When Explanations Lie: Why Many Modified BP Attributions Fail

A. Proof of Theorem 1

In (Friedland, 2006) the theorem is proven for square matrices. In fact Theorem 1 can be deduced from this case by the
following argument:

For a sequence of non-square matrices (Ay)reny € R™* ¥l of finite size my, [, < L we can always find a finite set of
subsequent matrices that when multiplied together are a square matrix.

Ap e Apy Ayt Ay Anga e Any (17)

::A1€R7n><7n ::A26]R”m><'m ::AgeRme

The matrices fll, ;12, 213, ... define a sequence of non-negative square matrices that fulfill the conditions in (Friedland, 2006)
and therefore converge to a rank-1 matrix.

Our proof requires no knowledge of algebraic geometry and uses the cosine similarity to show convergence. First, we
outline the conditions on the matrix sequence A,,. Then, we state the theorem again and sketch our proof to give the reader
a better overview. Finally, we prove the theorem in 5 steps.

Conditions on A,, The first obvious condition is that the (A, )en is a sequence of non-negative matrices such that A;,
A,11 have the correct size to be multiplied together. Secondly, as we calculate angles between column vector in our proof,
no column of A,, should be zero. The angle between a zero vector and any other vector is undefined. Finally, the size of A,
should not increase infinitely, i.e. an upper bound on the size of the A4;’s exists such that A; € R™*! where m,! < L for
some L € N.

Definition 1. We say lim,,_, A,, exists, if for all m, [ € N the subsequences A, , € R™*! that consist of all terms that
have size m x [ converge elementwise. Note that even if there only finitely many, say Ay is the last term with 4,, € R™*!,

we say limg_ oo Ank(,‘m) =Apn.

Theorem 1. Let A1, Ao, As ... be a sequence of non-negative matrices as described above such that lim,,_, ., A, exists.
We exclude the cases where one column of lim,, _, o, A, is the zero vector or two columns are orthogonal to each other. Then
the product of all terms of the sequence converges to a rank-1 matrix C':

C=]l4 =&". (18)

—;

«
Il
-

Matrices of this form are excluded for lim,,_, o A,,:

011000
110 0 0 O
vT ... UV UVi41 v Uy U1l ... Up 1 1100 0
1101 00
arbitrary orthogonal v; =0
Theory Example

up to ordering of the columns.
Proof sketch  To show that [[;~ A; converges to a rank-1 matrix, we do the following steps:

(1) We define a sequence s,, as the cosine of the maximum angle between the column vectors of M,, := H?:l A;.
(2) We show that the sequence s,, is monotonic and bounded and therefore converging.

(3) We assume lim,,_,, s,, # 1 and analyze two cases where we do not get a contradiction. Each case yields an equation
on lim,, o Aj.

(4) In both cases, we find lower bounds on s,,: @, $,_1 and o, s, that are becoming infinitely large, unless we have
lim,, 00 ap, = 1 (case 1) or lim,, oo @, = 1 (case 2).
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(5) The lower bounds lead to equations on lim,,_,, A, for non-convergence. The only solutions, we obtain for
lim,,_, o Ay, are those explicitly excluded in the theorem. We still get a contradiction and lim, o s, = 1 =

Hfo Az = E’}/T.

Proof (1) Let M,, := H;’zl A; be the product of the matrices A; - ... A,,. We define a sequence on the angles of column
vectors of M, using the cosine similarity. Let vy (n), ..., Vk(n) (n) be the column vectors of M,,. Note, the angles are well
defined between the columns of M,,. The columns of M,, cannot be a zero vector as we required A,, to have no zero
columns. Let s,, be the cosine of the maximal angle between the columns of M,,:

Sn = mlnz#] Scos(vz‘ (n), v, (n)) = min <’Ui(n>7 Uj (n)>

_wi(n), v;(n)) 19
ii - Jloi()llv; ()] "

where (-, -} denotes the dot product. We show that the maximal angle converges to 0 as lim,,_, o $,, = 1, which is equivalent
to M,, converging to a rank-1 matrix. In the following, we take a look at two consecutive elements of the sequence s,, and
check by how much the sequence increases.

