
FormulaZero

A. Offline population synthesis
Here we provide extra details for Section 2.

Horizontal steps Horizontal steps occur as follows. Two
random particles are sampled uniformly at random from
adjacent temeprature levels. This forms a proposal for the
swap, which is then accepted via standard MH acceptance
conditions. Because the rest of the particles remain as-is,
the acceptance condition reduces to a particualrly simple
form (cf. Algorithm 3).

Algorithm 3 HORIZONTAL SWAP

Sample i ⇠ Uniform(1, 2, . . . , L� 1).
Sample j, k

i.i.d.
⇠ Uniform(1, 2, . . . , D).

Sample p ⇠ Uniform([0, 1])

Let a = min
⇣
1, ef(x

i,j
,✓

i,j)�f(xi+1,k
,✓

i+1,k)
⌘

if p < a�i��i+1

swap configurations (xi,j , ✓i,j) and (xi+1,k, ✓i+1,k)

We ran our experiments on a server with 88 Intel Xeon
cores @ 2.20 GHz. Each run of 100 iterations for a given
hyperparameter setting ↵ took 20 hours.

B. Online robust planning
Here we provide extra details for Section 3.

B.1. Solving problem (5)

We can rewrite the constraint D� (q||1/Nw)  ⇢ as kq �
1/Nwk

2
 ⇢/Nw. Then, the partial Lagrangian can be

written as

L(q,�) =
X

i

qici(t)�
�

2

�
kq � 1/Nwk

2
� ⇢/Nw

�
.

By inspection of the right-hand side, we see that, for a
given �, finding v(�) = sup

q2� L(q,�) is equivalent to a
Euclidean-norm projection of the vector 1/Nw + c(t)/�
onto the probability simplex �. This latter problem is di-
rectly amenable to the methods of Duchi et al. (2008).

B.2. Proof of Proposition 1

We redefine notation to suppress dependence of the cost C
on other variables and just make explicit the dependence
on the random index J . Namely, we let C : J ! [�1, 1]
be a function of the random index J . We consider the
convergence of

sup
Q2PNw

EQ[C(J)] to sup
Q2P

EQ[C(J)].

To ease notation, we hide dependence on J and for a sample
J1, . . . , JNw of random vectors Jk, we denote Ck := C(Jk)
for shorthand, so that the Ck are bounded independent ran-
dom variables. Our proof technique is similar in style to

that of Sinha & Duchi (2016). We provide proofs for tech-
nical lemmas that follow in support of Proposition 1 that
are shorter and more suitable for our setting (in particular
Lemmas 1 and 3).

Treating C = (C1, . . . , CNw) as a vector, the mapping
C 7! sup

Q2PNw
EQ[C] is a

p
⇢+ 1/

p
Nw-Lipschitz con-

vex function of independent bounded random variables.
Indeed, letting q 2 RNw

+ be the empirical probabil-
ity mass function associated with Q 2 PNw , we have
1

Nw

P
Nw

i=1(Nwqi)2  ⇢+ 1 or kqk2 
p
(1 + ⇢)/Nw. Us-

ing Samson’s sub-Gaussian concentration inequality (Sam-
son, 2000) for Lipschitz convex functions of bounded ran-
dom variables, we have with probability at least 1� � that

sup
Q2PNw

EQ[C] 2 E
"

sup
Q2PNw

EQ[C]

#
±2

p
2

s
(1 + ⇢) log 2

�

Nw

.

(8)
By the containment (8), we only need to consider conver-
gence of

E
"

sup
Q2PNw

EQ[C]

#
to sup

Q2P
EQ[C],

which we do with the following lemma.
Lemma 1 (Sinha & Duchi (2016)). Let Z =
(Z1, . . . , ZNw) be a random vector of independent random
variables Zi

i.i.d.
⇠ P0, where |Zi|  M with probability 1.

Let C⇢ =
2(⇢+1)p
1+⇢�1

. Then

E
"

sup
Q2PNw

EQ[Z]

#
� sup

Q2P
EQ[Z]� 4C⇢M

s
log(2Nw)

Nw

and

E
"

sup
Q2PNw

EQ[Z]

#
 sup

Q2P
EQ[Z].

See Appendix B.3 for the proof.

Combining Lemma 1 with containment (8) gives the result.

B.3. Proof of Lemma 1

Before beginning the proof, we first state a technical lemma.
Lemma 2 (Ben-Tal et al. (2013)). Let � be any closed
convex function with domain dom� ⇢ [0,1), and let
�⇤(s) = sup

t�0{ts � �(t)} be its conjugate. Then for
any distribution P and any function g : W ! R we have

sup
Q:D�(Q||P)⇢

Z
g(w)dQ(w)

= inf
��0,⌘

⇢
�

Z
�⇤
✓
g(w)� ⌘

�

◆
dP (w) + ⇢�+ ⌘

�
.

See Appendix B.4 for the proof.

We prove the result for general �-divergences �(t) = tk �
1, k � 2. To simplify algebra, we work with a scaled

FormulaZero

version of the �-divergence: �(t) = 1
k
(tk � 1), so the

scaled population and empirical constraint sets we consider
are defined by
P =

n
Q : D� (Q||P0) 

⇢

k

o
and PNw :=

n
q : D� (q||1/Nw) 

⇢

k

o
.

