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Abstract

Bandit learning algorithms typically involve the
balance of exploration and exploitation. However,
in many practical applications, worst-case scenar-
ios needing systematic exploration are seldom en-
countered. In this work, we consider a smoothed
setting for structured linear contextual bandits
where the adversarial contexts are perturbed by
Gaussian noise and the unknown parameter θ∗ has
structure, e.g., sparsity, group sparsity, low rank,
etc. We propose simple greedy algorithms for
both the single- and multi-parameter (i.e., differ-
ent parameter for each context) settings and pro-
vide a unified regret analysis for θ∗ with any as-
sumed structure. The regret bounds are expressed
in terms of geometric quantities such as Gaussian
widths associated with the structure of θ∗. We
also obtain sharper regret bounds compared to
earlier work for the unstructured θ∗ setting as a
consequence of our improved analysis. We show
there is implicit exploration in the smoothed set-
ting where a simple greedy algorithm works.

1. Introduction
Contextual bandits (Langford & Zhang, 2007) is a power-
ful framework for sequential decision-making, with many
applications to clinical trials, web search, and content opti-
mization. In a typical scenario, users arrive over time, and
the algorithm chooses among various content (e.g., news
articles) to present to each user and observes the outcome
(e.g., clicks). A popular parametric formulation for this
problem is the linear contextual bandit setting (Chu et al.,
2011; Li et al., 2010): in rounds t = 1, . . . , T , the algorithm
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selects a context xtit from k available contexts xt1, . . . , x
t
k

and receives a noisy reward rt(xtit) = 〈xtit , θ∗〉+ ωt where
θ∗ is the unknown parameter and ωt denotes the reward
noise. The goal of the algorithm is to select contexts to
maximize rewards over time observing only the available
contexts and the reward associated with the selected context
in each round. Such algorithms typically need to balance
exploration, making potentially sub-optimal decisions for
the sake of information acquisition, and exploitation, select-
ing decisions that are optimal based on the estimate of θ∗.
In particular, the greedy algorithm that myopically selects
contexts maximizing rewards based on the ordinary least
squares estimate θ̂, i.e., choosing xtit = argmax

xt
i:1≤i≤k

〈xti, θ̂〉 is

known to be sub-optimal in the worst case (see Mansour
et al. (2018) for an example). However, the greedy algorithm
offers several appealing features, including its simplicity in
computation and the selection is aligned with each user’s
short-term interest (Bird et al., 2016; Kannan et al., 2017).

Given the advantages of the greedy algorithm, there has
been recent work that investigates when the greedy algo-
rithms perform well. On the practical side, Bietti et al.
(2018) shows that there is strong empirical evidence that
exploration-free algorithms perform well on real data sets.
On the theoretical side, a line of work (Bastani et al., 2018;
Kannan et al., 2018; Raghavan et al., 2018) analyzed con-
ditions under which inherent diversity in the data makes
explicit exploration unnecessary. In particular, the work
of (Kannan et al., 2018; Raghavan et al., 2018) provide a
smoothed analysis on the greedy algorithm under the follow-
ing setting: in each round the contexts xti, 1 ≤ i ≤ k are of
the form µti+gti , where the µti ∈ Rp’s are chosen adaptively
by an adversary and gti ∼ N(0, σ2Ip×p) are independent
Gaussian perturbations from nature. The expected reward
associated with each xti is then 〈xti, θ∗i 〉, where the unknown
parameter θ∗i can vary across different actions i.

Our work substantially generalizes the smoothed analy-
sis framework for linear contextual bandits considered in
Kannan et al. (2018); Raghavan et al. (2018). We enrich
and refine these prior analyses by explicitly capturing the
structure in the unknown parameters—specifically, θ∗i with
small atomic norms R(·) such as `1 norm, group-sparse
norms, nuclear norms, k-support norm, etc. (Jacob et al.,
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2009; Argyriou et al., 2012; Yuan & Lin, 2006; Tibshirani,
1996; Candès & Recht, 2009). We consider two variants
of the problem: the multi parameter setting when there is
a separate parameter corresponding to each context, i.e.,
θ∗1 , . . . , θ

∗
k and the single parameter setting when there is a

single unknown parameter, i.e., θ∗ = θ∗1 = θ∗2 = . . . = θ∗k.
In any round t the greedy algorithm maintains estimates of
the true parameters θ̂t1, . . . , θ̂

t
k:

θ̂ti = argmin
θ∈Rp

L(θ;Zti , y
t
i) s.t. R(θ) ≤ R(θ∗i ) , (1)

where L(θ;Zti , y
t
i) is the least squares loss, Zti is the design

matrix in round t whose rows are contexts chosen in rounds
prior to t and yti is a vector with the corresponding rewards.
The greedy algorithm then selects the context corresponding
to the highest reward w.r.t. to the current parameter estimate,
i.e., xtit = argmax

xt
i:1≤i≤k

〈xti, θ̂ti〉. We analyze the regret of the

greedy algorithm—the difference between the cumulative
expected rewards of a clairvoyant learner with knowledge
of θ∗i and the greedy algorithm,