(2) We show that the sequence s,, is monotonic and bounded and therefore converging. Assume a,, 41 and b, are the two
columns of A,, 11 which produce the columns v, (n 4+ 1) and v,,,(n + 1) of M,,;1 with the maximum angle:

Sn+1 = Scos(vm(n + 1)7 Um! (TL + 1)) = Scos(MnanJrla Mnbn+1)~ (20)
We also assume that ||v;(n)|| = 1 for all 4, since the angle is independent of length. To declutter notation, we write

vi(n) =:v;, a, = a= (ay,...,a;)" and b, = b = (by, ..., b;)". We now show that s,, is monotonic and use the definition
of the cosine similarity:

Zij a;bj(vi, vj)

Spn+1 = (21)
1225 azvilll] 22 bevi |
Using the triangle inequality || >, a;v;|| < ), ail|v;| we get:
i aib i(Vi, U4
Zt] ]< ]> (22)

Sn+1 Z
(22 aillvil) (32, billvill)
As we assumed that the ||v;|| = 1, we know that (v;, v;) = Scos(v;, v;) which must be greater than the smallest cosine
similarity s,,:
Sn41 2 215 0y (01, v5) > 213 9105
(225 @) (225 bi) (225 @) (225 bi)

Therefore s,, is monotonically increasing and upper-bounded by 1 as the cosine. Due to the monotone convergence theorem,
it will converge. The rest of the proof investigates if the sequence s,, converges to 1 and if so, under which conditions.

(3) We look at two consecutive sequence elements and measure the factor « by which they increase: s, 11 > as,. We are
using proof by contradiction and assume that s,, does not converge to 1. We get two cases, each with a lower bound on the
factor of increase. For both cases, we find a lower bound for a > 1 for all n which would mean that s,, is diverging to
oo — a contradiction. Under certain conditions on lim,, .., 4,,, we do not find a lower bound o > 1. We find that these
conditions correspond to the conditions explicitly excluded in the theorem and therefore M,, converges to a rank-1 matrix.

Case 1: Let t,, := (v;(n), v;n(n)) (I # m) and assume that there exists a subsequence t,, of t,, that does not converge to
lim;, s 00 S So there is an € > 0 such that (v;(ng), vm(nk)) > (1 4 €)sy, forall k > K for some K € N.

We multiply the first lower bound of equationby 1= 2= and get:
agbi(v;, v b, Aviva)
Snt1 = 2 4iby (V1. v5) = 25 ibs ., 24

(a0 (0,0) (o) ()™
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We will now pull terms corresponding to the pair (I, m) out of the sum and for all terms in the sum, we lower bound
{:%5) > 1 by one. Let the set I := {(4,7) | (i,5) # (I,m), (m,1)} index all other terms:

ZI aibj + (albm + ambl)L’ va>
Sn+1 Z a
(X2 ai) (32 bi)

We know that (v;(ng), vm(ng)) > (14 €)sn,:

Sn (25)

ZI aibj + (albm + ambl)(l + E) s
(i ai) (32 bi) "

Z Snk+1 Z

(26)

Snk+1
We absorb the m, [ factors back into the sum:
=iTn,

—_—~—
> i @ibj + (@bm + ambi) € ( T, € Tny,€
Sn Z ! Sny = 1"’ nk) Sn, Z (1+ n,k )3 . (27)
o (25 ai) (22 0:) i (>Cia) X2, 00) ) g /"
———

=ian,

where g is an upper bound on ZZ j a;b; which exists since lim,,_, o, A,, exists, which is also why limj_, 5, exists.

