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Abstract

Balancing performance and safety is crucial to
deploying autonomous vehicles in multi-agent en-
vironments. In particular, autonomous racing is a
domain that penalizes safe but conservative poli-
cies, highlighting the need for robust, adaptive
strategies. Current approaches either make sim-
plifying assumptions about other agents or lack
robust mechanisms for online adaptation. This
work makes algorithmic contributions to both
challenges. First, to generate a realistic, diverse
set of opponents, we develop a novel method
for self-play based on replica-exchange Markov
chain Monte Carlo. Second, we propose a distri-
butionally robust bandit optimization procedure
that adaptively adjusts risk aversion relative to
uncertainty in beliefs about opponents’ behaviors.
We rigorously quantify the tradeoffs in perfor-
mance and robustness when approximating these
computations in real-time motion-planning, and
we demonstrate our methods experimentally on
autonomous vehicles that achieve scaled speeds
comparable to Formula One racecars.

1. Introduction

Current autonomous vehicle (AV) technology still struggles
in competitive multi-agent scenarios, such as merging onto
a highway, where both maximizing performance (negotiat-
ing the merge without delay or hesitation) and maintaining
safety (avoiding a crash) are important. The strategic im-
plications of this tradeoff are magnified in racing. During
the 2019 Formula One season, the race-winner achieved the
fastest lap in only 33% of events (Federation Internationale
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de I’ Automobile, 2019). Empirically, the weak correlation
between achieving the fastest lap-time and winning suggests
that consistent and robust performance is critical to success.
In this paper, we investigate this intuition in the setting of
autonomous racing (AR). In AR, an AV must lap a race-
track in the presence of other agents deploying unknown
policies. The agent wins if it completes the race faster than
its opponents; a crash automatically results in a loss.

AR is a competitive multi-agent game, a general setting
challenging for a number of reasons, especially in robotics
applications. First, failures are expensive and dangerous,
so learning-based approaches must avoid such behavior or
rely on simulation while training. Second, the agents only
partially observe their opponent’s state, and these observa-
tions do not uniquely determine the opponent’s behavior.
Finally, the agents must make decisions online; the oppo-
nent’s strategy is a tightly-held secret and cannot be obtained
by collecting data before the competition.

Problem: We frame the AR challenge in the context of
robust reinforcement learning. We analyze the system as
a partially-observed Markov decision process (POMDP)
(S, A, Psa,, O, 7, \), with state space S, action space A,
state-action transition probabilities Ps,, observation space
O, rewards r : O — R, and discount factor \. Furthermore,
we capture uncertainty in behaviors of other agents through
an ambiguity' set P for the state-action transitions. Then
the AV’s objective is

maximize Psi(?éfp ; NE[r(o(t))]. (1)

The obvious price of robustness (Bertsimas & Sim, 2004)
is that a larger ambiguity set ensures a greater degree of
safety while sacrificing performance against a particular
opponent. If we knew the opponent’s behavior, we would
need no ambiguity set; equivalently, the ambiguity set would
shrink to the nominal state-action transition distribution.
Our goal is to automatically trade between performance
and robustness as we play against opponents, which breaks
down into two challenges: parametrizing the ambiguity set
to allow tractable inference and computing the robust cost
efficiently online.

! Ambiguity is a synonym for uncertainty (Gilboa & Marinacci,
2016). Formal descriptions in this paper use the term ambiguity.
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Contributions: The paper has three contributions: (i) a
novel population-based self-play method to parametrize
opponent behaviors, (ii) a provably efficient approach to es-
timate the ambiguity set and the robust cost online, and (iii)
a demonstration of these methods on real autonomous ve-
hicles. The name of our approach—FormulaZero—alludes
both to the Formula One racing league and the fact that
we use self-play (and no demonstrations) to learn competi-
tive behaviors, similar to the approach of AlphaZero (Silver
et al., 2018).

Section 1.1 gives context to our learning problem, including
connections to classical control techniques. In Section 2,
we describe the first challenge: learning how to parametrize
the ambiguity set P. Rather than directly consider the con-
tinuous action space of throttle and steering outputs, we syn-
thesize a library of “prototype” opponent behaviors offline
using population-based self-play. When racing against a
particular opponent, the agent maintains a belief vector w(t)
of the opponent’s behavior patterns as a categorical distribu-
tion over these prototype behaviors. We then parametrize
the ambiguity set as a ball around this nominal belief w(t).

The second challenge, presented in Section 3, is an online
optimization problem, wherein the agent iteratively updates
the ambiguity set (e.g. updates w(t)) and computes the ro-
bust cost of this set. In other words, the agent attempts
to learn the opponent’s behavior online to maximize its
competitive performance. Since this optimization occurs
on a moving vehicle with limited computational resources,
we provide convergence results that highlight tradeoffs of
performance and robustness with respect to these budgets.
Finally, Section 4 details the practical implications of the
theoretical results, emergent properties of the method, and
the experimental performance of our approach.