Then by Lemma 2, we obtain

E
"

sup
Q2PNw

EQ[Z]

#
= EP0

2

4 inf
��0,⌘

1

Nw

NwX

i=1

��
⇤
✓

Zi � ⌘

�

◆
+ ⌘ +

⇢

k
�

3

5

 inf
��0,⌘

EP0

2

4 1

Nw

NwX

i=1

��
⇤
✓

Zi � ⌘

�

◆
+ ⌘ +

⇢

k
�

3

5

= inf
��0,⌘

⇢
EP0


��

⇤
✓

Z � ⌘

�

◆�
+
⇢

k
�+ ⌘

�

= sup
Q2P

EQ[Z].

This proves the upper bound in Lemma 1.

Now we focus on the lower bound. For the function �(t) =
1
k
(tk � 1), we have �⇤(s) = 1

k⇤ [s]k
⇤

+ + 1
k

, where 1/k⇤ +
1/k = 1, so that the duality result in Lemma 2 gives

sup
Q2PNw

EQ[Z] = inf
⌘

(
(1 + ⇢)1/k

✓
1
Nw

NwX

i=1

[Zi � ⌘]k
⇤

+

◆ 1
k⇤

+ ⌘

)
.

Because |Zi|  M for all i, we claim that any ⌘ minimizing
the preceding expression must satisfy

⌘ 2

"
�
1 + (1 + ⇢)

1
k⇤

(1 + ⇢)
1
k⇤ � 1

, 1

#
·M. (9)

For convenience, we first define the shorthand

SNw(⌘) := (1 + ⇢)1/k
✓

1

Nw

NwX

i=1

[Zi � ⌘]k
⇤

+

◆ 1
k⇤

+ ⌘.

Then it is clear that ⌘  M , because otherwise we would
have SNw(⌘) > M � inf⌘ SNw(⌘). Let the lower bound be
of the form ⌘ = �cM for some c > 1. Taking derivatives
of the objective SNw(⌘) with respect to ⌘, we have

S0
Nw

(⌘) = 1� (1 + ⇢)1/k
1

Nw

P
Nw

i=1 [Zi � ⌘]k
⇤�1

+
⇣

1
Nw

P
Nw

i=1 [Zi � ⌘]k
⇤

+

⌘1� 1
k⇤

 1� (1 + ⇢)1/k
✓
(c� 1)M

(c+ 1)M

◆k
⇤�1

= 1� (1 + ⇢)1/k
✓
c� 1

c+ 1

◆k
⇤�1

.

For any c > c⇢,k := (1+⇢)
1
k⇤ +1

(1+⇢)
1
k⇤ �1

, the preceding display is

negative, so we must have ⌘ � �c⇢,kM . For the remainder
of the proof, we thus define the interval

U := [�Mc⇢,k,M] , c⇢,k =
(1 + ⇢)

1
k⇤ + 1

(1 + ⇢)
1
k⇤ � 1

,

and we assume w.l.o.g. that ⌘ 2 U .

Again applying the duality result of Lemma 2, we have that

E
"

sup
Q2PNw

EQ[Z]

#
= E


inf
⌘2U

SNw (⌘

�

= E

inf
⌘2U

{SNw (⌘)� E[SNw (⌘)] + E[SNw (⌘)]}
�

� inf
⌘2U

E[SNw (⌘)]

� E

sup
⌘2U

|SNw (⌘)� E[SNw (⌘)]|
�
. (10)

To bound the first term in expression (10), we use the fol-
lowing lemma.

Lemma 3 (Sinha & Duchi (2016)). Let Z � 0, Z 6⌘ 0 be
a random variable with finite 2p-th moment for 1  p  2.
Then we have the following inequality:

E
"✓

1

n

nX

i=1

Zp

i

◆ 1
p

#
� kZkp�

p� 1

p

r
2

n

p
Var(Zp/E[Zp])kZk2,

(11a)
and if kZk1  C, then

E
"✓

1

n

nX

i=1

Zp

i

◆ 1
p

#
� kZkp � C

p� 1

p

r
2

n
. (11b)

See Appendix B.5 for the proof. Now, note that [Z � ⌘]+ 2

[0, 1 + c⇢,k]M and (1 + ⇢)1/k(1 + c⇢,k) =: C⇢,k. Thus, by
Lemma 3 we obtain that

E[SNw(⌘)] � (1 + ⇢)1/kE
h
[Z � ⌘]k

⇤

+

i1/k⇤

+ ⌘ � C⇢,kM
k⇤ � 1

k⇤

r
2

Nw

.

Using that k
⇤�1
k⇤ = 1

k
, taking the infimum over ⌘ on the

right hand side and using duality yields

inf
⌘

E[SNw(⌘)] � sup
Q2P

EQ[Z]� C⇢,k
M

k

r
2

Nw

.

