ︸︸ ︷
(albm + ambl) ε

(
∑
i ai) (

∑
i bi)

snk
=

(
1 +

rnk
ε

(
∑
i ai) (

∑
i bi)

)
snk
≥
(

1 +
rnk

ε

q̄

)
︸ ︷︷ ︸

=:αnk

snk
(27)

where q̄ is an upper bound on
∑
ij aibj which exists since limn→∞An exists, which is also why limk→∞ rnk

exists.

(4) Case 1: Define rn = al(n)bm(n) + am(n)bl(n) analogous to rnk
. So if limn→∞ rn = limk→∞ rnk

6= 0, the factor by
which sn increases would be greater that one by a constant – a contradiction:

snk
≥ (1 + c)n

′
sn1 > 0 (28)

where nk − n′ is the number of cases where rnk
= 0 and c > 0 is a lower bound on the set { εrnk

q̄ 6= 0}. As we assumed
limn→∞ rn 6= 0, c > 0 for an infinite number of cases and therefore n′ →∞ when k →∞.

To end case 1, we have to ensure that the first sequence element is greater than zero: sn1
≥ s1 > 0. This is not the case if

the first N matrices have two orthogonal columns, s1 = ...=sN =0. We can then skip the first N matrices and define s1 on
AN+1 (set Ai = AN+i). We know N has to be finite, as limn→∞An has no two columns that are orthogonal.

(3) Case 2: No subsequence of tn, as defined in case 1, exists , i.e. for all ε > 0 no subsequence tnk
= 〈vl(n),vm(n)〉 ≥

(1 + ε)snk
exists. Then tn and sn converge to the same value: limn→∞ tn − sn = 0. Since we assumed that sn does not

converge to one, it must converge to a value smaller than 1 by a constant ε′. An N ∈ N exists such that for all n ≥ N there
is an ε′ > 0 with 〈vl(n),vm(n)〉 ≤ 1− ε′. We derive a second lower bound:

sn+1 =

∑
ij aibj〈vi,vj〉

‖
∑
i aivi‖‖

∑
i bivi‖

≥
∑
ij aibj

‖
∑
i aivi‖‖

∑
i bivi‖

sn, (29)

where we used 〈vi,vj〉 ≥ sn. We now find a lower bound for the square of this factor. The steps are similar to case 1:

(
∑
ij aibj)

2

‖
∑
i aivi‖2‖

∑
i bivi‖2

=
(
∑
ij aibj)

2

(
∑
ij aiaj〈vi,vj〉)(

∑
ij bibj〈vi,vj〉)

(30)

=
(
∑
ij aibj)

2

(
∑
I aiaj + 2alam〈vl,vm〉)(

∑
I bibj + 2blbm〈vl,vm〉)

(31)

≥
(
∑
ij aibj)

2

(
∑
I aiaj + 2alam(1− ε′))(

∑
I bibj + 2blbm(1− ε′))

(32)

=
q2

q2 − ε′
(∑

ij 2alambibj +
∑
ij 2blbmaiaj − 4ε′alamblbm

) (33)

≥ q2

q2 − ε′2
(∑

ij

2alambibj +
∑
ij

2blbmaiaj − 4alamblbm

)
︸ ︷︷ ︸

=:r′n

(34)

=
q2

q2 − ε′2r′n
= 1 +

ε′2r′n
q2 − ε′2r′n

≥ 1 +
ε′2r′n

q̄2 − ε′2r′n
=: α′2n (35)



When Explanations Lie: Why Many Modified BP Attributions Fail

where q2 = (
∑
ij aibj)

2 and q̄2 is an upper bound on q2 for all n. Note that q2 − ε′2r′n > 0, since q2 has all terms that r′n
has but more.

(4) Case 2: So r′n is a sequence that converges to zero. Otherwise, the factor by which sn increases would be greater than
one by at least a constant for infinitely many n. As in the previous case 1, this would lead to a contradiction.

(5) Case 1 and case 2 are complements from which we obtain two equations for limn→∞An. Let ak = (a1, ..., ak)T and
bk = (b1, ..., bk)T be columns of limn→∞An. We get one equation per case. For all (i, j) with i < j we have:

Case 1: lim
n→∞

rn = 0⇒ aibj = ajbi = 0 or Case 2: lim
n→∞

r′n = 0⇒ aiaj = bibj = 0, (36)

where the first equation comes from limn→∞ rn = 0 and the second from limn→∞ r′n = 0.

