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Abstract
A robustness certificate against adversarial exam-
ples is the minimum distance of a given input
to the decision boundary of the classifier (or its
lower bound). For any perturbation of the input
with a magnitude smaller than the certificate value,
the classification output will provably remain un-
changed. Computing exact robustness certificates
for neural networks is difficult in general since it
requires solving a non-convex optimization. In
this paper, we provide computationally-efficient
robustness certificates for neural networks with
differentiable activation functions in two steps.
First, we show that if the eigenvalues of the Hes-
sian of the network (curvatures of the network)
are bounded (globally or locally), we can com-
pute a robustness certificate in the l2 norm effi-
ciently using convex optimization. Second, we
derive a computationally-efficient differentiable
upper bound on the curvature of a deep network.
We also use the curvature bound as a regulariza-
tion term during the training of the network to
boost its certified robustness. Putting these results
together leads to our proposed Curvature-based
Robustness Certificate (CRC) and Curvature-
based Robust Training (CRT). Our numerical re-
sults show that CRT leads to significantly higher
certified robust accuracy compared to interval-
bound propagation (IBP) based training. We
achieve certified robust accuracy 69.79%, 57.78%
and 53.19% while IBP-based methods achieve
44.96%, 44.74% and 44.66% on 2,3 and 4 layer
networks respectively on the MNIST-dataset.
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1. Introduction
Modern neural networks achieve high accuracy on tasks
such as image classification and speech recognition, but are
known to be brittle to small, adversarially chosen pertur-
bations of their inputs (Szegedy et al., 2014). A classifier
which correctly classifies an image x, can be fooled by an
adversary to misclassify an adversarial example x + δ, such
that x + δ is indistinguishable from x to a human. Adversar-
ial examples can also fool systems when they are printed out
on a paper and photographed with a smart phone (Kurakin
et al., 2016a). Even in a black box threat model, where the
adversary has no access to the model parameters, attackers
could target autonomous vehicles by using stickers or paint
to create an adversarial stop sign that the vehicle would
interpret as a ‘yield’ or another sign (Papernot et al., 2016).
This trend is worrisome and suggests that adversarial vulner-
abilities need to be appropriately addressed before neural
networks can be deployed in security critical applications.

In this work, we propose a new approach for developing
provable defenses against `2-bounded adversarial attacks as
well as computing robustness certifications of pre-trained
deep networks with differentiable activations. In contrast
to the existing certificates (Weng et al., 2018; Zhang et al.,
2018b) that use the first-order information (upper and lower
bounds on the slope), our approach is based on the second-
order information (upper and lower bounds on curvature val-
ues i.e. eigenvalues of the Hessian). Our approach is based
on two key theoretically-justified steps: First, in Theorems 1
and 2, we show that if the eigenvalues of the Hessian of the
network (curvatures of the network) are bounded (globally
or locally), we can efficiently compute a robustness cer-
tificate and develop a defense method against `2-bounded
adversarial attacks using convex optimization. Second, in
Theorem 4, we derive a computationally-efficient differen-
tiable bound on the curvature (eigenvalues of the Hessian)
of a deep network. We derive this bound by explicitly char-
acterizing the Hessian of a deep network in Lemma 1.

Although the problem of finding the closest adversarial ex-
ample to a given point for deep nets leads to a non-convex
optimization problem, our proposed Curvature-based Ro-
bustness Certificate (CRC), under some verifiable condi-
tions, is able to compute points on the decision boundary
that are provably closest to the input. That is, it provides
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the tightest certificate in those cases. For example, for a
2,3,4 layer networks trained on MNIST, we can find prov-
ably closest adversarial points for 44.17%, 22.59%, 19.53%
cases, respectively (Table 2). To the best of our knowledge,
our method is the first approach that can efficiently com-
pute provably closest adversarial examples for a significant
fraction of examples in non-trivial neural networks.