Reg(T ) =

T∑
t=1

(
max
i
〈xti, θ∗i 〉 − 〈xtit , θ∗it〉

)
. (2)

Consider first the single parameter problem setting. In any
round t, denote the error vector ∆t = θ̂t − θ∗. It is evident
from equation (1) that the error vector lies in the error set
Ec = {∆ | R(θ∗ + ∆) ≤ R(θ∗)}. Now consider the
error set A = cone(Ec) ∩ Sp−1, where Sp−1 is the unit
sphere, and its Gaussian width w(A)—a metric for the com-
plexity/size of a set widely used in literature on analysis
of high-dimensional statistical models (Talagrand, 2005;
2014; Gordon, 1985; Banerjee et al., 2014; Chen & Baner-
jee, 2015; Chandrasekaran et al., 2012; Sivakumar et al.,
2015). For example, Gaussian width of the error set for
R(·) = ‖ · ‖1 and s-sparse θ∗ is Θ(s log p). We show
that the single parameter setting has a warm start phase of
tmin = Θ̃(w2(A)) rounds when the greedy algorithm ac-
crues linear regret. The contexts chosen in the warm start
phase are random and serve to satisfy the Restricted Eigen-
value (RE) condition, inf

u∈A
‖Ztu‖22 ≥ κ, for some positive

constant κ over all rounds. In the unconstrained setting
A = Sp−1, and the RE condition essentially reduces to the
condition that the empirical covariance matrix is not rank-
deficient when the length of the warm start phase is Θ̃(p).
After the warm start phase, the greedy algorithm has regret
bounded as follows:

Reg(T ) = Õ

(
w(A)

√
T

σ

)
, (3)

where σ2 is the variance of the Gaussian perturbations on
the contexts.

We make the following observations:

1. For the unconstrained problem, w(A) = Θ(
√
p) and

Reg(T ) = Õ
(√

pT
σ

)
. When σ2 = Θ

(
1
p

)
as con-

sidered in (Kannan et al., 2018), ignoring logarithmic
factors, the regret bounds are sharper compared to the
results in (Kannan et al., 2018) by a factor

√
p. More-

over when σ2 = Θ
(

1
p

)
, the regret rate is of the same

order as those of UCB-style algorithms and Thompson
sampling in (Dani et al., 2008; Abbasi-Yadkori et al.,
2011; Agarwal & Goyal, 2013) for stochastic linear
bandits. With more smoothing when σ2 = Ω

(
1
p

)
the greedy algorithm performs better with lower regret
whereas less smoothing has the reverse effect.

2. For R(·) = ‖ · ‖1 and s-sparse θ∗, w(A) =
Θ(
√
s log p) leading to the regret bounds, Reg(T ) =

Õ
(√

s log p·T
σ

)
. Again when σ2 = Θ

(
1
p

)
, the regret

rate is of the same order as that of a `1 regularized
UCB method for the stochastic linear bandits prob-
lem (Abbasi-Yadkori et al., 2012). Note that the al-
gorithm proposed in (Abbasi-Yadkori et al., 2012), in
contrast to the greedy algorithm, is computationally
involved.

3. Our analysis is generalized for any atomic norm R(·)
and captures the geometry of the problem obtaining
results in terms of easily computable geometric quan-
tities like the Gaussian width (Talagrand, 2005; 2014;
Gordon, 1985; Chen & Banerjee, 2015)

The multi parameter setting requires a warm start phase of
Θ̃
(
kw2(A)
σ4

)
, where k is the number of contexts, when the

contexts are chosen at random or in a round robin fashion.
In contrast to the single parameter setting, the warm start
phase in the multi parameter setting is required to satisfy
a margin condition, which we detail in Section 4. The
margin condition is required for the algorithm to achieve
sublinear regret. When σ2 = Θ

(
1
p

)
, in the worst case, we

require the length of the warm start phase to be Θ̃(k · p2 ·
w2(A)) when we accrue linear regret. In the unstructured
setting, w2(A) = p which translates to Θ̃(kp3) rounds
in the warm start phase which improves over the Θ̃(kp6)
rounds in (Kannan et al., 2018) (see Theorem 4.2). The
algorithm has regret bounded by Õ

(
w(A)

√
Tk

σ

)
regret after

the warm start rounds which is
√
k times worse compared

to the single parameter setting.

We briefly summarize the organization and notations used
throughout the paper. We concisely present the main ideas
and technical results in Section 2 of the paper. Results
for the single parameter and multi parameter settings are
presented in Section 3 and 4 respectively before concluding
in Section 5.

Notation. Throughout the paper we use constants like
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c, c1, c2, . . . whose definition may change from one line
to the next. In certain places, we use the terms contexts
and arms interchangeably. The notations y = Θ(x) (respec-
tively y = O(x), y = Ω(x)) implies there exists absolute
constants c1, c2, c3, c4 such that c1 · x ≤ y ≤ c2 · x (re-
spectively y ≤ c3 · x, y ≥ c4 · x) and Θ̃(·), Ω̃(·) and Õ(·)
notations hide the dependence on polylogarithmic factors
and noise variance.