1.1. Related work

Reinforcement learning (RL) has achieved unprecedented
success on classic two-player games (e.g. Silver et al., 2018),
leading to new approaches in partially-observable games
with continuous action spaces (Arulkumaran et al., 2019;
Berner et al., 2019). In these works, agents train via self-
play using Monte Carlo tree search (Browne et al., 2012;
Sutton & Barto, 2018) or population-based methods (Jader-
berg et al., 2017; 2019). The agents optimize expected
performance rather than adapt to individual variations in op-
ponent strategy, which can lead to poor performance against
particular opponents (Bansal et al., 2017). In contrast, our
method explicitly incorporates adaptivity to opponents.

Robust approaches to RL and control (like this work) explic-
itly model uncertainty. In RL, this amounts to planning in a
robust MDP (Nilim & EI Ghaoui, 2005) or a POMDP (Kael-
bling et al., 1998). Early results Bagnell et al. (2001) and
Nilim & El Ghaoui (2005) describe solutions for robust plan-

ning in (PO)MDPs with tabular state/action spaces. Equiv-
alent results in control are analytical formulations applica-
ble to uncertainty in linear time-invariant systems (Doyle
et al., 1988; Vinnicombe, 1993; Zhou et al., 1996). Recent
works (Tamar et al., 2014; Pinto et al., 2017; Mandlekar
et al., 2017; Gleave et al., 2019) describe minimax and
adversarial RL frameworks for nonlinear systems and con-
tinuous action spaces. Like our approach, these methods
fall broadly under the framework of robust optimization.
Unlike these works, which consider worst-case planning
under a fixed uncertainty distribution, our approach updates
the distribution online.

Our approach is designed to adjust the agent’s evaluation
of short-term plans relative to uncertainty in the opponent’s
behavior rather than provide worst-case guarantees. Com-
plementary to and compatible with our approach are tech-
niques which provide the latter guarantees, such as robust
model predictive control (Bemporad & Morari, 1999). Ex-
tensions of robust control for nonlinear systems and complex
uncertainty models are also compatible (e.g. Majumdar &
Tedrake (2013); Althoff & Dolan (2014); Gao et al. (2014)).
In contrast to formal approaches which explicitly guarantee
robustness, some authors have proposed multitask or meta-
learning approaches (e.g. Caruana (1997); He et al. (2016);
Finn et al. (2018)) can implicitly learn to play against multi-
ple opponents. However, such techniques do not explicitly
model uncertainty or quantify robustness, which we deem
necessary in the high-risk, safety-critical regime.

Planning in belief space is closely related to our approach
and is well-studied in robotics (see e.g. Kochenderfer, 2015).
Specifically in the AV domain, Galceran et al. (2015) and
Ding & Shen (2019) use a Bayesian approach to plan tra-
jectories for AVs in belief space; like this work, both of
these approaches characterize the other agent’s behavior in
the environment categorically. Also similar to this work,
Van Den Berg et al. (2011) use a sampled set of goals ob-
tained by planning from other agents’ perspectives. The
main difference in this work from standard belief-space
planning formulations is inspired by recent results from
distributionally robust optimization (DRO) in supervised-
learning settings (Ben-Tal et al., 2013; Namkoong & Duchi,
2017). These methods reweight training data to reduce the
variance of the training loss (Namkoong & Duchi, 2017).
While others apply DRO to episodic RL for training offline
(Sinha et al., 2017; Smirnova et al., 2019), we reweight the
belief online.

Online methods for control fall under the umbrella of adap-
tive control (Kumar, 1985; Astrom & Wittenmark, 2013).
Dean et al. (2018) and Agarwal et al. (2019) establish re-
gret bounds for adaptive control methods applied to LTI
systems, tightening the relationship to online learning. Due
to the more general nature of our problem, we draw from
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the adversarial multi-armed bandit framework of online
learning (Abernethy & Rakhlin, 2009; Bubeck et al., 2012;
Shalev-Shwartz et al., 2012).

Our belief state corresponds to a categorical distribution of
polices governing an opponent’s next action; the goal is to
predict which strategy the opponent is using and compute
the best response. This approach is similar to game-theoretic
methods for AR and AV decision making that use the stan-
dard heuristic of iterated best response. Our work is distinct
from previous work, which either assumes that all agents
act with respect to the same cost function, simplifying the
structure of the game (Liniger & Lygeros, 2019; Wang et al.,
2019); or, without this simplifying assumption, that uses
demonstrations to learn possible sets of policies (Sadigh
et al., 2016; Williams et al., 2017). In constrast, we learn
the set of policies without demonstrations and use DRO to
robustly score the AV’s plans.

We convert the problem of predicting opponent behavior in
a continuous action space into an adversarial bandit prob-
lem by learning a set of cost functions that characterize
a discrete set of policies. As a result, we would like the
opponent models to be both near-optimal and diverse. We
use determinantal point processes (DPPs) (Kulesza et al.,
2012) to sample diverse configurations of the parameter
space. However, first we must learn a DPP kernel, which re-
quires that we efficiently sample competitive cost functions
from the larger configuration space. Since we assume no
structure to the set of competitive cost functions, we employ
a Markov-chain Monte Carlo (MCMC) method. Comple-
mentary methods include variational-inference (e.g. Arenz
et al. (2018)) and evolutionary (e.g. Mouret & Clune (2015))
approaches, which can be challenging to scale up to un-
structured, high-dimensional settings of which we have lit-
tle prior domain knowledge. In our approach, we update
the classic simulated tempering method (Marinari & Parisi,
1992) with a novel annealing scheme (Kirkpatrick et al.,
1983; Cerny, 1985) designed for population diversity. We
describe this approach next.