We note that un-regularized networks, specially deep ones,
can obtain large curvature bounds which can lead to small
robustness certificates. However, by using the derived curva-
ture bound as a regularizer during training, we significantly
decrease curvature values of the network, with little or no
decrease in its performance (Table 5, Figure 1). Using this
technique, our method significantly outperforms interval-
bound propagation (IBP) (Wong et al., 2018; Zhang et al.,
2019a) and achieves state of the art certified accuracy (Ta-
bles 3 and 4). In particular, our method achieves certified
robust accuracy 69.79%, 57.78% and 53.19% while IBP-
based methods achieve 44.96%, 44.74% and 44.66% on 2,3
and 4 layer networks, respectively, on the MNIST-dataset
(similar results for Fashion-MNIST).

Other recent works (e.g. Moosavi Dezfooli et al. (2019);
Qin et al. (2019)) empirically show that using an estimate
of curvature at inputs as a regularizer leads to empirical
robustness on par with the adversarial training. In this work,
however, we use a bound on the absolute value of curvature
(and not an estimate) as a regularizer and show that it results
in high certified robustness. Moreover, previous works
have tried to certify robustness by bounding the Lipschitz
constant of the neural network (Anil et al., 2018; Hein &
Andriushchenko, 2017; Peck et al., 2017; Szegedy et al.,
2014; Zhang et al., 2018c). Our approach, however, is based
on bounding the Lipschitz constant of the gradient which
in turn leads to bound on the eigenvalues of the Hessian of
deep neural networks.

In summary, we make the following contributions:

• We derive a closed-form expression for the Hessian of
a deep network with differentiable activation functions
(Lemma 1) and derive bounds on the curvature using
this closed-form formula (Theorems 3 and 4).

• We develop computationally efficient methods for both
the robustness certification as well as the adversarial
attack problems (Theorems 1 and 2).

• We provide verifiable conditions under which our
method is able to compute points on the decision
boundary that are provably closest to the input. Empiri-
cally, we show that this condition holds for a significant
fraction of examples (Table 2).

• We show that using our proposed curvature bounds
as a regularizer during training leads to improved cer-

tified accuracy on 2,3 and 4 layer networks (on the
MNIST and Fashion-MNIST datasets) compared to
IBP-based adversarial training (Wong & Kolter, 2017;
Zhang et al., 2019a) (Tables 3 and 4). Our robustness
certificate (CRC) outperforms CROWN’s certificate
(Zhang et al., 2018b) significantly when trained with
our regularizer (Table 5).

To the best of our knowledge, this is the first work that
(a) demonstrates the utility of second-order information for
provable robustness, (b) derives a framework to find the
exact robustness certificates in the l2 norm and the exact
worst case adversarial perturbation in an l2 ball of given
a radius under some conditions, and (c) derives an exact
closed form expression for the Hessian and bounds on the
curvature values using the same.

2. Related work
In the last couple of years, several empirical defenses have
been proposed for training classifiers to be robust against ad-
versarial perturbations (Kurakin et al., 2016b; Madry et al.,
2018; Miyato et al., 2017; Papernot et al., 2016; Saman-
gouei et al., 2018; Zhang et al., 2019b; Zheng et al., 2016)
Although these defenses robustify classifiers to particular
types of attacks, they can be still vulnerable against stronger
attacks (Athalye & Carlini, 2018; Athalye et al., 2018; Car-
lini & Wagner, 2017; Laidlaw & Feizi, 2019; Uesato et al.,
2018). For example, (Athalye et al., 2018) showed most
of the empirical defenses proposed in ICLR 2018 can be
broken by developing tailored attacks for each of them.

To end the cycle between defenses and attacks, a line of work
on certified defenses has gained attention where the goal
is to train classifiers whose predictions are provably robust
within some given region (Bunel et al., 2017; Carlini et al.,
2017; Cheng et al., 2017; Croce et al., 2018; Dutta et al.,
2018; Dvijotham et al., 2018a;b; Ehlers, 2017; Fischetti &
Jo, 2018; Gehr et al., 2018; Gowal et al., 2018; Huang et al.,
2016; Katz et al., 2017; Levine & Feizi, 2020a;b;c; Lomus-
cio & Maganti, 2017; Mirman et al., 2018; Raghunathan
et al., 2018a;b; Singh et al., 2018; Wang et al., 2018a;b;
Weng et al., 2018; Wong & Kolter, 2017; Wong et al., 2018;
Zhang et al., 2018b; 2019a). These methods, however, do
not scale to large and practical networks used in solving
modern machine learning problems. Another line of defense
work focuses on randomized smoothing where the predic-
tion is robust within some region around the input with a
user-chosen probability (Cao & Gong, 2017; Cohen et al.,
2019; Lécuyer et al., 2018; Li et al., 2018; Liu et al., 2017;
Salman et al., 2019). Although these methods can scale to
large networks, certifying robustness with probability close
to 1 often requires generating a large number of noisy sam-
ples around the input which leads to high inference-time
computational complexity. We discuss existing works in
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Table 1. A summary of various primal and dual concepts used in the paper. f denotes the function of the decision boundary, i.e. z(L)y −z(L)t