2. Overview of Main Technical Results
We now summarize the major ideas and results in the paper.

Episodic algorithm. We analyze a greedy algorithm that is
episodic—a common feature that can reduce computation
and simplify statistical analyses (Javanmard & Javadi, 2018).
Let T denote the total number of rounds. In the single
parameter setting, denote the episode number by e and let
Te denote the total number of rounds in episode e. The
number of rounds in each episode increases geometrically
with time, i.e., T1 = 2T0, T2 = 2T1 and so on. The total
number of rounds T =

∑
e Te. The number of episodes

scales as log T . The regression parameter is estimated at
the beginning of episode e + 1 using only the contexts
and rewards observed in the Te rounds in the immediately
preceding episode. In the multi parameter setting, the only
difference to the single parameter setting is that we maintain
separate design matrices, rewards, parameter estimates and
episodes for each context.

Estimation error. The regret bounds in both the single and
multi parameter settings depend on the estimation error for
the parameter estimated using the constrained least squares
estimator at the beginning of each episode. Consider param-
eter estimation in episode e+ 1. Let Z(e) ∈ RTe×p be the
design matrix constructed with rows as contexts observed
in episode e and y(e) ∈ RTe the corresponding observed
rewards. We precondition the data before parameter esti-
mation using the Puffer transformation (Jia & Rohe, 2015).
The Puffer transformation computes the SVD of the de-
sign matrix as 1√

Te
Z(e) = U (e)D(e)(V (e))ᵀ followed by

transforming the data as Z̃(e) = F (e)Z(e), ỹ(e) = F (e)y(e)

where F (e) = U (e)(D(e))−1(U (e))ᵀ. The parameter at the
beginning of episode e+ 1 is then estimated using the fol-
lowing least squares constrained estimator:

θ̂(e+1) = argmin
θ∈Rp

1

Te
‖ỹ(e)−Z̃(e)θ‖22 s.t. R(θ) ≤ R(θ∗) .

(4)
The Puffer transformation is a data preconditioning tech-

nique which makes the condition number of the design
matrix unity. In the worst case over any choice of the adap-
tive adversaries in all rounds, Puffer transformation leads to
better estimation bounds compared to the bounds obtained
using raw data (Chandrasekaran et al., 2012; Negahban

et al., 2012; Banerjee et al., 2014). Our analysis borrows
tools and techniques from the existing vast literature on
high-dimensional estimation (Wainwright, 2019; Vershynin,
2018). Specifically, following the analysis framework in
(Banerjee et al., 2014), we need three main results. First,
note that to satisfy the constraint in (4) the error vector ∆
with θ̂(e+1) = θ∗ + ∆ lies in the following set,

Ec = {∆ | R(θ∗ + ∆) ≤ R(θ∗)} . (5)

Second, for consistent estimation we show the design ma-
trix satisfies the following restricted eigenvalue (RE) con-
dition on the error set A = cone(Ec) ∩ Sp−1 (Bickel et al.,
2009; Negahban et al., 2012) with high probability across
all episodes once T > tmin = Θ̃(w2(A)),

inf
u∈A

1

Te
‖Z̃(e)u‖22 = Ω̃(σ2) . (6)

Existing results on the RE condition (Mendelson et al., 2007;
Banerjee et al., 2014; Negahban et al., 2012) with i.i.d. rows
cannot be directly applied since the rows in the design matrix
depend on previously selected contexts and rewards. We
make use of recent novel results in (Banerjee et al., 2019)
on bounds for sum of random quadratic quantities with
dependence. Third, for rounds T > tmin we obtain high
probability upper bounds on the estimation error with the
Puffer transformed data across all episodes.

max
e
‖θ̂(e+1) − θ∗‖2 ≤ Õ

(
w(A)

σ
√
Te

)
. (7)

The non-asymptotic bounds on the estimation error are
novel, due to new analysis techniques to handle data de-
pendence between rounds and the Puffer transformation for
which no results exist for estimation error to the best of our
knowledge. The results on parameter estimation errors also
holds in the multi parameter setting.

Regret. For both the single and multi parameter settings
we show the regret depends on the `2 norm of the estima-
tion error for the parameter estimated at the beginning of
each episode after an initial warm start phase when the algo-
rithm accrues linear regret. In the single parameter setting
the length of the warm start phase is tmin = Θ̃

(
w2(A)

)
rounds while in the multi parameter setting it is tmin =

Θ̃
(
kw2(A)
σ4

)
rounds. The dependence of tmin on σ for the

multi parameter setting implies a large warm start phase
when σ is small. For example, if σ2 = Θ

(
1
p

)
as assumed

in (Kannan et al., 2018), then tmin scales as p2 which may
become prohibitive in many high-dimensional applications.
After the warm start phase we show the regret in the single
parameter setting is upper bounded as follows:

Reg(T ) = Õ

(
w(A)

√
T

σ

)
, (8)
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The upper bound on the regret in the multi parameter setting
after the warm start phase is worse compared to the single
parameter setting by a factor of

√
k:

Reg(T ) = Õ

(
w(A)

√
kT

σ

)
. (9)