2. Offline population synthesis

The goal of offline population synthesis is to generate a
diverse set of competitive agent behaviors. Formally, we
would like to sample pairs (z, ) € X x O that are both di-
verse as well as achieve small values for a function f(x, ).
In our AV application, # parametrizes a neural network used
to sample trajectories to follow, x is a weighting of vari-
ous cost functions that the vehicle uses to select trajectories
from the samples, and f is the simulated lap time. With this
motivation, we treat the method in more generality assum-
ing (as in our application) that while we can differentiate
f(x,0) with respect to 6, = represents hyperparameters and
admits only function evaluations f(x,#) rather than first-

order developments. The key challenge is that we do not a
priori know a metric with which to evaluate diversity (e.g.,
a kernel for a DPP) nor do we know a base value of f that
is deemed acceptable for competitive performance.

We make this problem more tractable via temperature-based
Markov-chain Monte Carlo (MCMC) and annealing meth-
ods (Matyas, 1965; Hastings, 1970; Kirkpatrick et al., 1983;
éernjl, 1985; Ingber, 1993; Hu & Hu, 2011). Our goal is
to sample from a Boltzmann distribution g(zx, 6; 5(t))
e BWI(.9)  \where §(t) is an inverse “temperature” pa-
rameter that grows (or “anneals”) with iterations ¢. When
B(t) = 0, all configurations (z, §) are equally likely and all
MCMC proposals are accepted; as 3(t) increases, accepted
proposals favor smaller f. Unlike standard hyperparameter
optimization methods (Bergstra & Bengio, 2012; Jaderberg
et al., 2017) that aim to find a single near-optimal configu-
ration, our goal is to sample a diverse population of (x, #)
achieving small f(z,0). As such, our approach—annealed
adaptive population tempering (AADAPT)—maintains a
population of configurations and employs high-exploration
proposals based on the classic hit-and-run algorithm (Smith,
1984; Bélisle et al., 1993; Lovasz, 1999).

2.1. AADAPT

AADAPT builds upon replica-exchange MCMC, also called
parallel tempering, which is a standard approach to main-
taining a population of configurations (Swendsen & Wang,
1986; Geyer, 1991). In parallel tempering, one maintains
replicas of the system at L different temperatures 5; >
Ba... > P (which are predetermined and fixed), defining
the density of the total configuration as Hf:1 g(z*, 0% B;).
The configurations at each level perform standard MCMC
steps (also called “vertical” steps) as well as “horizontal”
steps wherein particles are swapped between adjacent tem-
perature levels (see Figure 1). Horizontal proposals consist
of swapping two configurations in adjacent temperature lev-
els uniformly at random; the proposal is accepted using stan-
dard Metropolis-Hastings (MH) criteria (Hastings, 1970).
The primary benefit of maintaining parallel configurations is
that the configurations at “colder” levels (higher (3) can ex-
ploit high-exploration moves from “hotter” levels (lower (3)
which “tunnel” down during horizontal steps (Geyer, 1991).
This approach allows for faster mixing times, particularly
when parallel MCMC proposals occur concurrently in a
distributed computing environment.

Maintaining a population: In AADAPT (Algorithm 1),
we maintain a population of D configurations at each
separate temperature level. Note that this design al-
ways maintains D individuals at the highest performance
level (highest B). The overall configuration density is
Hle [I;Z; 9(2*7,6%7:B;(t)). Similar to parallel tem-
pering, horizontal proposals are chosen uniformly at ran-
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Algorithm 1 AADAPT

input: annealing parameter «, vertical steps V, horizontal ex-
change steps E, temperature levels L, population size d, initial
samples {z*7, 6" }Z;{ff}},
Evaluate f(z*7,6%7)
fort=1toT
for 7 = 1to L do anneal 81— ;+1(t) (problem (2))
for k =1 to V asynchronously, in parallel
for each population % asynchronously, in parallel
Sample £ according to hit-and-run proposal
Evaluate f(z2%7,0%7)
Apply MH criteria to update z*/
Train 67 via SGD
for ¢ = 1 to E do horizontal swaps (Appendix A)

iterations T°

dom from configurations at adjacent temperatures (see Ap-
pendix A). We get the same computational benefits of fast
mixing in distributed computing environments and a greater
ability to exploit high-temperature “tunneling” due to the
greater number of possible horizontal exchanges between
adjacent temperature levels. The benefit of the horizontal
steps is even more pronounced in the RL setting as only ver-
tical steps require new evaluations of f (e.g. simulations).

High-exploration vertical proposals: Another benefit of
maintaining parallel populations is to improve exploration.
We further improve exploration by using hit-and-run propos-
als (Smith, 1984; Bélisle et al., 1993; Lovasz, 1999) for the
vertical MCMC chains. Namely, from a current point (x, 6)
we sample a uniformly random direction 4 and then choose
a point uniformly on the segment X N ({z + R - 4} x {6}).
This approach has several guarantees for efficient mix-
ing (Lovasz, 1999; Lovasz & Vempala, 2003; 2006). Note
that in our implementation the MCMC steps are only per-
formed on x, while 6 updates occur via SGD (see below).