For equation 36 to be true, the following set of equations have to hold:

S(k) := {∀i = 1, ..., k : ai = 0 6= bi, ai 6= 0 = bi or ai = bi = 0} (37)
∪ {∃l : al 6= 0 6= bl and ∀i 6= l : ai = bi = 0}. (38)

This is equivalent to the matrix being rank one already or one of the columns is the zero vector or two are orthogonal to each
other. To show why this statement holds, we are using induction on k. For k = 2, we have the following set of solutions:(

0 b1
0 b2

) (
a1 0
a2 0

) (
0 0
a2 b2

) (
a1 b1
0 0

) (
a1 0
0 b2

) (
0 b1
a2 0

)
Case 1 Case 2

Case one provides rank 1 matrices only and case two gives orthogonal columns. So, the statement holds for k = 2.

Next assume we solved the problem for columns with k entries and want to deduce the case where we have k+ 1 entries (i.e.
they satisfy the equations in S(k + 1)). The pair ak+1, bk+1 satisfies either one of the three equations in line equation 37:
ak+1 = bk+1 = 0, ak+1 = 0 6= bk+1 or ak+1 6= 0 = bk+1. If ak+1 = bk+1 = 0, the rest of the non-trivial equations will
be the same set of equations that one will get in the case of k entries. If ak+1 = 0 6= bk+1, we would be left with equation
aibk+1 = 0 (Case 1) or bibk+1 = 0 (Case 2) which would mean that for all i ≤ k either ai = 0 or bi = 0, which will satisfy
the equations in S(k + 1). We get an analogous argument in the case of ak+1 6= 0 = bk+1.

The other possibility is that ak+1 6= 0 6= bk+1. But in this case both equations from case one and two ak+1bi = aibk+1 = 0
and ak+1ai = bk+1bi = 0 lead to ai = bi = 0 for all i ≤ k and this satisfies S(k + 1) in line equation 38, concluding the
induction.

This completes the proof. Since limn→∞ sn 6= 1 only if limn→∞An has a column that is the zero vector, a multiple of a
standard basis vector or it has two columns that are orthogonal to each. Exactly, the conditions excluded in the theorem. For
all other cases, we get a contradiction: therefore limn→∞ sn = 1 and Mn converges to a rank-1 matrix.
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(a) different matrix properties (see text) (b) αW+ + βW− where W[ij] ∼ N (0, 1)

Figure 7: Simulated convergence for a matrix chain.

B. Convergence Speed & Simulation of Matrix Convergences
We proved that Mn =

∏n
i Ai converges to a rank-1 matrix for n→∞, but which practical implications has this for a 16

weight-layered network? How quickly is the convergence for matrices considered in neural networks?

We know that sn increases by a factor (1 + c) greater than 1 (c > 0):

sn ≥ (1 + c)sn−1 (39)

Each iteration yields such a factor and we get a chain of factors:

sn ≥ (1 + cn)(1 + cn−1)...(1 + c2)s1 (40)

Although the multiplication chain of cn has some similarities to an exponential form γn, sn does not have to converge
exponentially as the individual cn have to decrease (sn bounded by 1). We investigated the convergence speed using a
simulation of random matrices and find that non-negative matrices decay exponentially fast towards 1.

We report the converging behavior for matrix chains which resembles a VGG-16. As in the backward pass, we start from
the last layer. The convolutional kernels are considered to be 1x1, e.g. for a kernel of size (3, 3, 256, 128), we use a matrix
of size (256, 128).

We test out the effect of different matrix properties. For vanilla, we sample the matrix entries from a normal distribution.
Next, we apply a ReLU operation after each multiplication. For ReLU learned, we used the corresponding learned VGG
parameters. We generate non-negative matrices containing 50% zeros by clipping random matrices to [0,∞]. And positive
matrices by taking the absolute value. We report the median cosine similarity between the column vectors of the matrix.

The y-axis of Figure 7a has a logarithmic scale. We observe that the positive, stochastic, and non-negative matrices yield a
linear path, indicating an exponential decay of the form: 1− exp(−λn). The 50% zeros in the non-negative matrices only
result in a bit lower convergence slope. After 7 iterations, they converged to a single vector up to floating point imprecision.