(4) Case 1: Define r,, = a;(n)by,(n) + am(n)b;(n) analogous to 4, . So if lim, o0 7 = limg—00 Tn, # 0, the factor by
which s,, increases would be greater that one by a constant — a contradiction:

Sny > (1+0)"5p, >0 (28)

where ny, — n’ is the number of cases where r,,, = 0 and ¢ > 0 is a lower bound on the set {ET% # 0}. As we assumed
limy, o0 7 # 0, ¢ > 0 for an infinite number of cases and therefore n” — oo when k — oo.

To end case 1, we have to ensure that the first sequence element is greater than zero: s,, > s; > 0. This is not the case if
the first /N matrices have two orthogonal columns, s; =...= sy =0. We can then skip the first /N matrices and define s; on
Any1 (set A; = Any;). We know IV has to be finite, as lim,,_, o, A, has no two columns that are orthogonal.

(3) Case 2: No subsequence of ¢,,, as defined in case 1, exists , i.e. for all € > 0 no subsequence t,,, = (v;(n), v, (n)) >
(1 + €)sy,, exists. Then ¢, and s,, converge to the same value: lim,,_, o ¢, — s, = 0. Since we assumed that s,, does not
converge to one, it must converge to a value smaller than 1 by a constant ¢’. An N € N exists such that for all n > N there
isan &’ > 0 with (v;(n), v, (n)) < 1 —&’. We derive a second lower bound:

o > i aibj(vi,vj) - >4 aibj ,
+1 = >
" l Zi a;vi || Zi by | | Zi a;vq || Zi b;v;]| "

where we used (v;, vj> > s,. We now find a lower bound for the square of this factor. The steps are similar to case 1:

(Zij aibj)2 (Zi_j aibj)2

(29)

= (30)
12205 avil P12, bavill? - (325 aiay (i, v5)) (32,5 bibj(vi, v5))
_ (2 a;b;)? 31)
(Z[ a;a; + 2alam<vl7 'Um>)(21 bzb] + 2b;by, <vl7 vm>)
> (3,5 aits)” (32)
~ (X aiaj +2aiam (1 =€) (D0, bibj + 201by (1 — €7))
2
_ a (33)
q? —¢ (le 2aiambib; + ZU 2bibasa; — 4s/alamblbm)
2
> g (34)
¢2 — e (Z 2a1aymbib; + Z 2bibmasa; — 4alamblbm)
ij ij
2 12,1 12,0
__ 4 S IR TS T (35)

q2 _ €I2T'In q2 _ 5/27,’/’1 - 62 _ 5/27.;1
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where ¢* = (3, a;b;)? and g is an upper bound on ¢ for all . Note that ¢* — £"r}, > 0, since ¢* has all terms that 77,
has but more.

(4) Case 2: So 1/, is a sequence that converges to zero. Otherwise, the factor by which s,, increases would be greater than
one by at least a constant for infinitely many n. As in the previous case 1, this would lead to a contradiction.

(5) Case 1 and case 2 are complements from which we obtain two equations for lim,,_, A,. Let ax = (aq, ..., ak)T and
by = (b1, ...,bx)T be columns of lim,, ,~, A,,. We get one equation per case. For all (4, j) with i < j we have:

Case 1: h_}m r, =0= aibj = Cljbi =0 or Case2: lim ’I“;L =0= a;a; = bibj =0, (36)

n— oo
where the first equation comes from lim,, _, o, 7, = 0 and the second from lim,, ., 7}, = 0.

For equation[36]to be true, the following set of equations have to hold:

S(k) = {Vizl,...,k‘:aizO;«ébi,ai;«éO:biorai:bi:O} (37)
U {3l:ay#0#bandVi #1:a; =b; =0}. (38)

This is equivalent to the matrix being rank one already or one of the columns is the zero vector or two are orthogonal to each
other. To show why this statement holds, we are using induction on k. For k = 2, we have the following set of solutions:

0 b1 al 0 0 0 a1 bl al 0 0 b1
0 bQ as 0 a2 b2 0 0 0 b2 as 0
Case 1 Case 2

Case one provides rank 1 matrices only and case two gives orthogonal columns. So, the statement holds for k£ = 2.