Adaptively annealed temperatures: A downside to par-
allel tempering is the need to determine the temperature
levels f3; beforehand. In AADAPT. we adaptively update
temperatures. Specifically, we anneal the prescribed hori-
zontal acceptance probability of particle exchanges between
temperature levels as o'/ (=1 for a fixed hyperparameter
€ (0,1). Define the empirical acceptance probability of
swaps of conﬁgurations between levels ¢ — 1 and ¢ as

DQZZ

j=1k=1
yj’kl = min (1 ef @170 ) = fWlek)).
11— 1

Then, at the beginning of each iteration (in which we per-
form a series of vertical and horizontal MCMC steps), we
update the 3;(t) sequentially; we fix 81, (t) := 8, = 0 and
for a given 3;, we set 3;_1 by solving the following convex
optimization problem:

Jk leﬂi

’L— ’L

Pi—1,4 =

minimize
{Bi—1>Bi, pi—1,i<aE-D}

Bi-1, 2

Temperature

Initialize g, (1) Bolt) Ba(t) By(t)

Vertical j\(t) Bo(t) B5(t) Ba(t)

pnan e
HEgs

Horizontal

Iteration

Adapt Bi(t + 1) solves Problem (2)
Vertical (3)(t + 1) Bo(t+1) 1+1) Byt + 1) 3t +1)

| £¢ ¢¢ ms k%

Figure 1. Illustration of AADAPT. Vertical MCMC steps (jagged
black arrows) occur in parallel for 27, followed by gradient de-
scent for trainable parameters #%7 (magenta arrows) and horizontal
MCMC configuration swaps between populations (curved black
arrows). Temperatures [3;(¢) are then updated by problem (2).

using binary search. This adaptive scheme is crucial in our
problem setting, where we a priori have no knowledge of
appropriate scales for f and, as a result, 3. In practice, we
find that forcing 3; to monotonically increase in ¢ yields
better mixing, so we set (3;(t) = max(8;(t — 1), 5i(t)),
where 3; (t) solves problem (2).

Evaluating proposals via self-play: We apply AADAPT
to a multi-agent game. It is only possible to evaluate f(x, )
in the context of other agents, but we consider the setting
where demonstrations from potential opponents are either
difficult to obtain or held secret. Thus, we iteratively eval-
uate f via self-play. For each configuration (x, #), we per-
form a race in the simulated environment between two vehi-
cles with the same policy (with f(z, 8) being the lap time of
the agent that starts behind the other). Vertical MCMC steps
propose new z, which are then accepted according to MH
criteria. After a number of vertical iterations, a stochastic
gradient descent (SGD) step is applied to # (which maxi-
mizes the likelihood of the trajectories chosen by the agent
with cost functions parametrized by x). Following this
process, the updated agents in adjacent temperature levels
are exchanged via horizontal MCMC steps. Although we
choose f(x,0) as the laptime, explicit entropic terms can
also be included to further encourage diversity within a
single vertical chain or across the population.

At the conclusion of AADAPT, we use the coldest popu-
lation of D agents at inverse temperature (51 (7") to build a
DPP sampler. Specifically, define the matrix H via configu-
rations x> at the lowest temperature

Hgp = [lab® — ™). 3)
Then we define the DPP kernel K as K, =
exp (—H2,/0?) with a scale parameter ¢ = 0.5, and we
sample d < D configurations from this DPP.
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3. Online learning with computation budgets

Now we exploit the population of d learned prototype behav-
iors to enable robust performance. The agent’s (our) goal
is to act robustly against uncertainty in opponent behaviors
and adapt online to a given opponent. We parametrize the
agent’s (stochastic) policy as follows. At each time step, we
sample goal states (consisting of pose and velocity) via a
generative model G(#) parametrized by 6 (as in Section 2).
For a given goal state, we compute the parameters of a
cubic spline that reaches the goal by solving a nonconvex
trajectory optimization problem (McNaughton, 2011); on
this proposed trajectory we evaluate a collection of cost
functions (such as the maximum curvature or minimum ac-
celeration along the path) weighted by the vector z (recall
Section 2), similar to Sadat et al. (2019) (see Appendix D for
a description of all costs). Finally, we choose the sampled
goal trajectory with minimum robust cost and perform an
action to track this trajectory.

Some of the costs that evaluate the utility of a goal state
involve beliefs about the opponent’s future trajectory. For a
goal p, we rewrite the performance objective at time ¢ with
respect to a protoype opponent ¢ as a receding-horizon cost
ci(tip) == _ XT'E[r(o(s): p)],
s>t
where we omit dependence on the agent’s cost weights x for

convenience. We parametrize the agent’s belief of the oppo-
nent’s behavior as a categorical distribution of beliefs over
the prototypes. Specifically, let w(t) € A be a weight vector
at a given time ¢, where A := {a € R? | 71 = 1}, and
let Py(t) := Categorical(w(t)). Then Py(t) is the nominal
distribution describing the agent’s belief about the opponent.
Furthermore, we consider ambiguity sets P (¢) defined by di-
vergence measures on the space of probability measures over
A. For a convex function ¢ with ¢(1) = 0, the ¢-divergence
between distributions P and Q is Dy, (P|Q) = [ qﬁ(%)d@.
We use sets P(t) := {Q : Dy (Q|Po) (t) < p} where p >
0 is a specified constant. Our implementation employs the
x>2-divergence ¢(t) = 1% — 1.