where y is the true label and t is the attack target. m and M are lower and upper bounds on the smallest and largest eigenvalues of the
Hessian of f , respectively.

Certificate problem (−) = cert Attack problem (−) = attack

primal problem, p∗
(−)

minf(x)=0 1/2∥x − x(0)∥2 min
∥x−x(0)∥≤ρ f(x)

dual function, d(−)(η) minx 1/2∥x − x(0)∥2 + ηf(x) minx f(x) + η/2(∥x − x(0)∥2 − ρ2)

When is dual solvable? −1/M ≤ η ≤ −1/m −m ≤ η

dual problem, d∗
(−)

max−1/M≤η≤−1/m dcert(η) max−m≤η dattack(η)

When primal = dual? f(x(cert)) = 0 ∥x(attack) − x(0)∥ = ρ

more details in Appendix A.

3. Notation
Consider a fully connected neural network with L layers
and NI neurons in the Ith layer (L ≥ 2 and I ∈ [L])
for a multi-label classification problem with C classes
(NL = C). The corresponding function of the neural net-
work is z(L) ∶ RD → RC where D is the dimension of
the input. For an input x, we use z(I)(x) ∈ RNI and
a(I)(x) ∈ RNI to denote the input (before applying the
activation function) and output (after applying the activa-
tion function) of neurons in the Ith hidden layer of the
network, respectively. To simplify notation and when no
confusion arises, we make the dependency of z(I) and a(I)

to x implicit. We define a(0)(x) = x and N0 =D.

With a fully connected architecture, each z(I) and a(I) is
computed using a transformation matrix W(I) ∈ RNI×NI−1 ,
the bias vector b(I) ∈ RNI and an activation function σ(.)
as follows:

z(I) =W(I)a(I−1) + b(I), a(I) = σ (z(I))

We use (z(L)i − z
(L)
j )(x) as a shorthand for z

(L)
i (x) −

z
(L)
j (x).

We use [p] to denote the set {1, . . . , p} and [p, q], p ≤ q to
denote the set {p, p + 1, . . . , q}. We use small letters i, j, k
etc to denote the index over a vector or rows of a matrix and
capital letters I, J to denote the index over layers of network.
The element in the ith position of a vector v is given by
vi, the vector in the ith row of a matrix A is Ai while the
element in the ith row and jth column of A is Ai,j . We use
∥v∥ and ∥A∥ to denote the 2-norm and the operator 2-norm
of the vector v and the matrix A, respectively. We use
∣v∣ and ∣A∣ to denote the vector and matrix constructed by
taking the elementwise absolute values. We use λmax(A)
and λmin(A) to denote the largest and smallest eigenvalues
of a symmetric matrix A. We use diag(v) to denote the
diagonal matrix constructed by placing each element of

v along the diagonal. We use ⊙ to denote the Hadamard
Product, I to denote the identity matrix. We use ≼ and ≽ to
denote Linear Matrix Inequalities (LMIs) such that given
two symmetric matrices A and B where A ≽ B means
A −B Positive Semi-Definite (PSD).