To bound the second term in expression (10), we use con-
centration results for Lipschitz functions. First, the function
⌘ 7! SNw(⌘) is

p
1 + ⇢-Lipschitz in ⌘. To see this, note

that for 1  k?  2 and X � 0, by Jensen’s inequality,
E[Xk

?�1]

(E[Xk?])1�1/k? 
E[X]k

?�1

(E[Xk?])1�1/k? 
E[X]k

?�1

E[X]k?�1
= 1,

so S0
Nw

(⌘) 2 [1 � (1 + ⇢)
1
k , 1] and therefore SNw is

(1 + ⇢)1/k-Lipschitz in ⌘. Furthermore, the mapping
T : z 7! (1+ ⇢)

1
k (1

Nw

P
Nw

i=1 [zi � ⌘]k
⇤

+)
1
k⇤ for z 2 RNw is

convex and (1 + ⇢)
1
k /

p
Nw-Lipschitz. This is verified by

the following:
��T (z) � T (z0)

��  (1 + ⇢)1/k

������

✓
1

Nw

NwX

i=1

���[zi � ⌘]+ �
⇥
z
0
i � ⌘

⇤
+

���
k⇤ ◆ 1

k⇤
������


(1 + ⇢)1/k

Nw
1/k⇤

������

✓NwX

i=1

��zi � z
0
i

��k⇤
◆ 1

k⇤
������


(1 + ⇢)1/k

p
Nw

kz � z
0k2,

FormulaZero

where the first inequality is Minkowski’s inequality and
the third inequality follows from the fact that for any vector
x 2 Rn, we have kxk

p
 n

2�p
2p kxk2 for p 2 [1, 2], where

these denote the usual vector norms. Thus, the mapping
Z 7! SNw(⌘) is (1 + ⇢)1/k/

p
Nw-Lipschitz continuous

with respect to the `2-norm on Z. Using Samson’s sub-
Gaussian concentration result for convex Lipschitz func-
tions, we have

P (|SNw(⌘)� E[SNw(⌘)]| � �)  2 exp

�

Nw�2

2C2
⇢,k

M2

!

for any fixed ⌘ 2 R and any � � 0. Now, let N (U, ✏) =
{⌘1, . . . , ⌘N(U,✏)} be an ✏ cover of the set U , which we may
take to have size at most N(U, ✏)  M(1 + c⇢,k)

1
✏
. Then

we have
sup
⌘2U

|SNw(⌘)� E[SNw(⌘)]

 max
i2N (U,✏)

|SNw(⌘i)� E[SNw(⌘i)]|+ ✏(1 + ⇢)1/k.

Using the fact that E[maxin |Xi|] 
p
2�2 log(2n) for

Xi all �2-sub-Gaussian, we have

E


max
i2N (U,✏)

|SNw(⌘i)� E[SNw(⌘i)]|

�

 C⇢,k

s

2
M2

Nw

log 2N(U, ✏).

Taking ✏ = M(1 + c⇢,k)/Nw gives that

E

sup
⌘2U

|SNw(⌘)� E[SNw(⌘)]

�


p
2MC⇢,k

r
1

Nw

log(2Nw) +
C⇢,kM

Nw

.

Then, in total we have (using C⇢ � C⇢,k, k � 2, and
Nw � 1),

E
"

sup
Q2PNw

EQ[Z]

#
� sup

Q2P
EQ[Z]�

C⇢M
p
2

p
Nw

✓
1

k
+
p
log(2Nw) +

1
p
2Nw

◆

� sup
Q2P

EQ[Z]� 4C⇢M

s
log(2Nw)

Nw

.

This gives the desired result of the lemma.

B.4. Proof of Lemma 2
Let L � 0 satisfy L(w) = dQ(w)/dP (w), so that L is the
likelihood ratio between Q and P . Then we have

sup
Q:D�(Q||P)⇢

Z
g(w)dQ(w) = supR

�(L)dP⇢,EP [L]=1

Z
g(w)L(w)dP (w)

= sup
L�0

inf
��0,⌘

⇢Z
g(w)L(w)dP (w) � �

✓Z
f(L(w))dP (w) � ⇢

◆

� ⌘

✓Z
L(w)dP (w) � 1

◆�

= inf
��0,⌘

sup
L�0

⇢Z
g(w)L(w)dP (w) � �

✓Z
f(L(w))dP (w) � ⇢

◆

� ⌘

✓Z
L(w)dP (w) � 1

◆�
,

where we have used that strong duality obtains because the
problem is strictly feasible in its non-linear constraints (take
L ⌘ 1), so that the extended Slater condition holds (Luen-
berger, 1969, Theorem 8.6.1 and Problem 8.7). Noting that
L is simply a positive (but otherwise arbitrary) function, we
obtain

sup
Q:D�(Q||P)⇢

Z
g(w)dQ(w)

= inf
��0,⌘

Z
sup
`�0

{(g(w)� ⌘)`� ��(`)} dP (w) + �⇢+ ⌘

= inf
��0,⌘

Z
��⇤

✓
g(w)� ⌘

�

◆
dP (w) + ⌘ + ⇢�.

Here we have used that �⇤(s) = sup
t�0{st� �(t)} is the

conjugate of � and that � � 0, so that we may take divide
and multiply by � in the supremum calculation.

B.5. Proof of Lemma 3

For a > 0, we have

inf
��0

⇢
ap

p�p�1
+ �

p� 1

p

�
= a,

(with � = a attaining the infimum), and taking derivatives
yields
ap

p�p�1
+�

p� 1

p
�

ap

p�p�1
1

+�1
p� 1

p
+
p� 1

p

✓
1�

ap

�p1

◆
(���1).

Using this in the moment expectation, by setting �n =
p

q
1
n

P
n

i=1 Z
p

i
, we have for any � � 0 that

E
"✓

1

n

nX

i=1

Zp

i

◆ 1
p

#
= E

Pn

i=1 Z
p

i

pn�p�1
n

+ �n
p� 1

p

�

� E
Pn

i=1 Z
p

i

pn�p�1
+ �

p� 1

p

�

+
p� 1

p
E
✓

1�

P
n

i=1 Z
p

i

n�p

◆
(�n � �)

�
.