Having defined the ambiguity set P(¢) and the cost with
respect to each prototype opponent, we rewrite the robust
performance objective (1) to clearly illustrate the optimiza-
tion problem. Let C'(¢; p) be a random variable representing
the expected cost with respect to the belief of the opponent
(and goal state p). Then the robust cost at time ¢ is

sup Eq[C(t;p)] = sup > aqici(t;p). (4)

QEP(t) @Y wid(E)<p

When p = 0, this is the expected cost under Fy; larger p
adds robustness. Solving the convex optimization problem
(4) first requires computing the costs ¢;(¢). Using A > 0 for
the constraint Dy (Q| Po) < p, a partial Lagrangian is

L(g,\) = Zqici(t) = A (Z w;¢ (qi/w;) — P> :

The corresponding dual function is v(\) = sup,ea £(q, A),
and minimizing v(A) via bisection yields the solution to
problem (4). Maximizing £(g, \) with respect to ¢ for a
given )\ requires O(d) time using a variant of median-based
search (Duchi et al., 2008) (see Appendix B). Thus, com-
puting an e-suboptimal solution uses O(dlog(1/¢)) time.

The supremum in the robust cost (4) is over belief ambiguity.
Thus, our approach generalizes beyond the goal-sampling
and trajectory-optimization approach presented at the begin-
ning of this section; it is compatible with any policy that
minimizes a cost ¢;(t) with respect to a parametrization for
opponent ¢’s policy. In this way, it is straightforward to com-
bine our framework with robust model predictive control
formulations that have rigorous stability guarantees.

In order to perform competitive actions, the agent updates
the ambiguity set P(¢) and computes the robust cost (4) on
an embedded processor on board the vehicle in real-time
(e.g. within 100 milliseconds). In the next two subsections,
we describe how to perform both operations in the pres-
ence of a severely limited computational budget, and we
quantitatively analyze the implications of the budget on the
robustness/performance tradeoff.

3.1. Approximating the robust cost

For a large library of prototypical opponents (large d), com-
puting every c¢; in the objective (4) is prohibitively expen-
sive. Instead, we consider an empirical approximation of
the objective, where we draw IV, indices Jj bR Py(t)
(where N,, < d) and consider the weighted sum of these
costs ¢;, . Specifically, we define the empirical approxima-
tion Py, = {q : Dy (¢]|1/Ny) < p} to P and solve the
following empirical version of problem (4):

> akci(t;p). ©)
k

maximize
qEPN,,

This optimization problem (5) makes manifest the price
of robustness in two ways. The first involves the setup
of the problem—computing the ¢;, . First, we denote the
empirical distribution as @ (t) with w;(£) = S0 1{ji =
i}/Ny. Even for relatively small N, /d, w(t) concentrates
closely around w(t) (see e.g. Weissman et al. (2003) for a
high-probability bound). Thus, when the vehicle’s belief
about its opponent w(t) is nearly uniform, the j; values
have few repeats. Conversely, when the belief is peaked
at a few opponents, the number of unique indices is much
smaller than N,,, allowing faster computation of c;, . The
short setup-time enables faster planning or, alternatively,
the ability to compute the costs ¢;, with longer horizons.
Therefore, theoretical performance automatically improves
as the vehicle learns about the opponent and the robust
evaluation approaches the true cost.

The second way we illustrate the price of robustness is by



FormulaZero

quantifying the quality of the approximation (5) with respect
to the number of samples NV,,. For shorthand, define the
true expected and approximate expected costs for goal p and
distributions ) and q respectively as

R(Q;p) == Eq[C(t;p)],

Then, we have the following bound:
Proposition 1 (Approximation quality). Suppose C(t;p) €

[—1,1] for all t,p. Let A, 5%1)1 and B, =

\/8(1 + p). Then with probability at least 1 — § over the

N,, samples Jj, - P,
[log 2
B 1)
s NU)

See Appendix B for the proof. Intuitively, increasing accu-
racy of the robust cost requires more samples (larger V,,),
which comes at the expense of computation time. Similar
to computing the full cost (4), e-optimal solutions require
O(N, log(1/e€)) time for N,, < N,, unique indices j;. In
our experiments (cf. Section 4), most of the computation
time involves the setup to compute the IV,, costs c;, .

Ny
qucjk (t;p).
W k=1

log(2Nw)

sup R(g; P)*SUP R(Q;p
EPNw

]s4Ap

3.2. Updating the ambiguity set

To maximize performance against an opponent, the agent
updates the ambiguity set P as the race progresses. Since
we consider ¢-divergence balls of fixed size p, this update
involves only the nominal belief vector w(t). As with com-
putation of the robust cost, this update must occur efficiently
due to time and computational constraints.

For a given sequence of observations of the opponent
og)p(t) = {00pp (1), Oopp(t—1), ..., 0opp(t—h+1)} overa
horizon h, we define the likelihood of this sequence coming

from the i prototype opponent as
17 () = log dP (05, (1)|G(0"1)) (©6)
where G(67) is a generative model of goal states for the

t prototype opponent. Letting  be a uniform upper bound
on [ (t), we define the losses L;(t) := 1 — I1(t) /1.