3. Single Parameter Regret Analysis
We present results for the single parameter setting in this
section. The greedy algorithm proceeds in multiple episodes
with the length of each episode increasing geometrically
with time. We index episode numbers by e, time steps by
t and contexts by i. We denote by T the total number of
rounds and by Te the number of rounds in episode e. In
each round, the algorithm observes contexts xti, 1 ≤ i ≤
k and greedily selects the optimal context based on the
current parameter estimate, i.e., zt = argmax

xt
i:1≤i≤k

〈xti, θ̂(e)〉 and

receives noisy reward yt = 〈zt, θ∗〉+ ωt with ωt denoting
κω sub-Gaussian noise at time t. The parameter is estimated
at the beginning of each episode by running constrained least
squares regression on the observed data from the previous
epoch (with the Puffer transformation on the design matrix
and response). Note that the design matrix is rank deficient
in the first e = dlog tmine rounds with tmin = Θ̃(w2(A))
when the contexts will be chosen uniformly at random.

Lemma 1 gives an upper bound for the regret for Algorithm
1. The greedy algorithm accrues linear regret in the first
tmin rounds when the design matrix is rank deficient for
parameter estimation, i.e., it does not satisfy the restricted
eigenvalue condition. Subsequent rounds are played in an
episodic fashion with the regret in any round depending on
the parameter estimation error at each episode.

Lemma 1 (Lemma 3.1 in (Kannan et al., 2018)) Denote
by β = max

1≤i≤k,1≤t≤T
‖xti‖2. Assume T > tmin, where tmin

depends on properties of the true parameter θ∗ and the
regularizer R(·). Then,

Reg(T ) ≤ 4βtmin +

blog Tc∑
e=dlog tmine

2βTe‖θ̂(e) − θ∗‖2 . (11)

3.1. Gaussian Contexts

In order to build intuition, we establish results on perfor-
mance of the greedy algorithm when the contexts are com-
pletely stochastic, i.e., we derive regret bounds when the
contexts are sampled independently from a Gaussian distri-
bution, , xti ∼ N(0, σ2Ip×p), 1 ≤ i ≤ k, t ≤ T in step 8 of
Algorithm 1. The episodic algorithm ensures independence
between data in each round of an episode. Additionally, the
rows of the design matrix are sub-Gaussian and the covari-

Algorithm 1 Structured Greedy (single parameter)
1: Initialize empty design matrix and reward vector
Z(0) = [], y(0) = []

2: for e = 1, 2, 3, . . . , blog2 T c do
3: SVD: 1√

Te−1

Z(e−1) = U (e−1)D(e−1)(V (e−1))ᵀ

4: Puffer transformation:
F (e−1) = U (e−1)(D(e−1))−1(U (e−1))ᵀ

Z̃(e−1) = F (e−1)Z(e−1)

ỹ(e−1) = F (e−1)y(e−1)

5: Estimate parameter using constrained least squares
estimator breaking ties arbitrarily when necessary

θ̂(e) = argmin
θ∈Rp

1

2Te−1
‖ỹ(e−1) − Z̃(e−1)θ‖22

s.t. R(θ) ≤ R(θ∗) , (10)

where Te−1 is the number of observations in the pre-
vious episode.

6: Initialize empty design matrix and reward vector
Z(e) = [], y(e) = []. Set Te = 2e−1

7: for t = 2(e−1) + 1 to 2e do
8: Observe contexts xt1, . . . , x

t
k ∈ Rp

9: Choose context zt = argmax
xt
i:1≤i≤k

〈xti, θ̂(e)〉 and ob-

serve reward yt = 〈zt, θ∗〉+ ωt where ωt is zero
mean κω-sub-Gaussian noise

10: Append observations (zt, yt) to (Z(e), y(e))
11: end for
12: end for

ance matrix satisfies the minimum eigenvalue condition.

Lemma 2 (Single Parameter Gaussian Contexts Design
Matrix Properties) The rows of the design matrix Z(e) ∈
RTe×p in any episode e satisfy κz = ‖zt‖ψ2

≤ c2σ
√

log k
for c2 some positive constant. Moreover the minimum eigen-
value of the matrix Ezt [zt(zT )T ] satisfies,

λmin(Ezt [z
t(zt)ᵀ]) ≥ c1

σ2

log k
, (12)

where c1 is some positive constant and the expectation is
over the chosen contexts.

The result of Lemma 2 allows us to use existing results
(Banerjee et al., 2014; Negahban et al., 2012) to establish
the RE condition and estimation error bounds. The only
deviation from traditional estimation is the use of the Puffer
transformation (Jia & Rohe, 2015). The Puffer transforma-
tion is a data preconditioning technique which makes the
condition number of the design matrix unity. We obtain
the following worst case upper bound on the `2 norm of
the estimation error with high probability with the Puffer
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transformed data:

‖θ̂(e+1) − θ∗‖2 ≤ Õ
(
w(A)

σ
√
Te

)
, (13)

where A is the error set. We provide the proof in the sup-
plement which essentially uses the same analysis tools and
techniques from (Banerjee et al., 2014). The regret bounds
now follow from a straightforward application of the result
of Lemma 1. When σ2 = Θ

(
1
p

)
, as assumed in (Kannan

et al., 2018), the regret bound is Õ(w(A)
√
pT ).