Next assume we solved the problem for columns with £ entries and want to deduce the case where we have k + 1 entries (i.e.
they satisfy the equations in S(k + 1)). The pair aj41, bi+1 satisfies either one of the three equations in line equation
ap+1 =brpy1 =0, a1 =0 # bggq or agq1 # 0 = bgy1. If a1 = b1 = 0, the rest of the non-trivial equations will
be the same set of equations that one will get in the case of & entries. If ax11 = 0 # bi11, we would be left with equation
a;bi+1 = 0 (Case 1) or b;bi+1 = 0 (Case 2) which would mean that for all © < & either a; = 0 or b; = 0, which will satisfy
the equations in S(k + 1). We get an analogous argument in the case of a1 # 0 = bgy1.

The other possibility is that a1 7# 0 # bi+1. Butin this case both equations from case one and two ag1b; = a;bg41 =0
and agy1a; = bpr1b; = 0lead to a; = b; = 0 for all 4 < k and this satisfies S(k + 1) in line equation concluding the
induction.

This completes the proof. Since lim,, o, S, # 1 only if lim,, ,, A, has a column that is the zero vector, a multiple of a
standard basis vector or it has two columns that are orthogonal to each. Exactly, the conditions excluded in the theorem. For
all other cases, we get a contradiction: therefore lim,,_,~ s,, = 1 and M, converges to a rank-1 matrix. O
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Figure 7: Simulated convergence for a matrix chain.

B. Convergence Speed & Simulation of Matrix Convergences

We proved that M,, = []" A; converges to a rank-1 matrix for n — oo, but which practical implications has this for a 16
weight-layered network? How quickly is the convergence for matrices considered in neural networks?

We know that s,, increases by a factor (1 + ¢) greater than 1 (¢ > 0):
Sn > (14 ¢)sp-1 (39)
Each iteration yields such a factor and we get a chain of factors:
Sn>(14+c)A+en1).(1+c2)s1 (40)

Although the multiplication chain of ¢,, has some similarities to an exponential form 7", s,, does not have to converge
exponentially as the individual c,, have to decrease (s,, bounded by 1). We investigated the convergence speed using a
simulation of random matrices and find that non-negative matrices decay exponentially fast towards 1.

We report the converging behavior for matrix chains which resembles a VGG-16. As in the backward pass, we start from
the last layer. The convolutional kernels are considered to be 1x1, e.g. for a kernel of size (3, 3, 256, 128), we use a matrix
of size (256, 128).

We test out the effect of different matrix properties. For vanilla, we sample the matrix entries from a normal distribution.
Next, we apply a ReLU operation after each multiplication. For ReLU learned, we used the corresponding learned VGG
parameters. We generate non-negative matrices containing 50% zeros by clipping random matrices to [0, co]. And positive
matrices by taking the absolute value. We report the median cosine similarity between the column vectors of the matrix.

The y-axis of Figure[7a]has a logarithmic scale. We observe that the positive, stochastic, and non-negative matrices yield a
linear path, indicating an exponential decay of the form: 1 — exp(—An). The 50% zeros in the non-negative matrices only
result in a bit lower convergence slope. After 7 iterations, they converged to a single vector up to floating point imprecision.

We also investigated how a slightly negative matrix influences the convergence. In Figure[7b] we show the converges of
matrices: W™ + W™ where W = max(0, W), W~ = min(0, W) and W ~ N(0, I). We find that for small enough
B < 4 values the matrix chains still converge. This simulation motivated us to include LRP,5g4 in our evaluation which
show less convergence on VGG-16, but its saliency maps also contain more noise.