If we had enough time/computation budget, we could com-
pute L;(t) for all prototype opponents i and perform an
online mirror descent update with an entropic Bregman
divergence (Shalev-Shwartz et al., 2012). In a resource-
constrained setting, we can only select a few of these losses,
so we use EXP3 (Auer et al., 2002) to update w(¢). Unlike
a standard adversarial bandit setting, where we pull just one
arm (e.g.compute a loss L;(t)) at every time step, we may
have resources to compute up to N, losses in parallel at any
given time (the same indices Jj discussed in Section 3.1).
Denote our unbiased subgradient estimate as (¢):

1 = Li(t)
-~ N, > wi(t)

k=1

i(t) {Jp =i}. )

Algorithm 2 EXP3 with N,, arm-pulls per iteration
0) :=1/d, steps T

Input: Stepsize sequence 7, w/(
fort=0to 7T — 1 -
Sample N,, indices Jj Rt Categorical(w(t))
Compute v(t) (Equation (7))
(t41) = w; (t) exp(=nt7; (1))
wit+1) Y4y wj () exp(—mev; (1))

Algorithm 2 describes our slightly modified EXP3 algo-
rithm, which has the following expected regret.

Proposition 2. Ler z := %=1 + 1. Algorithm 2 run for T

iterations with stepsize n = 1/ 2 log(d) has expected regret
bounded by Zthl E [v(t)" (w(t) — w*)} < /22T 1og(d).

See Appendix B for the proof. This regret bound looks
similar to that if we simply ran N,, standard EXP3 steps
per iteration ¢ (in which case z = d/N,,). However, our
approach enables parallel computation which is critical in
our time-constrained setting. Note that the “multiple-play’
setting we propose here has been studied before with bet-
ter regret bounds but higher computational complexity per
iteration (Uchiya et al., 2010; Zhou & Tomlin, 2018). We
prefer our approach for its simplicity and ability to be easily
combined with the robust-cost computation.

s

4. Experiments

In this section we first describe the AR environment used
to conduct our experiments. Next we explore the hyperpa-
rameters of the algorithms in Section 2 and 3, identifying a
preferred configuration. Then we consider the overarching
hypothesis: online adaptation can improve the performance
of robust control strategies. We show the statistically signifi-
cant results affirming the theory and validate the approach’s
performance on real vehicles.

The experiments use an existing low-cost 1/10¢"-scale,
Ackermann-steered AV (Figure 2). Additionally, we create
a simulator and an associated OpenAl Gym API (Brock-
man et al., 2016) suitable for distributed computing. The
simulator supports multiple agents as well as deterministic
executions. We experimentally determine the physical pa-
rameters of the agent models for simulation and use SLAM
to build the virtual track as a mirror of a real location (see
Figure 4). The hardware specifications, software, and simu-
lator are open-source > (see Appendices C and D for details).

The agent software uses a hierarchical planner (Gat et al.,
1998) similar to Ferguson et al. (2008). The key difference
is the use of a masked autoregressive flow (MAF) (Rezende
& Mohamed, 2015) which provides the generative model for

2https://github.com/travelbureau/fO_icml_
code
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goal states, G(6). Belief inference and robust cost computa-
tion require sampling and evaluating the likelihood of goal
states. MAFs can evaluate likelihoods quickly but generate
samples slowly. Inspired by Oord et al. (2018) we overcome
this inefficency by training a “student” inverse autogres-
sive flow (IAF) (Kingma et al., 2016) on MAF samples.
Given a sample of goals from the IAF, the agent synthesizes
dynamically feasible trajectories following McNaughton
(2011). Each sample is evaluated according to Equation 4;
the weights of the cost functions are learned by AADAPT
(and formal definitions of the cost components are in Ap-
pendix D). Belief updates use Algorithm 2 using the MAF
to compute the losses L;(t).

4.1. Offline population synthesis

We run AADAPT with L = 5 populations, D = 160 config-
urations per population, and 7" = 100 iterations. For vertical
MCMC steps, we randomly sample 16 configuratons per
population and perform V' = 2 iterations of 5 hit-and-run
proposals. Furthermore, we perform E = DL?/a!/(L=1)
horizontal steps (motivated by the fact fact that “tunnel-
ing” from the highest-temperature level to the coldest takes
O(L?) accepted steps). Finally, for training 6, we use Adam
(Kingma & Ba, 2014) with a learning rate of 10~%.

Figure 3 shows results with 5 choices for the most
influential hyperparameter, the annealing rate: o €
{0.75,0.80,0.85,0.90,0.95}. Figure 3(a) displays 95%-
confidence intervals for the mean laptime in the coldest
level. The annealing rates o € {0.75,0.80,0.90} all result
in comparable performance of 22.95 £ 0.14 (mean =+ stan-
dard error) seconds at the end of the two-lap run. Figure 3(b)
illustrates a metric for measuring diversity, the Frobenius
norm of the Mahalanobis distance matrix (3). We see that
o = 0.9 results in the highest diversity while also attaining
the best performance. Thus, in further experimentation, we
use the results from the run conducted with o = 0.9.