Now we take � = kZkp, and we apply the Cauchy-Schwarz

FormulaZero

inequality to obtain

E
"✓

1

n

nX

i=1

Z
p
i

◆ 1
p

#
� kZkp

�
p � 1

p
E
"

1 �
1
n

Pn
i=1 Z

p
i

kZkp
p

!2# 1
2

E

2

4
 ✓

1

n

nX

i=1

Z
p
i

◆ 1
p

� kZkp

!2
3

5

1
2

= kZkp�
p � 1

p
p
n

q
Var(Zp/E[Zp])E

2

4
 ✓

1

n

nX

i=1

Z
p
i

◆ 1
p

� E[Zp]
1
p

!2
3

5

1
2

� kZkp �
p � 1

p
p
n

q
Var(Zp/E[Zp])E

"✓
1

n

nX

i=1

Z
p
i

◆ 2
p

+ E[Zp]
2
p

1
2

� kZkp �
p � 1

p

r
2

n

q
Var(Zp/E[Zp])kZk2,

where the last inequality follows by the fact that the norm is
non-decreasing in p.

In the case that we have the unifom bound kZk1  C, we
can get tighter guarantees. To that end, we state a simple
lemma.
Lemma 4. For any random variable X � 0 and a 2 [1, 2],
we have

E[Xak]  E[Xk]2�aE[X2k]a�1

Proof For c 2 [0, 1], 1/p+1/q = 1 and A � 0, we have
by Holder’s inequality,

E[A] = E[AcA1�c]  E[Apc]1/pE[Aq(1�c)]1/q

Now take A := Xak, 1/p = 2 � a, 1/q = a � 1, and
c = 2

a
� 1.

First, note that E[Z2p]  CpE[Zp]. For 1  p  2, we can
take a = 2/p in Lemma 4, so that we have

E[Z2]  E[Zp]2�
2
pE[Z2p]

2
p�1

 kZk
p

p
C2�p.

Now, we can plug these into the expression above (using
VarZp

 E[Z2p]  Cp
kZk

p

p
), yielding

E
"✓

1

n

nX

i=1

Zp

i

◆ 1
p

#
� kZkp � C

p� 1

p

r
2

n

as desired.

B.6. Proof of Proposition 2

We utilize the following lemma for regret of online mirror
descent.
Lemma 5. The expected regret for online mirror descent
with unbiased stochastic subgradient �(t) and stepsize ⌘ is
TX

t=1

E
h
�(t)T (w(t)� w

?)
i
 log(d)

⌘
+
⌘

2
E
"

TX

t=1

dX

j=1

wj(t)�j(t)
2

#

(12)

See Appendix B.7 for the proof. Now we bound the right-
hand term of the regret bound (12) in our setting. For this
we utilize the following:

E
⇥
�i(t)

2|w(t)
⇤
=

1
N2

w

L
2
i (t)

w
2
i (t)

E

2

4

NwX

k=1

1 {Jk = i}
!2 ����w(t)

3

5

=
1
N2

w

L
2
i (t)

w
2
i (t)

�
Nw(Nw � 1)wi(t)

2 +Nwwi(t)
�
,

where the latter fact is simply the second moment for the
sum of Nw random variables i.i.d.

⇠ Bernoulli(wi(t)). Then,
dX

i=1

wi(t)E
⇥
�i(t)

2|w(t)
⇤
=

dX

i=1

Li(t)
2

✓
Nw � 1
Nw

wi(t) +
1
Nw

◆


dX

i=1

✓
Nw � 1
Nw

wi(t) +
1
Nw

◆

=
Nw � 1
Nw

+
d

Nw

=: z.

Plugging in the prescribed ⌘ =
q

2 log(d)
zT

into the bound
(12) yields the result.

B.7. Proof of Lemma 5

We first show the more general regeret of online mirror de-
scent with a Bregman divergence and then specialize to the
entropic regularization case. Let (w) be a convex fuction
and ⇤(✓) its Fenchel conjugate. Define the Bregman diver-
gence B (w,w0) = (w) � (w0) � r (w0)T (w � w0).
In the following we use the subscript ·t instead of (·)(t) for
clarity. The standard online mirror descent learner sets

wt = argmin
w

✓
�T
t
w +

1

⌘
B (w,wt)

◆
.

Using optimality of wt+1 in the preceding equation, we
have
�T
t
(wt � w⇤) = �T

t
(wt+1 � w⇤) + �T

t
(wt � wt+1)


1

⌘
(r (wt+1)�r (wt))

T (w⇤
� wt+1)

+ �T
t
(wt � wt+1)

=
1

⌘
(B (w

⇤, wt)�B (w
⇤, wt+1)�B (wt+1, wt))

+ �T
t
(wt � wt+1).

Summing this preceding display over iterations t yields
TX

t=1

�T
t
(wt � w⇤) 

1

⌘
B (w

⇤, w1)

+
TX

t=1

✓
�
1

⌘
B (wt+1, wt) + �T

t
(wt � wt+1)

◆

Now let (w) =
P

i
wi logwi. Then, with w1 = 1/d,

B (w⇤, w1)  log(d). Now we bound the second term
with the following lemma.
Lemma 6. Let (x) =

P
j
xj log xj and x, y 2 � be

defined by: yi = xi exp(�⌘gi)P
j xj exp(�⌘gj) where g 2 Rd

+ is non-
negative. Then

�
1

⌘
B (y, x) + gT (x� y) 

⌘

2

dX

i=1

g2
i
xi.