Theorem 1 (Gaussian Contexts Regret Bounds) Con-
sider Gaussian contexts. Then with probability atleast 1−2δ

β = max
1≤i≤k,1≤t≤T

‖xti‖2 ≤ c1σ(
√
p+

√
log(1/δ)) (14)

Assuming tmin = O(
√
T ) with probability atleast 1 − 4δ

the following is an upper bound on the regret for the Greedy
algorithm,

Reg(T ) ≤ O

(
γ · β · log(T ) ·

√
T

σ

)
(15)

where γ = cκω
√

log k(w(A) +
√

log log T +
√

log(1/δ))

3.2. Smoothed Perturbed Adversary

We now focus on regret bounds when the contexts are
xti = µti + gti , 1 ≤ i ≤ k, ∀1 ≤ t ≤ T . Remember that an
adaptive adversary with access to previous observed con-
texts and rewards can choose µti, ‖µti‖2 = 1,∀1 ≤ i ≤ k.
The primary question is if an adversary can negatively in-
fluence the design matrix to affect estimation error, or in
other words lower the minimum eigenvalue compared to the
completely stochastic setting. The answer is in the result
of Lemma 3, where we show that even in the adverserial
setting the minimum eigenvalue of the covariance matrix is
no worse than the completely stochastic Gaussian setting.
In particular, adding small random perturbations to adverse-
rially selected contexts leads to implicit exploration where
the greedy algorithm works well.

Lemma 3 (Design matrix properties for smoothed ad-
versary) The rows of the design matrix Z(e) ∈ RTe×p

in any episode e are zt = µt + gt where µt, gt =
argmax

µt
i,g

t
i :1≤i≤k

〈µti + gti , θ̂
(e−1)〉, gti ∼ N(0, σ2Ip×p) with the

sub-Gaussian norm of gt satisfying ‖gt‖ψ2
≤ c2σ

√
log k

for some constant c2. Moreover we have the following lower
bound on the expected minimum eigenvalue for any µti’s:

λmin(Ezt [z
t(zt)ᵀ]) ≥ c1

σ2

log k
, (16)

where c1 is some constant.

Due to an adaptive adversary, the selected contexts and
noise are no longer independent The dependency introduces
additional complexity for analysis of the non-asymptotic
estimation error. To obtain results on the RE condition, we
make use of recent novel results from (Banerjee et al., 2019)
on lower bounds for sum of quadratics of random variables
with dependence. We also use arguments from generic
chaining (Talagrand, 2005; 2014) to obtain estimation error
rates with Puffer preconditioned data. The estimation error
is the same as if the contexts were completely stochastic
Gaussian without any adversary.

‖θ̂(e+1) − θ∗‖2 ≤ Õ
(
w(A)

σ
√
Te

)
. (17)

High probability regret bounds can now be obtained from
the result of Lemma 1.

Theorem 2 (Smoothed Adversary Regret Bounds) In
the smoothed adversary setting with probability atleast
1− 2δ

β = max
1≤i≤k,1≤t≤T

‖xti‖2 ≤ (1 + c1σ(
√
p+

√
log(1/δ))) .

(18)
Assuming tmin = O(

√
T ) with probability atleast 1 − 5δ

the following is an upper bound on the regret,

Reg(T) ≤ O

(
γ · β · log(T ) ·

√
T

σ

)
, (19)

where γ = cκω
√

log k(w(A) +
√

log log T +
√

log(1/δ)).

3.3. Examples

We instantiate the regret bounds for a few norms with the
mild assumption σ2 = Θ

(
1
p

)
. Note that for `22 regular-

ization the setting is similar to (Kannan et al., 2018). The
regret bounds are better than (Kannan et al., 2018) by a
factor of

√
p. If θ∗ is sparse, e.g. using the `1 norm, the

regret bounds scale with
√
s log p instead of

√
p.

Corollary 1 Consider the smoothed adversary setting. Let
σ2 = Θ

(
1
p

)
. Then with probability atleast 1− 5δ:

1. Let θ∗ be s-sparse, R(·) the `1 norm.

Reg(T ) = Õ
(√

s log p
√
pT
)
. (20)

2. Let θ∗ ∈ Rm×q be a rank r matrix r ≤ min{m, q},
R(·) is the nuclear norm.

Reg(T ) = Õ
(
q
√
r(m+ q)

√
T
)
. (21)

3. Let R(·) the `22 norm.

Reg(T ) = Õ
(
p
√
T
)
. (22)
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4. Multi Parameter Regret Analysis
We present results for the multi parameter setting in this sec-
tion. The multi parameter setting has a separate parameter
corresponding to each context. The algorithm requires a
warm start phase of T0 rounds where the contexts are chosen
in a round robin fashion or randomly before employing the
greedy algorithm. As we show later, the length of the warm
start phase has dependence on the variance of the Gaus-
sian perturbations and is required to obtain sublinear regret.
Similar to the single parameter setting, after the warm start
phase the greedy algorithm proceeds in an episodic fashion,
except that we now maintain separate episodes for each
context. Denote the episode numbers for context i by ei
and the maximum number of episodes for context i after
T rounds as ei,max. In episode ei, context i is chosen by
the greedy algorithm Ti,ei times. During episode ei, before
context i is chosen in Ti,ei rounds by the greedy algorithm,
there can also be rounds when context i was optimal but was
not chosen by the algorithm, i.e., xti = argmax

xt
j :1≤j≤k

〈xtj , θ∗j 〉 but

xti 6= argmax
xt
j :1≤j≤k

〈xtj , θ̂
(ej)
j 〉. We denote the number of rounds

this happens in episode ei by T ∗i,ei .