4. Using duality to solve the attack and
certificate problems

Consider an input x(0) with true label y and attack target t.
In the certificate problem, our goal is to find a lower bound
of minimum l2 distance between x(0) and decision boundary
f(x) = 0 where f(x) = (z(L)y − z(L)t )(x). The problem for
solving the exact distance (primal) can be written as:

p∗cert = min
f(x)=0

[1
2
∥x − x(0)∥

2
]

p∗cert =min
x

max
η

[1
2
∥x − x(0)∥

2
+ ηf(x)] (1)

However, solving the above problem can be hard in general.
Using the minimax theorem (primal ≥ dual), we can write
the dual of the above problem as follows:

p∗cert ≥max
η
dcert(η)

dcert(η) =min
x

[1
2
∥x − x(0)∥

2
+ ηf(x)] (2)

From the theory of duality, we know that dcert(η) for each
value of η gives a lower bound on the exact certification
value (the primal solution) p∗cert. However, since f is non-
convex, solving dcert(η) for every η can be difficult. In the
next section, we will prove that the curvature of the function
f is bounded globally:

mI ≼ ∇2
xf ≼MI ∀x ∈ RD (3)

In this case, we have the following theorem (d∗cert is defined
in Table 1):
Theorem 1. dcert(η) is a convex optimization problem for
−1/M ≤ η ≤ −1/m. Moreover, If x(cert) is the solution to
d∗cert such that f(x(cert)) = 0, then p∗cert = d∗cert.
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Below, we briefly outline the proof while the full proof is
presented in Appendix E.1. The Hessian of the objective
function of the dual dcert(η), i.e the function inside the
minx is given by:

∇2
x [1

2
∥x − x(0)∥

2
+ ηf(x)] = I + η∇2

xf

From equation (3), we know that the eigenvalues of I+η∇2
xf

are bounded between (1 + ηm,1 + ηM) if η ≥ 0, and in
(1+ηM,1+ηm) if η ≤ 0. In both cases, we can see that for
−1/M ≤ η ≤ −1/m, all eigenvalues will be non-negative,
making the objective function convex. When x(cert) satis-
fies f(x(cert)) = 0, we have d∗cert = 1/2∥x(cert) − x(0)∥2.
Using the duality theorem we have d∗cert ≤ p∗cert and from
the definition of p∗cert, we have p∗cert ≤ d∗cert. Combining
the two inequalities, we get p∗cert = d∗cert.
Next, we consider the attack problem. The goal here is to
find an adversarial example inside an l2 ball of radius ρ such
that f(x) is minimized. Using similar arguments, we can
get the following theorem for the attack problem (p∗attack,
d∗attack and dattack are defined in Table 1):

Theorem 2. dattack(η) is a convex optimization problem
for −m ≤ η. Moreover, if x(attack) is the solution to d∗attack
such that ∥x(attack) − x(0)∥ = ρ, p∗attack = d∗attack.

The proof is presented in Appendix E.2. We note that both
Theorems 1 and 2 hold for any non-convex function with
continuous gradients. Thus they can also be of interest in
problems such as optimization of neural nets.

Using Theorems 1 and 2, we have the following definitions
for certification and attack optimizations:

Definition 1. (Curvature-based Certificate Optimization)
Given an input x(0) with true label y, false target t, we
define (η(cert),x(cert)) as the solution of the following max-
min optimization:

max
−1/M≤η≤−1/m

min
x

[1
2
∥x − x(0)∥

2
+ ηf(x)]

We refer to ∥x(cert) − x(0)∥ as the Curvature-based
Robustness Certificate (CRC).

Definition 2. (Curvature-based Attack Optimization)
Given input x(0) with label y, false target t, and the l2 ball
radius ρ, we define (η(attack),x(attack)) as the solution of
the following optimization:

max
η≥−m

min
x

[η
2
(∥x − x(0)∥

2
− ρ2) + f(x)]

When x(attack) is used for training in an adversarial train-
ing framework, we call the method the Curvature-based
Robust Training (CRT).

A direct implication of Theorems 1 and 2 is that the tight-
ness of our robustness certificate crucially depends on the
tightness of our curvature bounds, m and M . If m and M
are very large compared to the true eigenvalue bounds of
the Hessian of the network, the resulting robustness certifi-
cate will be vacuous. In Table 5 (and Figure 1), we show
that by adding the derived bound as a regularization term
during the training, we can significantly decrease curvature
bounds of the network, with little or no decrease in its perfor-
mance. This leads to high robustness certifications against
adversarial attacks.