See Appendix B.8 for the proof. Setting y = wt+1, x = wt,

FormulaZero

and g = �t in Lemma 6 yields
TX

t=1

�T
t
(wt � w⇤) 

log(d)

⌘
+
⌘

2

TX

t=1

dX

j=1

wj(t)�j(t)
2.

Taking expectations on both sides yields the result.

B.8. Proof of Lemma 6

Note that B (y, x) =
P

i
yi log

yi

xi
. Substituting the values

for x and y into this expression, we have
X

i

yi log
yi
xi

= �⌘gT y �
X

i

yi log

0

@
X

j

xje
�⌘gj

1

A

Now we use a Taylor expansion of the function g 7!

log
⇣P

j
xje�⌘gj

⌘
around the point 0. If we define the

vector pi(g) = xie�⌘gi/
⇣P

j
xje�⌘gj

⌘
, then

log

0

@
X

j

xje
�⌘gj

1

A = log(1Tx)� ⌘p(0)T g+

⌘2

2
g>
�
diag(p(eg))� p(eg)p(eg)>

�
g

where eg = �g for some � 2 [0, 1]. Noting that p(0) = x
and 1Tx = 1T y = 1, we obtain

B (y, x) = ⌘gT (x�y)�
⌘2

2
g>
�
diag(p(eg))� p(eg)p(eg)>

�
g,

whereby

�
1

⌘
B (y, x) + gT (x� y) 

⌘

2

dX

i=1

g2
i
pi(eg). (13)

Lastly, we claim that the function

s(�) =
dX

i=1

g2
i

xie��giP
j
xje��gj

is non-increasing on � 2 [0, 1]. Indeed, we have

s0(�) =

�P
i
gixie��gi

� �P
i
g2
i
xie��gi

�

(
P

i
xie��gi)

2 �

P
i
g3
i
xie��giP

i
xie��gi

=

P
ij
gig2jxixje��gi��gj �

P
ij
g3
i
xixje��gi��gj

(
P

i
xie��gi)

2

Using the Fenchel-Young inequality, we have ab  1
3 |a|

3 +
2
3 |b|

3/2 for any a, b so gig2j 
1
3g

3
i
+ 2

3g
3
j
. This implies that

the numerator in our expression for s
0
(�) is non-positive.

Thus, s(�)  s(0) =
P

d

i=1 g
2
i
xi which gives the result

when combined with inequality (13).

C. Hardware
The major components of the vehicle used in experiments
are shown in Figure 7. The chassis of the 1/10-scale vehicles
used in experiments are based on a Traxxas Rally 1/10-scale
radio-controlled car with an Ackermann steering mecha-
nism. An electronic speed controller based on an open

Figure 7. Components of the 1/10 Scale Vehicle

source design (Vedder) controls the RPM of a brushless DC
motor and actuates a steering servo. A power distribution
board manages the power delivery from a lithium polymer
(LiPo) battery to the onboard compute unit and sensors. The
onboard compute unit is a Nvidia Jetson Xavier, a system-
on-a-chip that contains 8 ARM 64 bit CPU cores and a 512
core GPU. The onboard sensor for localization is a planar
LIDAR that operates at 40Hz with a maximum range of
30 meters. The electronic speed controller also provides
odometry via the back EMF of the motor.

D. Vehicle Software Stack
This section gives a detailed overview of the software used
onboard the vehicles. Figure 8 gives a graphical overview.

D.1. Mapping

We create occupancy grid maps of tracks using Google
Cartographer (Hess et al., 2016). The map’s primary use
is as an efficient prior for vehicle localization algorithms.
In addition, maps serve as a representation of the static
portion of the simulation environment describing where the
vehicle may drive and differentiating which (if any) portions
of the LIDAR scan have line-of-sight to other agents. A
feature of our system useful to other researchers is that any
environment which can be mapped may be trivially added
to the simulator described in Appendix E.

D.2. Localization

Due to the speeds at which the vehicles travel, localization
must provide pose estimates at a rate of at least 20 Hz. Thus,
to localize the vehicle we use a particle filter (Walsh &
Karaman, 2017) that implements a ray-marching scheme on
the GPU in order to efficiently simulate sensor observations
in parallel. We add a small modification which captures
the covariance of the pose estimate. We do not use external
localization systems (e.g. motion capture cameras) in any
experiment.

FormulaZero

Figure 8. FormulaZero implementation on vehicle. Online each agent measures the world using onboard sensors such as a planar LIDAR.
Given the sensor measurement the vehicle performs opponent prediction via the use of a masked autoregressive flow and simultaneously
selects motion planner goals using an inverse autoregressive flow. Given the set of goals each is evaluated within our DRO framework, the
best goal is chosen, and a new control command is applied to the vehicle. Then, the process occurs again.