Lemma 4 below gives an upper bound for the regret for
Algorithm 2.

Lemma 4 (Lemma 4.1 in (Kannan et al., 2018)) The
greedy algorithm plays the contexts in an episodic fash-
ion with the maximum episode number for each context
ei ≤ ei,max ≤ blog T c. Denote by β = max

1≤i≤k,1≤t≤T
‖xti‖2.

Let tmin < T , where tmin depends on properties of the true
parameters θ∗i , the regularizer R(·), the noise properties,
the number of contexts k and the quantity β. Then,

Reg(T ) ≤ 2βtmin+

+ β

k∑
i=1

ei,max∑
ei=1

(
Ti,ei‖θ∗i − θ̂

(ei)
i ‖2 + T ∗i,ei‖θ

∗
i − θ̂

(ei)
i ‖2

)
(23)

The regret thus depends on the following: a) the accuracy
of estimating θ∗i in each episode for all contexts; b) the
number of rounds when any context i is optimal but not cho-
sen,i.e., the quantities T ∗i,ei , and c) the number of episodes
per context, i.e., the quantities ei,max. A major difference
compared to the single parameter setting is the quantity
T ∗i,ei and the relation of the regret with T ∗i,ei . Note that
the estimate of any context parameter improves with the
number of times the particular context is chosen. The quan-
tities T ∗i,ei , while contributing to the regret, represent rounds
when the context is not chosen and hence do not contribute
to improvement of the parameter estimate. In contrast in the

single parameter setting, since there is only one parameter,
any chosen context contributes towards better parameter
estimation rates. The larger warm start phase in the multi
parameter setting is to ensure the greedy algorithm chooses
contexts with constant probability when they are optimal to
limit the quantities T ∗i,ei .

We focus on regret bounds when the contexts are xti =
µti+gti , 1 ≤ i ≤ k, 1 ≤ t ≤ T , where µti’s are chosen by an
adaptive adversary and gti ’s are the Gaussian perturbations.
We begin with a characterization of the number of rounds
required in the warm start phase. Remember, the goal of the
warm start phase is to ensure that there is a constant proba-
bility the algorithm chooses the optimal context. This is the
essence of the margin condition in Lemma 5. Propositions
1 and 2 build towards the result in Lemma 5. Proposition 1
is a straightforward observation on the relationship between
the first and second optimal contexts where we introduce the
quantity r. To summarize, Proposition 1 makes the observa-
tion that the dot product between the Gaussian perturbation
and parameter of the optimal context exceeds r.

Proposition 1 Consider any round t when the episode
numbers of the k contexts are e1, . . . , ek. Let i∗ de-
note the context with the maximum reward, i.e., i∗ =
argmax
l:1≤l≤k

〈µtl + gtl , θ
∗
l 〉. Let j denote the context having the

second largest reward, i.e., j = argmax
l:1≤l≤k;l 6=i∗

〈µtl + gtl , θ
∗
l 〉.

Define r = 〈µtj + gtj , θ
∗
j 〉 − 〈µti∗ , θ∗i∗〉. Then the following

condition is satisfied,

〈gti∗ , θ∗i∗〉 ≥ r . (24)

Proposition 2 states conditions when the greedy algorithm
chooses the optimal context. Due to parameter estimation
errors, for the greedy algorithm to perceive the context to
be optimal the dot product between the optimal parameter
vector and Gaussian perturbation should now exceed r by a
quantity which depends on the estimation error.

Proposition 2 Assume context j′ such that j′ =

argmax
l:1≤l≤k,l 6=i∗

〈µtl + gtl , θ̂
(el)
l 〉, i.e., the context other than i∗

which has the highest estimated reward. Also assume the pa-
rameter estimate for context i∗ to be θ̂(ei∗ )i∗ = θ∗i∗ + ∆

(ei∗ )
i∗

and for context j′, θ̂
(ej′ )

j′ = θ∗j′ + ∆
(ej′ )

j′ . Then the greedy
algorithm selects context i∗ if the following condition is
satisfied,

〈gti∗ , θ∗i∗〉 ≥ r + 〈µtj′ + gtj′ ,∆
(ej′ )

j′ 〉 − 〈µ
t
i∗ + gti∗ ,∆

(ei∗ )
i∗ 〉 .