5. Curvature Bounds for deep networks
In this section, we provide a computationally efficient ap-
proach to compute the curvature bounds for neural net-
works with differentiable activation functions. To the best
of our knowledge, there is no prior work on finding provable
bounds on the curvature values of deep neural networks.

5.1. Closed form expression for the Hessian

Using the chain rule of second derivatives, we can derive
∇2

xz
(L)
i as a sum of matrix products:

Lemma 1. Given an L layer neural network, the Hessian
of the ith hidden unit with respect to the input x, i.e ∇2

xz
(L)
i

is given by the following formula:

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

where B(I) is the Jacobian of z(I) with respect to x (di-
mensions NI ×D), and F(L,I) is the Jacobian of z(L) with
respect to a(I) (dimensions NL ×NI ).

The proof is presented in Appendix E.3. Using the chain
rule, we can compute B(I), F(L,I) matrices in Lemma 1
recursively as follows:

B(I) =
⎧⎪⎪⎨⎪⎪⎩

W(1), I = 1

W(I)diag (σ′ (z(I−1)))B(I−1), I ≥ 2

F(L,I) =
⎧⎪⎪⎨⎪⎪⎩

W(L), I = L − 1

W(L)diag (σ′ (z(L−1)))F(L−1,I), I ≤ L − 2

This leads to a fast back-propagation like method that can
be used to compute the Hessian. Note that Lemma 1 only
assumes a matrix multiplication operation from a(I−1) to
z(I). Since a convolution operation can also be expressed as
a matrix multiplication, we can directly extend this lemma
to deep convolutional networks. Furthermore, Lemma 1
can also be of independent interest in other related prob-
lems such as second-order interpretation methods for deep
learning (e.g. (Singla et al., 2019)).
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5.2. Curvature bounds for Two Layer networks

For a two-layer network and using Lemma 1,
∇2

x (z(2)y − z
(2)
t ) is given by:

(W(1))T diag((W(2)
y −W

(2)
t ) ⊙ σ

′′

(z(1)))W(1)

In the above equation, note that only the term σ
′′(z(1)) de-

pends on x. We can maximize and minimize each element
in the diag term, (W(2)

y,i −W
(2)
t,i )σ

′′(z(1)i ) independently

subject to the constraint that σ
′′(.) is bounded. Using this

procedure, we construct matrices P and N that satisfy prop-
erties given in the following theorem:

Theorem 3. Given a two layer network whose activation
function has bounded second derivative:

hL ≤ σ
′′

(x) ≤ hU ∀x ∈ R

(a) We have the following linear matrix inequalities
(LMIs):

N ≼ ∇2
x (z(2)y − z

(2)
t ) ≼ P ∀x ∈ RD

(b) If hU ≥ 0 and hL ≤ 0, P is PSD, N is a NSD matrix.

(c) This gives the following global bounds on the eigenval-
ues of the Hessian:

mI ≼ ∇2
x (z(2)y − z

(2)
t ) ≼MI (4)

where M = λmax(P), m = λmin(N)

P and N are independent of x and defined in equations (51)
and (52) in Appendix E.4.

The proof is presented in Appendix E.4. Because power
iteration finds the eigenvalue with largest magnitude, we
can use it to find m and M only when P is PSD and N is
NSD. We solve for hU and hL for sigmoid, tanh, softplus
activation functions in Appendix F and show that this is in
fact the case for them.

We note that this result does not hold for ReLU networks
since the ReLU function is not differentiable everywhere.
However, in Appendix G, we devise a method to compute
the certificate for a two layer ReLU network by finding
a quadratic function that is a provable lower bound for
z
(2)
y − z

(2)
t . We show that the resulting method significantly

outperforms CROWN-Ada (see Appendix Table 9).