D.3. Planning

The vehicle software uses a hierarchical planner (Gat et al.,
1998) similar to that of Ferguson et al. (2008). At the top
level the planner receives a map and waypoints representing
the centerline of the track; the goal is to traverse the track
from start to finish. Unlike route planning in road networks,
there are no routing decisions to be made. In more complex
instances of our proposed environment, this module could
be necessary for making strategic decisions such as pit stops.
The second key difference is the mid-level planner. Whereas
Ferguson et al. (2008) uses a deterministic lattice of points,
our vehicle draws samples from a neural autoregressive flow.
Each sample contains a goal pose and speed profile. Given
this specification, the local planner calculates a trajectory pa-
rameterized as a cubic spline, evaluates static and dynamic
costs of the proposed plan in belief space, and selects the
lowest cost option.

D.3.1. SAMPLING BEHAVIOR PROPOSALS

There are two advantages to using a neural autoregressive
flow in our planning framework. First, each agent in the
population weights the individual components of its cost
function differently; the flow enables the goal generation
mechanism to learn a distribution which places more proba-
bility mass on the agent’s preferences. Second, as planning
takes place in the context of the other agent’s actions, the
ego-agent’s beliefs can be updated by inverting the flow and
estimating the likelihood of the other agent’s actions under
a given configuration of the cost function.

The goal-generation process utilizes an inverse autoregres-

sive flow (IAF) (Kingma et al., 2016). The IAF samples
are drawn from a density conditioned on a 101-dimensional
observation vector composed of a subsampled LIDAR scan
and current speed. Each sample is a 6 dimensional vector:
�t, the perpendicular offset of the goal pose from the track’s
centerline; �s, the arc-length along the track’s centerline
relative to the vehicle’s current pose; �✓, the difference
between the goal pose’s heading angle and the current head-
ing angle; three velocity offsets from the vehicle’s current
velocity at three equidistant knot points along the trajectory.

The second benefit of using a generative model for sampling
behavior proposals is the ability to update an agent’s beliefs
about the opponent’s policy type. As noted in Section 4,
masked (Papamakarios et al., 2017) and inverse autoregres-
sive flows (MAF and IAF respectively) have complementary
strengths. While sampling from a MAF is slow, density esti-
mation using this architecture is fast. Thus, we use a MAF
network trained to mimic the samples produced by the IAF
for this task. The architectures of each network are the same,
and we describe this architecture below.

The IAF and MAF networks used in this paper have 5
MADE layers (Papamakarios et al., 2017) each contain-
ing: a masked linear mapping (R6

! R100), RELU layer,
masked linear mapping (R100

! R100), RELU layer, and a
final masked linear layer (R100

! R12). Note that output
of a MADE layer includes both the transformed sample and
the logarithm of the absolute value of the determinant of
the Jacobian of the transformation. For sampling, the latter
is discarded, and the transformed sample is passed to the
next layer. In addition, the masking pattern is sequential
and held constant during both training and inference. This

FormulaZero

choice was made to aid in debugging of experiments and to
simplify communication during distributed training.

Each population member has a dedicated IAF model, which
is trained iteratively according to the AADAPT algorithm
described in Section 2 using the hyperparameters given in
Section 4. We initialize each IAF with a set of weights
which approximate an identity transformation for random
pairs of samples from a normal distribution and simulated
observations. In addition each population member also has
a MAF model, which is trained using the same hyperparam-
eters as the IAF but only after AADAPT has finished. The
code submitted in the supplementary materials extends an
existing library5 created by other authors; we add support
for the IAF architecture as well as generalize the network
architecture to 3-dimensional tensors. The latter extension
enables sampling from multiple agents’ IAF models simul-
taneously and efficiently.

D.3.2. MODEL PREDICTIVE CONTROL

The goal of the trajectory generator is to compute kinemat-
ically and dynamically feasible trajectories that take the
vehicle from its current pose to a set of sampled poses from
the IAF. The trajectory generator combines approaches from
(Howard, 2009; Nagy & Kelly, 2001; Kelly & Nagy, 2003;
McNaughton, 2011). Each trajectory is represented by a
cubic spiral with five parameters p = [s, a, b, c, d] where
s is the arc length of the spiral, and (a, b, c, d) encode the
curvature at equispaced knot points along the trajectory.
Powell’s method or gradient descent can be used to find the
spline parameters that (locally) minimize the sum of the Eu-
clidean distance between the desired endpoint pose and the
forward simulated pose. Offline, a lookup table of solutions
for a dense grid of goal poses is precomputed, enabling fast
trajectory generation online. Each trajectory is associated
with an index which selects the �x, �y, and the �✓ of the
goal pose relative to the current pose (where positive x is
ahead of the vehicle and postiive y is to the left), and 0,
the initial curvature of the trajectory. The resolution and
the range of the table is listed in Table 5. Figure 9 shows a
selection of trajectories. The point on the left of the figure
is the starting pose of the vehicle, and the collection of goal
poses is shown as the points on the right of the figure.

D.3.3. TRAJECTORY COST FUNCTIONS

Each of the generated trajectories is evaluated with the
weighted sum of the following cost functions. Note, in
order to ensure safety, goals which would result in colli-
sion result in infinite cost and are automatically rejected
prior to computing the robust cost, which operates only on
finite-cost proposals.

5https://github.com/kamenbliznashki/
normalizing_flows

Table 5. The resolution and ranges of the Trajectory Generator
Look-up Table

Index Resolution Min Max

�x 0.1 m -1.0 m 10.0 m
�y 0.1 m -8.0 m 8.0 m
�✓ ⇡/32 rad �⇡/2 rad ⇡/2 rad
0 0.2 rad/m -1.0 rad/m 1.0 rad/m

Figure 9. Sample trajectories from the look-up table

1. Trajectory length: cal = s, where 1/s is the arc
length of each trajectory. Short and myopic trajectories
are penalized.