(27)

The greedy algorithm always picks the optimal context if
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Algorithm 2 High-dimensional Greedy (multi parameter)
1: Set e1 = . . . = ek = 0. Initialize empty design matri-

ces and rewards Z(0)
1 , . . . , Z

(0)
k = [],y(0)1 , . . . , y

(0)
k = []

2: for t = 1 to T0 do
3: Observe contexts xt1, . . . , x

t
k ∈ Rp

4: Pick context it from {1, . . . , k} in round robin fash-
ion and observe reward rtit = 〈xtit , θ∗it〉+ ωt where
ωt is zero mean κω-sub-Gaussian noise

5: Append observations (xtit , r
t
it) to (Z

(0)
it , y

(0)
it )

6: end for
7: SVD: 1√

Ti,0

Z
(0)
i = U

(0)
i D

(0)
i (V

(0)
i )ᵀ

8: Puffer transformation: F (0)
i = U

(0)
i (D

(0)
i )−1(U

(0)
i )ᵀ

ỹ
(0)
i = F

(0)
i y

(0)
i , Z̃(0)

i = F
(0)
i Z

(0)
i

9: Estimate parameters using constrained least squares
estimator for each context with T1,0 = . . . = Ti,0 =
. . . = Tk,0 = T0/k

θ̂
(1)
i = argmin

θ∈Rp

1

2Ti,0
‖ỹ(0)i −Z̃

(0)
i θ‖22 s.t. R(θ) ≤ R(θ∗i ) ,

(25)
10: Increment all ei = ei + 1, 1 ≤ i ≤ k. Initialize

empty design matrices and rewards Z(e1)
1 , . . . , Z

(ek)
k =

[],y(e1)1 , . . . , y
(e2)
k = [], and t1 = . . . = tk = 0.

11: for t = T0 to T do
12: Observe contexts xt1, . . . , x

t
k ∈ Rp

13: Pick context it such that it = argmax
1≤i≤k

〈xti, θ̂
(ei)
i 〉,

receive reward rtit = 〈xtit , θ∗it〉 + ωt and increment
tit = tit + 1

14: Append observations (xtit , r
t
it) to (Z

(eit )

it , y
(eit )

it )
15: if tit = 2Tit,eit−1 = Tit,eit then
16: SVD: 1√

Ti,e
it

Z
(eit )

it = U
(eit )

it D
(eit )

it (V
(eit )

it )ᵀ

17: Puffer transformation:
F

(eit )

it = U
(eit )

it (D
(eit )

it )−1(U
(eit )

it )ᵀ,
Z̃

(eit )

it = F
(eit )

it Z
(eit )

it and ỹ(eit )it = F
(eit )

it y
(eit )

it

18: Estimate parameter using constrained least squares
estimator

θ̂
(eit+1)

it = argmin
θ∈Rp

1

2Tit,eit
‖ỹ(eit )it − Z̃(eit )

it θ‖22

s.t. R(θ) ≤ R(θ∗it) ,
(26)

where Tit,eit = 2Tit,eit−1.
19: Increment eit = eit + 1. Initialize empty design

matrix Z(eit )

it = [] and reward y(eit )it = [], tit = 0.
20: end if
21: end for

the condition in equation (27) is satisfied. Let us now fix
the quantity r. Let the estimation errors after the warm start
phase be such that

∣∣∣gtj′ ,∆(ej′ )

j′ 〉 − 〈µti∗ + gti∗ ,∆
(ei∗ )
i∗ 〉

∣∣∣ ≤
σ2

r . Then the probability that there is a match between
the optimal context and the context chosen by the greedy
algorithm is precisely the quantity on the l.h.s. in equation
(28). Now what are values of r when equation (28) is sat-
isfied? In the proof provided in the supplement, we will
prove that the probability in equation (28) decreases with
increasing r. Therefore to obtain lower bounds we assume
an upper bound on r which we will show to hold with high
probability over choices of contexts, µtk, g

t
k, in all rounds.

Lemma 5 (Margin Condition) Consider good events as
when r ≤ c3σ

√
log(Tk) and consider errors ∆

(ei∗ )
i∗ and

∆
(ej′ )

j′ to be small enough such that 〈µtj′ + gtj′ ,∆
(ej′ )

j′ 〉 −
〈µti∗ + gti∗ ,∆

(ei∗ )
i∗ 〉 ≤ σ2

r . Then the following holds,

P

(
〈gti∗ , θ∗i∗〉 ≥ r +

σ2

r

∣∣∣∣ 〈gti∗ , θ∗i∗〉 ≥ r) ≥ 1

20
, (28)

for all r ≤ c3σ
√

log(Tk).

The length of the warm start phase is now influenced by the
condition that ‖∆(ej′ )

j′ ‖2 and ‖∆(ei∗ )
i∗ ‖2 are small enough

so that 〈µtj′ + gtj′ ,∆
(ej′ )

j′ 〉 − 〈µti∗ + gti∗ ,∆
(ei∗ )
i∗ 〉 ≤ σ2

r in
Lemma 5 which translates to the upper bound below:

‖∆(ei)
i ‖2 = ‖θ̂(ei)i − θ∗i ‖2 ≤ Õ (σ) . (29)

The estimation error bounds are in turn influenced by the
properties of the design matrices after the warm start phase.