5.3. Curvature bounds for Deep networks

Using Lemma 1, we know that ∇2
xz
(L)
i is a sum product

of matrices B(I) and F
(L,I)
i . Thus, if we can find upper

bounds for ∥B(I)∥ and ∥F(L,I)i ∥∞, we can get upper bounds
for ∥∇2

xz
(L)
i ∥. Using this intuition (proof is presented in

Appendix E.5), we have the following result:
Theorem 4. Given an L layer neural network whose acti-
vation function satifies:

∣σ
′

(x)∣ ≤ g, ∣σ
′′

(x)∣ ≤ h ∀x ∈ R,

the absolute value of eigenvalues of ∇2
xz
(L)
i is globally

bounded by the following quantity:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(L,I)i,j ) , ∀x ∈ RD

where r(I) and S(L,I) are independent of x and defined
recursively as:

r(I) =
⎧⎪⎪⎨⎪⎪⎩

∥W(1)∥ , I = 1

g ∥W(I)∥ r(I−1), I ≥ 2
(5)

S(L,I) =
⎧⎪⎪⎨⎪⎪⎩

∣W(L)∣ , I = L − 1

g ∣W(L)∣S(L−1,I), I ≤ L − 2
(6)

The above expressions allows for an extremely efficient
computation of the curvature bounds for deep networks.
We consider simplification of this result for sigmoid, tanh,
softplus activations in Appendix F. The curvature bounds
for z(L)y − z

(L)
t can be computed by replacing W

(L)
i with

W
(L)
y −W

(L)
t in Theorem 4. The resulting bound is in-

dependent of x, and only depends on network weights
W(I), the true label y, and the target t. We denote it with
K(W, y, t). To simplify notation, when no confusion arises
we denote it with K. In our experiments, for two layer
networks, we use M , m from Theorem 3 since it provides
tighter curvature bounds. For deeper networks (L ≥ 3), we
use M =K, m = −K.

6. Adversarial training with curvature
regularization

Since the term B(I) in Lemma 1 is the Jacobian of z(I) with
respect to x, ∥B(I)∥, it is equal to the lipschitz constant of
the neural network constructed from the first I layers of
the original network. Finding tight bounds on the lipschitz
constant is an active area of research (Fazlyab et al., 2019;
Scaman & Virmaux, 2018; Weng et al., 2018) and the prod-
uct of the operator norm of weight matrices is known to be
a loose bound on the lipschitz constant for deep networks.
Since we use the same product to compute the bound for
∥B(I)∥ in Theorem 4, the resulting curvature bound is likely
to be loose for very deep networks.

In Figure 1, we observe the same trend: as the depth of
the network increases, the upper bound Kub computed us-
ing Theorem 4 becomes significantly larger than the lower



Second-Order Provable Defenses against Adversarial Attacks

(a) 2 layer network (b) 3 layer network

Figure 1. Illustration of lower (Klb) and upper (Kub) bounds on the curvature of 2 and 3 layer networks with sigmoid activations trained
on MNIST. Without any curvature regularization (γ = 0), curvature bounds increase significantly for deeper networks. Similarly with
γ = 0, networks adversarially trained with PGD have high curvature as well (note the log scale of the y-axis). However, using our
curvature bound as a regularizer, the bound becomes tight and CRC gives high certificate values (Table 5). We report the curvature bounds
(Klb and Kub) for networks with different depths in Appendix Table 10.

bound Klb (computed by taking the maximum of the largest
eigenvalue of the Hessian across all test images with label y
and the second largest logit t, then averaging across different
(y, t)). However, by regularizing the network to have small
curvature during training, the bound becomes significantly
tighter. Interestingly, using curvature regularization, even
with this loose curvature bound for deep nets, we achieve
significantly higher robust accuracy than the current state of
the art methods while enjoying significantly higher standard
accuracy as well (see Tables 3 and 4).

To regularize the network to have small curvature values, we
penalize the curvature boundK during training. To compute
the gradient of K with respect to the network weights, note
that using Theorem 4, we can compute K using absolute
value, matrix multiplications, and operator norm. Since the
gradient of operator norm does not exist in standard libraries,
we created a new layer where the gradient of ∥W(I)∥ i.e
∇W(I)∥W(I)∥ is given by:

∇W(I)∥W(I)∥ = u(I) (v(I))
T

where W(I)v(I) = ∥W(I)∥u(I)

Note that ∥W(I)∥, u(I) and v(I) can be computed using
power iteration. Since the network weights do not change
significantly during a single training step, we can use the
singular vectors u(I) and v(I) computed in the previous
training step to update W(I) using one iteration of power
method. This approach to compute the gradient of the largest
singular value of a matrix has also been used in previous
published work (Miyato et al., 2018). Thus, the per-sample

loss for training with curvature regularization is given by:

` (z(L)(x(0)), y) + γK(W, y, t) (7)

where ` denotes the cross entropy loss, y is the true label
of the input x(0), t is the attack target and γ is the regu-
larization coefficient for penalizing large curvature values.
Similar to the adversarial training, in CRT, we use x(attack)

instead of x(0) in equation (7).