C. Pattern Attribution

We derive equation ] from the original equation given in (Kindermans et all 2018). We will use the notation from the
original paper and denote a weight vector with w = W;,, | and the corresponding pattern with @ = 4;, ,. The output is

y=w'x.

Derivation of Pattern Computation For the positive patterns of the two-component estimator S, —, the expectation is
taken only over {z|w”x > 0}. We only show it for the positive patterns a,. As our derivation is independent of the subset
of « considered, it would work analogously for negative patterns or the linear estimator S, .
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The formula to compute the pattern a is given by:

. Et [zy] — E [z]E+ [y]
+ ] — T

wlEy [zy] — wlE, [z] E; [y]
cov]z, w’x] “h

wT cov]z, wz]’

where cov[z, w? z] = E [xy] — E, [z]E, [y]. Using the bilinearity of the covariance matrix (cov[b, ¢! d] = cov[b, d]c),
gives:
cov[z, z|w

= W coviz, zjw’ “2)

Using the notation cov|[h] = cov|x, ] gives equation[9]

Connection to power iteration A step of the power iteration is given by:

M’Uk
Vg1 = ———— 43)
R TV (
The denominator in equation E] is wT cov[h]w. Using the symmetry of cov[h], we have:
Hcov[h}l/QwH = (w” cov[h]'/? cov[h]2w)/? = (wT cov[h)w)'/? (44)

This should be similar to the norm ||cov[h]w||. As only a single step of the power iteration is performed, the scaling should
not matter that much. The purpose of the scaling in the power-iteration algorithm is to keep the vector vy from exploding or
converging to zero.
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D. CIFAR-10 Network Architecture

# network architecture as a keras model
model = Sequential ()

model .add (InputLayer (input_shape=(32, 32, 3), name=’input’))
model.add (Conv2D (32, (3, 3), padding=’'same’, name=’convl’))
model.add (Activation (' relu’, name=’'relul’))

model.add (Conv2D (64, (3, 3), padding=’'same’, name=’conv2’))
model.add (Activation (' relu’, name=’'relu2’))

model . add (MaxPooling2D (pool_size=(2, 2), name='pool2’))

model.add (Conv2D (128, (3, 3), padding=’same’, name=’conv3’))
model.add (Activation (' relu’, name=’'relu3’))

model.add (Conv2D (128, (3, 3), padding=’same’, name=’convi4’))
model.add (Activation (' relu’, name=’'relud’))

model . add (MaxPooling2D (pool_size=(2, 2), name='poold’))

model.add (Flatten (name=’flatten’))

model.add (Dropout (0.5, name=’dropout5’))
model.add (Dense (1024, name=’fc5’))

model.add (Activation (' relu’, name=’'relub’))
model.add (Dropout (0.5, name=’dropout6’))
model.add (Dense (10, name=’fc6’))

model.add (Activation (/' softmax’, name=’softmax’))

E. Results on ResNet-50
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Figure 8: Effect of (a) randomizing the logits or (b) the parameters on a ResNet-50.



When Explanations Lie: Why Many Modified BP Attributions Fail

larity Figures

imi

F. Additional Cosine S

Auejiuis auisod

ndui
TAUOD
|oodxew
e1 ZAuod
qr gAuod
21 gAuod
diys”zauod
T 2pog
ez gZAu0d
qg gauod
32 ZAu0d
oo
eg gZAu0d
qg gAuod
€ ZAUOD
£opolq
e1 EAu0D
a1 EAUOD
2T EAUOD
dpis"gauod
Terpon
ez EAUOD
qz €Au0d
27 €Au0d
zeron
eg EAUOD
qg EAU0D
€ €AUOD
£ epolq
ey EAUOD
qy gAU0D
2% EAUOD
¥ exd01q
o1 pAu0D
qr pAu0d
2T pAUOD
diys™pAuod
T wpoig
ez yAu0D
qg pAu0d
32 pAUOD
ol
eg pAU0D
Qg pAu0d
€ pAUOD
£ p1oiq
ey pAuUOD
qp” pAUOD
J pAUOD
v pH0Ia
eg pAuOD
qs pAuOd
96 pAu0d
s polq
B9 pAUOD
g9 pAUOD
29 pAUOD
97 p#20Iq
eT GAuOd
qT GAUOD
271 GAUOD
diys"gAuod
T poIq
eZ GAUOD
qz gAu0d
27 GAuOd
Zopolg
eg GAUOD
qg GAU0D
2€ GAUOD
€ opolg
|oodbae
asusap