Figure 4 illustrates qualitative differences between cost func-
tions. Figure 4(a) displays trajectories for agents driven
using 5 cost functions sampled from the learned DPP. The

60l
20 40 60 80 100 0
Iteration

20 40 60 80 100
Iteration

(a) Performance vs. iteration (b) Diversity vs. iteration

Figure 3. Hyperparameter selection for AADAPT. (a) 95%-
confidence intervals for f(x, 6) in the coldest temperature level.
(b) Frobenius norm of the Mahalanobis distance matrix H (3). The
value o = 0.9 achieves the best performance and diversity.

D!

(a) Rollouts from 5 agents

)
T
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s
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Figure 4. Qualitative illustrations of multimodal behavior in the
learned population of cost functions

cornering behavior is quite different between the trajecto-
ries. Figure 4(b) displays the trajectories chosen by all 160
agents in the population at 8 (T") at various snapshots along
the track. There is a wider spread of behavior near turns
than areas where the car simply drives straight.

4.2. Simulated experiments

We conduct a series of tests in simulation to determine the
effects of distributional robustness and adaptivity on over-
all safety and performance. For a given robustness level
p/N,, € {0.001,0.025,0.2,0.4,0.75,1.0} (with N,, = 8
for all experiments), we simulate 40 two-lap races against
each of the d = 10 diverse opponents sampled from the DPP.
For fair comparisons, half of the races have the opponent
starting on the outside and the other half with the opponent
on the inside of the track. Importantly, these experiments in-
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Table 1. The effect of distributional robustness on aggressiveness

Agent % of iTTC values < 0.5s
p/Nw = 0.001 7.86% 0.90
p/Nw = 0.025 6.46+ 0.78
p/Nw = 0.2 475+ 0.65
p/Nyw = 0.4 5.41£0.74
p/Nw = 0.75 5.50+ 0.82
p/Nw =1.0 5.76+ 0.84

Table 2. The effect of adaptivity on win-rate

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value
p/Nw =0.001 0593+ 0.025 0.588+ 0.025 0.84
p/Nw =0.025 0.593+0.025 0.600+ 0.024 0.77
p/Nw = 0.2 0.5384+0.025 0.588+ 0.025 0.045
p/Nuw = 0.4 0.503£0.025 0.573+£0.025  0.0098
p/Nw = 0.75 0.513+0.025 0.593+0.025 0.0013
p/Nw = 1.0 0.498+ 0.025 0.590+ 0.025 0.00024

volve only the most elite policies from the temperature level
B1(T). Since the physical characteristics of the vehicles
are identical, win rates between elite policies significantly
greater than 0.5 are meaningful. In contrast, against a set
of weaker opponents sampled via DPP from the 3™ temper-
ature level B5(T), the win-rate (fraction of races that our
agent from the coldest temperature wins) is 0.848 £ 0.012.

Effects of distributional robustness We test the hypoth-
esis that distributional robustness results in more conser-
vative policies. For every race both agents have a fixed
robustness level p and no adaptivity. To measure aggres-
siveness/conservativeness, we consider instantaneous time-
to-collision (iTTC) of the vehicles during the race (see Ap-
pendix F). Smaller iTTC values imply more dangerous sce-
narios and more aggressive policies. In Table 1, we track
the rate at which iTTC < 0.5 seconds. As expected, aggres-
siveness decreases with robustness (the rate of small iTTC
values decreases as p increases). The trend is a 4 blog(p),
where ¢ = 5.16 £ 0.34 and b = —0.36 £0.10 (R? = 0.75).

Effects of adaptivity Now we investigate the effects of
online learning on the outcomes of races. Figure 5(a) shows
that Algorithm 2 identifies the opponent vehicle within ap-
proximately 150 timesteps (15 seconds), as illustrated by the
settling of the regret curve.®> Given evidence that the oppo-
nent model can be identified, we investigate whether adaptiv-
ity improves performance, as measured by win-rate. Table 2
displays results of paired t-tests for multiple robustness lev-
els (with a null-hypothesis that adaptivity does not change
the win-rate). Each test compares the effect of adaptivity
for our agent on the 400 paired trials (and the opponents
are always nonadaptive). Adaptivity significantly improves
performance for the larger robustness levels p/N,, > 0.2.

3We omit 3 of the regret lines for clarity in the plot.

Regret

0 50 100 150 200 0 200 400 600 800 1000 1200
Iteration Tteration

(a) Simulation (b) Real

Figure 5. 95%-confidence intervals for regret using V,, = 8 arms
in (a) simulation and (b) reality. The legend in (a) denotes opponent
id and the opponent in (b) has id 22. Our agent has id 33.

As hypothesized above, adaptivity automatically increases
aggressiveness as the agent learns about its opponent and
samples fewer of the other arms to compute the empirical
robust cost (5). This effect is more prominent when robust-
ness levels are greater, where adaptivity brings the win-rate
back to its level without robustness (p/N,, = 0.001). Thus,
the agent successfully balances safety and performance by
combining distributional robustness with adaptivity.