2. Maximum absolute curvature: cmc = maxi{|i|},
where i are the curvatures at each point on a trajectory.
Large curvatures are penalized to preserve smoothness
of trajectories.

3. Mean absolute curvature: cac = 1
N

P
N

i=0 |i|, the
notation is the same as cmc and the effect of this feature
is similar, but less myopic.

4. Hysteresis loss: Measured between the previous cho-
sen trajectory and each of the sampled trajectories,
chys = ||✓[n1,n2]

prev � ✓[0,n2�n1]||22, where ✓prev is the
array of heading angles of each pose on the previous
selected trajectory by the vehicle, ✓ is the array of
heading angles of each pose on the trajectory being
evaluated, and the ranges [n1, n2] and [0, n2 � n1]
define contiguous portions of trajectories that are com-
pared. Trajectories dissimilar to the previously selected
trajectory are penalized.

5. Lap progress: Measured along the track from the start
to the end point of each trajectory in the normal and
tangential coordinate system, cp = 1

send�sstart
, where

send is the corresponding position in the tangential
coordinate along the track of the end point of a trajec-
tory, and sstart is that of the start point of a trajectory.
Shorter progress in distance is penalized.

6. Maximum acceleration: cma = maxi |
�vi
�ti

| where
�v is the array of difference in velocity between ad-
jacent points on a trajectory, and �t is the array of

FormulaZero

corresponding time intervals between adjacent points.
High maximum acceleration is penalized.

7. Maximum absolute curvature change: Measured
between adjacent points along each trajectory, cdk =
maxi |

�i
�ti

|. High curvature changes are penalized.

8. Maximum lateral acceleration: cla =
maxi{||iv2i }, where  and v are the arrays of
curvature and velocity of all points on a trajectory.
High maximum lateral accelerations are penalized.

9. Minimum speed: cms =
1

(mini{vi})+ . Low minimum
speeds are penalized.

10. Minimum range: cmr = mini{ri}, where r is the ar-
ray of range measurements (distance to static obstacles)
generated by the simulator. Smaller minimum range is
penalized, and trajectories with minimum ranges lower
than a threshold are given infinite cost and therefore
discarded.

11. Cumulative inter-vehicle distance short:

cdyshort =

(
1, if d(ego

i
, opp

i
)  thresh

P
Nshort

i=0 d(ego
i
, opp

i
), otherwise

Where the function d() returns the instantaneous mini-
mum distance between the two agents at point i, Nshort

is a point that defines the shorter time horizon for a
trajectory of N points. Trajectories with infinite cost
on the shorter time horizon are considered infeasible
and discarded.

12. Discounted cumulative inter-vehicle distance long:
cdylong =

PNlong

i=Nshort
0.9i�Nshort 1

d(egoi,oppi)
, where

Nlong is a point that defines the longer time horizon for
a trajectory of N points. Note that Nshort < Nlong <
N . Lower minimum distances between agents on the
longer time horizon are penalized.

13. Relative progress: Measured along the track between
the sampled trajectories’ endpoints and the opponent’s
selected trajectory’s endpoint, cdp = (sopp end �

send)+, where sopp end is the position along the track
in tangential coordinates of the endpoint of the oppo-
nent’s chosen trajectory. Lagging behind the opponent
is penalized.

D.3.4. PATH TRACKER

Once a trajectory has been selected it is given to the path-
tracking module. The goal of the path tracker is to compute a
steering input which drives the vehicle to follow the desired
trajectory. Our implementation uses a simple and industry-
standard geometrical tracking method called pure pursuit
(Coulter, 1992; Snider et al., 2009). Due to the decoupling of
the trajectory generation and tracking modules it is possible

for the tracker to run at a much higher frequency than the
trajectory generator; this is essential for good performance.

D.4. Communication and system architecture

The ZeroMQ (Hintjens, 2013) messaging library is used to
create interfaces between the FormulaZero software stack
and the underlying ROS nodes that control and actuate
the vehicle test bed. Unlike in the simulator, some as-
pects of the FormulaZero planning function operate non-
deterministicaly and asynchronously. In particular we use a
sink node to collect observations from ROS topics related to
the various sensors on the vehicle in order to approximate
the step-function present in the Gym API. When a planning
cycle is complete, the trajectory is published back to ROS
and tracked asynchronously using pure-pursuit as new pose
estimates become available. Because perception is not the
primary focus of this project we simplify the problem of
detecting and tracking the other vehicle. In particular, each
vehicle estimates its current pose in the map obtained by
its onboard particle filter, and this information is communi-
cated to the other vehicle via ZeroMQ over a local wireless
network. Since tracking and detection has been well studied
in robotics, solutions which rely less on communication
could be explored by other future work which builds upon
this paper.

E. Simulation Stack
The simulation stack includes a lightweight 2D physics
engine with a dynamical vehicle model. Then on top of
the physics engine, a multi-agent simulator with an OpenAI
Gym (Brockman et al., 2016) API is used to perform rollouts
of the experiments.