We also investigated how a slightly negative matrix influences the convergence. In Figure 7b, we show the converges of
matrices: αW+ + βW− where W+ = max(0,W ),W− = min(0,W ) and W ∼ N (0, I). We find that for small enough
β < 4 values the matrix chains still converge. This simulation motivated us to include LRPα5β4 in our evaluation which
show less convergence on VGG-16, but its saliency maps also contain more noise.

C. Pattern Attribution
We derive equation 9 from the original equation given in (Kindermans et al., 2018). We will use the notation from the
original paper and denote a weight vector with w = Wl[i,:] and the corresponding pattern with a = Al[i,:] . The output is
y = wTx.

Derivation of Pattern Computation For the positive patterns of the two-component estimator Sa+−, the expectation is
taken only over {x|wTx > 0}. We only show it for the positive patterns a+. As our derivation is independent of the subset
of x considered, it would work analogously for negative patterns or the linear estimator Sa.
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The formula to compute the pattern a+ is given by:

a+ =
E+ [xy]− E+ [x]E+ [y]

wTE+ [xy]−wTE+ [x]E+ [y]

=
cov[x,wTx]

wT cov[x,wTx]
,

(41)

where cov[x,wTx] = E+[xy]− E+[x]E+[y]. Using the bilinearity of the covariance matrix (cov[b, cTd] = cov[b,d]c),
gives:

a+ =
cov[x,x]w

wT cov[x,x]w
. (42)

Using the notation cov[h] = cov[x,x] gives equation 9.

Connection to power iteration A step of the power iteration is given by:

vk+1 =
Mvk
‖Mvk‖

(43)

The denominator in equation 9 is wT cov[h]w. Using the symmetry of cov[h], we have:∥∥∥cov[h]1/2w
∥∥∥ = (wT cov[h]1/2 cov[h]1/2w)1/2 = (wT cov[h]w)1/2 (44)

This should be similar to the norm ‖cov[h]w‖. As only a single step of the power iteration is performed, the scaling should
not matter that much. The purpose of the scaling in the power-iteration algorithm is to keep the vector vk from exploding or
converging to zero.
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D. CIFAR-10 Network Architecture
# network architecture as a keras model
model = Sequential()

model.add(InputLayer(input_shape=(32, 32, 3), name=’input’))
model.add(Conv2D(32, (3, 3), padding=’same’, name=’conv1’))
model.add(Activation(’relu’, name=’relu1’))
model.add(Conv2D(64, (3, 3), padding=’same’, name=’conv2’))
model.add(Activation(’relu’, name=’relu2’))
model.add(MaxPooling2D(pool_size=(2, 2), name=’pool2’))

model.add(Conv2D(128, (3, 3), padding=’same’, name=’conv3’))
model.add(Activation(’relu’, name=’relu3’))
model.add(Conv2D(128, (3, 3), padding=’same’, name=’conv4’))
model.add(Activation(’relu’, name=’relu4’))
model.add(MaxPooling2D(pool_size=(2, 2), name=’pool4’))

model.add(Flatten(name=’flatten’))
model.add(Dropout(0.5, name=’dropout5’))
model.add(Dense(1024, name=’fc5’))
model.add(Activation(’relu’, name=’relu5’))
model.add(Dropout(0.5, name=’dropout6’))
model.add(Dense(10, name=’fc6’))
model.add(Activation(’softmax’, name=’softmax’))

E. Results on ResNet-50

(a) Random Logits (b) Cascading Parameter Randomization

Figure 8: Effect of (a) randomizing the logits or (b) the parameters on a ResNet-50.
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F. Additional Cosine Similarity Figures

(a) ResNet-50 (linear)

(b) ResNet-50 (log) (c) VGG-16

(d) ResNet-50 (e) VGG-16

(f) VGG-16 (g) VGG-16 (linear) (h) CIFAR-10 (linear)

Figure 9: Convergence measured using the CSC for different starting layers.
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G. Saliency maps for Sanity Checks
For visualization, we normalized the saliency maps to be in [0, 1] if the method produce only positive relevance. If the
method also estimates negative relevance, than it is normalized to [−1, 1]. The negative and positive values are scaled
equally by the absolute maximum. For the sanity checks, we scale all saliency maps to be in [0, 1].

(a) VGG-16. (b) ResNet-50.

Figure 10: Saliency maps for sanity checks. Parameters are randomized starting from last to first layer.