(a) ResNet-50 (linear)

ﬁ_v 4
e e
1 1
- - -

Ajuejiwis suisod

-le-2

b o
3 &
- -

©
4
A
-

A A
Ajuejiwis aujsod

diys"zauod
T zpoia
ez ZAUOD
qz zAuod
27 zAu0d
2 oPolq
eg zAUOD
qgg ZAUOd
€ gAU0d
€ opolq
e1 gAuod
qT £AUOD
2T €AUOD
diys gAuod
1 epola
ez gAuod
qz €Au0d
2z gAu0d
Z exdolq
eETEAUOD
gg €AUOD
2€”EAUOD
€ epoq
ey gAUOD
qp £AUOD

2T pAU0d
diys” pauod
T ¥001q
ez pAUOD
qz AU
g pAuod
o1

(c) VGG-16

(b) ResNet-50 (log)

—6— GuidedBP
—¥— Deconv

£3
ooy
3 ffga3
- N
G 55588«
vO0EtEaaaa
DoKX X X O
0o JJJJ

~—&— DeepLIFT Rev.C.
—B— DeepLIFT Resc.
—A— DeepLIFT Abla.

—¥— Gradient

1-1le5

-le-4
1-1e3
1-1e-2
1-1lel

-
Ajuejiwis duIs0d

a
@
5
-

L
L]
-

1-1le-l

A
AKpepuws suisod

ndur
TAUOD
|oodxew
BT ZAUOd
qT gAuod
351 zAuod
dpjs~zauod
ool
ez gzAu0d
qg gauod
32 ZAu0d
Zopog
eg gZAUOD
qg gAuod
€ ZAUOD
€ opoig
eT gAUOD
qT gAUOD
5T EAUOD
dpjs"gauod
ool
ez gAu0d
qz gAuod
32 €Au0d
Zepog
eg EAUOD
qg gAUOD
3¢ EAUOD
€ epog
ey EAUOD
qy gAU0D
¢ EAUOD
v eAd01q

(e) VGG-16

(d) ResNet-50

jndu|
F TAUOD
- ZAuod
+ zljood
L €AUOD

F pAu0D

nduy

F 1 AU
2 TAUOD
+ T100d

F T gAuod
F 2 zAuod
+ zjood

F T €AUOD
F 2 gAuod
F €TeAu0d

b
[
-
-

1-1e-3
1-1le-2

Auejiwis suisod

nduy
1 1AUOD
Z 1AUOD
Tj00d
T 2Au0d
2 gAuod
Zlood
T €AU0D

L Z €AUOD
s\ £ AU

1-1le-l

(h) CIFAR-10 (linear)

(g) VGG-16 (linear)

(f) VGG-16

ing layers.

fferent start

i

Convergence measured using the CSC for d

Figure 9



When Explanations Lie: Why Many Modified BP Attributions Fail

G. Saliency maps for Sanity Checks

For visualization, we normalized the saliency maps to be in [0, 1] if the method produce only positive relevance. If the
method also estimates negative relevance, than it is normalized to [—1, 1]. The negative and positive values are scaled
equally by the absolute maximum. For the sanity checks, we scale all saliency maps to be in [0, 1].
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Figure 10: Saliency maps for sanity checks. Parameters are randomized starting from last to first layer.