Lemma 6 (Multi parameter Design Matrix Properties)
Consider any context i and a particular episode ei. The
rows of the design matrix Z(ei)

i ∈ RTi,ei
×p are zti = µti+g

t
i

where in round t context i is chosen by the Greedy algorithm,
i.e., i = argmax

1≤l≤k
〈xtl , θ̂

(el)
l 〉 where xtl = µtl + gtl , g

t
l ∼

N(0, σ2Ip×p). Then under the condition 〈gti , θ∗i 〉 ≥ r for
some r ≤ c3σ

√
log(Tk),

λmin

(
Ezt

[
zti(z

t
i)

ᵀ
∣∣ zti satisfies ζ

])
≥ c2

σ2

log(Tk)
,

where ζ is the condition zti = argmax
gtl :1≤l≤k

〈xtl , θ̂
(el)
l 〉; 〈gti , θ∗i 〉 ≥

r; r ≤ c3σ
√

log(Tk).

The only difference in the properties of the design ma-
trix compared to the single parameter setting are the sub-
Gaussian norm and expected minimum eigenvalue of the
covariance matrix. Using similar steps to derive estimation
error as in the single parameter setting, we obtain the follow-
ing upper bound on the maximum estimation error across
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all contexts and episodes with high probability:

sup
1≤i≤k

sup
ei≤ei,max

‖θ̂(ei+1)
i − θ∗i ‖2 ≤ Õ

(
w(A)

σ
√
Ti,ei

)
. (30)

Comparing equations (29) and (30) it can be easily inferred
that Ti,ei = Θ̃

(
w2(A)
σ4

)
to satisfy the margin condition and

since the episode length increases monotonically the length
of the warm start phase T0 = Θ̃

(
kw2(A)
σ4

)
.

After the warm start phase, the margin condition of Lemma
5 holds and ensures that the greedy algorithm chooses the op-
timal context with probability atleast 1/20. In other words,
in expectation T ∗i,ei ≤ 20Ti,ei , i.e., in any episode for any
context the number of rounds when the context is optimal
but not perceived to be optimal by the greedy algorithm in
expectation is upper bounded by 20 times the length of the
episode. With the result on T ∗i,ei’s and the upper bound on
the parameter estimation errors, the regret upper bound in
the multi parameter setting can be derived from the result of
Lemma 4.

Theorem 3 (Multi parameter Smoothed Adversary Re-
gret Bounds) Consider computation of regret for the
Greedy algorithm in the multi parameter setting following
Lemma 4. Let r ≤ c3σ

√
log(Tk), β = max

1≤i≤k,1≤t≤T
‖xti‖2,

and

γ =
c12κω(w(A) +

√
log k +

√
log(1/δ))

√
log(Tk)

σ

. The margin condition in Lemma 5 is satisfied with proba-
bility atleast 1− 5δ when,

tmin ≥
4kγ2r2β2

σ4
+ 1 +

√
1

2
log(1/δ) . (31)

Under the margin condition, the regret is maximized when in
each round each context has equal probability to be selected
by the Greedy algorithm. The equal probability implies that
in expectation T1 = T2 = . . . = Tk = T

k . Also the regret is
upper bounded as follows,

Reg(T ) ≤ 2βtmin + 82βγ
√
Tk log(T ) . (32)

Moreover β ≤ (1+c1σ(
√
p+
√

log(1/δ))) with probability
atleast 1 − 2δ. Therefore with probability atleast 1 − 7δ
assuming tmin = O(

√
Tk)

Reg(T ) ≤ O
(
γ · β · log(T ) ·

√
Tk
)

(33)

The regret is
√
k times worse than that of the single parame-

ter setting.

4.1. Examples

We instantiate the regret bounds for a few norms. When
R(·) is ‖ · ‖22 and σ2 = Θ

(
1
p

)
, the length of the warm start

phase is Θ̃(kp3) which improves over the Θ̃(kp6) obtained
in (Kannan et al., 2018). Ignoring logarithm terms the regret
bounds are of the same order as (Agarwal & Goyal, 2013)
after the warm start phase but the polynomial in p warm
start rounds maybe prohibitive in many high-dimensional
applications.

Corollary 2 Let σ2 = Θ
(

1
p

)
. Then with probability

atleast 1− 7δ:

1. Let θ∗ be s-sparse, R(·) the `1 norm.

Reg(T ) = Õ
(√

p
√
s log p

√
Tk
)
. (34)

2. Let θ∗ ∈ Rm×q be a rank r matrix r ≤ min{m, q},
R(·) is the nuclear norm.

Reg(T ) = Õ
(
q
√
r(m+ q)

√
Tk
)
. (35)

3. Let R(·) the `22 norm.

Reg(T ) = Õ
(
p
√
Tk
)
. (36)

5. Conclusions
We analyzed the structured linear contextual bandit prob-
lem under the smoothed analysis framework. Our analysis
significantly improves on the bounds obtained in (Kannan
et al., 2018). While previous work have found it difficult
to extend efficient exploration strategies exploiting param-
eter structure in the high-dimensional setting, our analysis
shows that a simple greedy algorithm achieves sublinear
regret under the smoothed bandits framework.
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