4.3. Real-world validation

The real world experiments consist of races between agents
22 and 33; we examine the transfer of the opponent mod-
eling approach from simulation to reality. In Figure 5(b)
we plot 33’s cumulative regret; it takes roughly 4 times
as many observations relative to simulation-based experi-
ments to identify the opponent (agent 22). We demonstrate
the qualitative properties of the experiments in a video of
real rollouts synchronized with corresponding simulations.*
State estimation error and measurement noise drive the gap
between simulated and real performance. First, both vehicle
poses are estimated with a particle filter, whereas simulation
uses ground-truth states. Since we infer beliefs about an
opponent’s policy based on a prediction of their actions at a
given state, pose estimation error negatively impacts the ac-
curacy of this inference. Second, the simulator only captures
the geometry of the track; in reality glass and metal surfaces
significantly affect the LIDAR range measurements, which
in turn impact the MAF and IAF networks. The conver-
gence of the cumulative regret in Figure 5(b) reflects that,
despite the simulation/reality gap, our simulation-trained
approach transfers to the real world. Diminishing the effect
of the simulation/reality gap is the subject of future work
(see Appendix E).

4.4. Approximation analysis

Sampling N,, indices Jj b Py(t) allows us to quickly
compute the approximate robust cost (Section 3.1) and per-
form a bandit-style update to the ambiguity set (Section

‘nttps://youtu.be/7Yat9FZzE4dg
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Figure 6. 95%-confidence intervals for the (a) difference in regret
and (b) percent difference in cumulative planning time when using
sampling approximations vs. online mirror descent. Online mirror
descent yields lower regret at the expense of longer planning times.

3.2). Now we analyze the time-accuracy tradeoff of per-
forming this sampling approximation rather than using all
d prototypical opponents at every time step. Figure 6(a)
shows the difference in regret for the same experiments as
in Figure 5(a) if we perform full online mirror-descent up-
dates. Denoting the simulations in Figure 5(a) as .S and
those with the full mirror descent update as M, we compute
difference as Regretg — Regret; ;. As expected, the differ-
ence is positive, since receiving the true gradient is better
than the noisy estimate (7). Similarly, Figure 6(b) shows
the percent increase in cumulative planning time for the
same pairs (sampling vs. full online mirror descent), where
percent increase is given by 100(Time,; — Timeg)/Timeg.
As the agent learns who the opponent is, it draws many
repeats in the IV, arms, whereas the full mirror descent
update always performs d computations. As a result, the
percent increase in cumulative iteration time approaches a
contant of approximately 1.5x. All of these comparisons
are done in simulation, where the agent is not constrained
to perform actions in under 100 milliseconds. Performing a
full mirror descent update is impossible on the real car, as it
requires too much time.

4.5. Out-of-distribution opponents

Now we measure performance against two agents—OOD1
and OOD2—that are not in the distribution developed by
our offline population synthesis approach (see Appendix
F.2 for details on each agent’s policy). We perform only
simulated experiments, as we are unable to perform fur-
ther real-world experimentation at the time of writing due
to the COVID-19 pandemic. For given robustness levels
p/N,, € {0.001,1.0} and N,, = 8 for all experiments, we
perform 180 two-lap races against each of the two human-
created racing agents. Again, for fair comparison, half of
the experiments have the opponent start on the outside and
half on the inside. Tables 3 and 4 show the results. Over-
all, the trends match those of the in-distribution opponents.
Namely, adaptivity significantly increases the win-rate when
robustness is high (p/N,, = 1.0), whereas for low robust-

Table 3. The effect of adaptivity on win-rate vs. OOD1

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value
p/Nw =0.001 0.633+0.036  0.683£0.035 0.280
p/Nw = 1.0 0.483+0.037 0.717+£0.034 5.721E-6

Table 4. The effect of adaptivity on win-rate vs. OOD2

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value
p/Nw = 0.001  0.494+0.037 0.589+0.037  0.059
p/Ny = 1.0 0.572+£0.037  0.739+0.033  0.001

ness (p/N,, = 0.001) there is no significant change. Inter-
estingly, adaptivity with robustness not only recovers but
surpasses the win-rate of the non-adaptive non-robust policy.
We hypothesize that, because out-of-distribution opponents
do not match any of the learned prototypes, maintaining an
uncertainty over belief automatically helps the agent plan
against the “surprising” out-of-distribution actions. Valida-
tion of this hypothesis by comparing performance against
more out-of-distribution opponents is an interesting direc-
tion for future work. Overall, we observe that even against
out-of-distribution opponents, we achieve the overall goal
of balancing performance and safety.

5. Conclusion

The central hypothesis of this paper is that distributionally
robust evaluation of plans relative to the agent’s belief state
about opponents, which is updated as new observations are
made, can lead to policies achieving the same performance
as non-robust approaches without sacrificing safety. To
evaluate this hypothesis we identify a natural division of
the underlying problem. First, we parameterize the set of
possible opponents via population-based synthesis without
requiring expert demonstrations. Second, we propose an
online opponent-modeling framework which enables the ap-
plication of distributionally robust optimization (DRO) tech-
niques under computational constraints. We provide strong
empirical evidence that distributional robustness combined
with adaptivity enables a principled method automatically
trading between safety and performance. Also, we demon-
strate the transfer of our methods from simulation to real
autonomous racecars. The addition of recursive feasibility
arguments for stronger safety guarantees could improve the
applicability of these techniques to real-world settings. Fur-
thermore, although autonomous racing is the current focus
of our experiments, future work should explore the general-
ity of our approach in other settings such as human-robot
interaction.
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