E.1. Vehicle Dynamics

The single-track model in Althoff et al. (2017) is chosen
because it considers tire slip influences on the slip angle,
which enables accurate simulation at physical limits of the
vehicle test bed. It is also easily enables changes to the driv-
ing surface friction coefficient in simulation which allows
the simulator to model a variety of road surfaces.

E.2. System Identification

Parameter identification was performed to derive the follow-
ing vehicle parameters: mass, center of mass, moment of
inertia, surface friction coefficient, tire cornering stiffness,
and maximum acceleration/deceleration rates following the
methods described in O’Kelly et al. (2019).

FormulaZero

E.3. Distributed Architecture

Due to the nature of the AADAPT algorithm, the rollouts
in a single vertical step do not need to be in sequence. The
ZeroMQ messaging library is used to create a MapReduce
(Dean & Ghemawat, 2008) pattern between the task dis-
tributor, result collector, and the workers. Each worker
receives the description of the configuration to be simualted,
e.g. (x, ✓). Then the workers asynchronously perform simu-
lations and send results to the collector.

E.4. Addressing the simulation/reality gap

As noted in Section 4 there are several differences between
the observations in simulated rollouts and reality. First, pose
estimation errors are not present in the simulator. A simple
fix would be to add Gaussian white noise to the pose obser-
vations returned by the simulator. We avoided this and other
domain randomization techniques in order to preserve the
determinism of the simulator, but we will investigate its ef-
fect in further experiments. Second, the LIDAR simulation
does not account for material properties of the environment.
In particular, surfaces such as glass do not produce returns,
causing subsets of the LIDAR beams to be dropped. We
hypothesize that simple data augmentation schemes which
select a random set of indices to drop from simulated LI-
DAR observations would improve the robustness to such
artifacts when the system is deployed on the real car; we are
currently investigating this hypothesis.

F. Experiments
Additional videos of simulation runs are available.6

F.1. Instantaneous time-to-collision (iTTC)

Let Ti(t) be the instantaneous time-to-collision between
the ego vehicle and the i-th environment vehicle at time
step t. The value Ti(t) can be defined in multiple ways
(see e.g. Sontges et al. (2018)). Norden et al. (2019) define
it as the amount of time that would elapse before the two
vehicles’ bounding boxes intersect assuming that they travel
at constant fixed velocities from the snapshot at time t. Time-
to-collision captures directly whether or not the ego-vehicle
was involved in a crash. If it is positive no crash occurred,
and if it is 0 or negative there was a collision.

F.2. Out-of-distribution agent strategies

In the following sections, we describe the human-created
algorithms used in our out-of-distribution analysis.

6https://youtu.be/8q0lZssbEI4

F.2.1. OOD1: RRT* WITH MPC-BASED OPPONENT
PREDICTION

This approach exploits the fact that the two-car racing sce-
nario is similar to driving alone on the track with the only
exception being during overtaking the opponent. This ap-
proach uses a costmap-based RRT* (Karaman & Frazzoli,
2011) planning algorithm. The agent first uses the oppo-
nent’s current pose and velocity in the world, and uses
Model-Predictive Control to calculate an open loop trajec-
tory of N optimal inputs resulting in N+1 states based on
a given cost function and constraints. Specifically, the op-
timization problem is constrained by a linearized version
of the single track model described in Althoff et al. (2017),
and by the boundary values of the inputs and states of the
vehicle. The cost function that the optimization tries to
minimize consists of the trajectory length and input power
requirement. The costmap used by RRT* also incorporates
this predicted trajectory of the opponent vehicle by inflating
the two-dimensional spline representing the prediction, and
weighting the portion of the spline closer to the ego vehicle
higher. RRT* samples the two dimensional space that the
vehicle lies in. The path generated by RRT* is then tracked
with the Pure Pursuit controller (Coulter, 1992).

F.2.2. OOD2: RL-BASED LANE SWITCHING

Figure 10. Lanes that cover the track

The second algorithm is based on a lane-switching planning
strategy that uses an RL algorithm to make lane switching
decisions, and filters out unsafe decisions using a colli-
sion indicator. First, as shown in 10, different lanes going
through numerous checkpoints on the track are created to
cover the entirety of the race track. Then a network is
trained to make lane switching decisions. The state of the
RL problem consists of the sub-sampled LIDAR scans of
the ego vehicle; the pose (x, y, ✓) of the opponent car with
respect to the ego vehicle; velocity (vx, vy) of the opponent
vehicle with respect of the ego vehicle; projected distance
from the ego vehicle’s current position to all pre-defined
paths. The reward of a rollout is zero in the beginning. At

FormulaZero

each timestep, the timestep itself is subtracted from the total
reward. A rollout receives -100 as the reward when the
ego agent collide with the environment or the other agent.
And finally, if both agents finish 2 laps, the difference be-
tween lap times (positive if the ego agent wins) of the two
agents are added to the reward. Clipped Double Q-Learning
(Fujimoto et al., 2018) is used to estimate the Q function
and make the lane switching decisions. iTTC defined in
Appendix F.1 is used as an indicator for future collisions.
If any decisions made by the RL network would result in a
collision indicated by the iTTC value, the safety function
kicks in and makes the lane switching decision based on the
collision indicator. Finally, ego vehicle actuation is provided
by the same Pure Pursuit controller (Coulter, 1992) tracking
the selected lane. We used an existing implementation7 of
this algorithm.

7https://github.com/pnorouzi/rl-path-
racing