7. Experiments
The certified robust accuracy means the fraction of correctly
classified test samples whose robustness certificates (com-
puted using CRC) are greater than a pre-specified radius
ρ. Unless otherwise specified, we use the class with the
second largest logit as the attack target (i.e. the class t). The
notation (L × [1024], activation) denotes a neural network
with L layers with the specified activation, (γ = c) denotes
standard training with γ set to c, while (CRT, c) denotes
CRT training with γ = c. Certificates are computed over
150 randomly chosen correctly classified images. We use a
single NVIDIA GeForce RTX 2080 Ti GPU.

7.1. Fraction of inputs with tightest robustness
certificate

Using the verifiable condition of Theorems 1 and 2, our
approach is able to (1) find points that are provably the
worst case adversarial perturbations (in the l2 norm) in the
attack problem and (2) find points on the decision boundary
that are provably closest to the input in the l2 norm in the
certification problem. In particular, in Table 2, we observe
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that for curvature regularized networks, our approach finds
provably worst-case adversarial perturbations for all of the
inputs with a small drop in the accuracy. Moreover, for
2,3,and 4 layer networks, our method finds provably closest
adversarial examples for 44.17%, 22.59% and 19.53% of
inputs in the MNIST test set, respectively.

Table 2. Certificate success rate denotes the fraction of points sat-
isfying zy − zt = 0, Attack success rate denotes the fraction of
points (x(0)) satisfying ∥x(attack) − x(0)∥2 = ρ = 0.5 implying
primal=dual in Theorems 1 and 2 respectively. We use the MNIST
dataset.

Network γ Accuracy Attack
success

Certificate
success

2×[1024],
sigmoid

0. 98.77% 5.05% 2.24%
0.03 98.30% 100% 44.17%

3×[1024],
sigmoid

0. 98.52% 0.% 0.12%
0.05 97.60% 100% 22.59%

4×[1024],
sigmoid

0. 98.22% 0.% 0.01%
0.07 95.24% 100% 19.53%

We note that the technique presented in this work is not appli-
cable to ReLU networks due to the absence of the curvature
information. Verifying the robustness property in an l2 ball
around the input is known to be an NP-complete problem
for ReLU networks (Katz et al., 2017) — for an arbitrary
ReLU network, it is computationally challenging to even
verify (let alone find) that a given adversarial perturbation is
the worst case perturbation in polynomial time unless P=NP.
Using curvature-regularized neural networks with smooth
activation functions, we show that it is possible to find (and
not just verify) the exact worst case perturbation (and ro-
bustness certificate) for a significant fraction of test inputs.
We note that in the worst case even for smooth classifiers,
the problem of finding the worst adversarial perturbations
remain computationally challenging. However, our theo-
retical and empirical results provide strong evidence that
bounding the curvature of the network and using smooth ac-
tivation functions can be critical to achieve high robustness
guarantees for a significant fraction of samples.

7.2. Comparison with existing provable defenses

We compare against certified defense techniques proposed
in Wong et al. (2018) and Zhang et al. (2019a) in Table 3
for the MNIST dataset (LeCun & Cortes, 2010) and Table 4
for the Fashion-MNIST dataset (Xiao et al., 2017) with l2
radius ρ = 1.58. Even though our proposed CRT requires
fully differentiable activation functions such as softplus, sig-
moid, tanh etc, we include comparison with ReLU networks
because the methods proposed in Wong et al. (2018); Zhang
et al. (2019a) use ReLU. Since CROWN-IBP can be trained
using the softplus activation function, we include it in our

comparison. Similar comparison with l2 radius ρ = 0.5 is
given in Appendix Table 2 (MNIST dataset) and Table 3
(Fashion-MNIST dataset). We observe that CRT (certified
with CRC) gives significantly higher certified robust accu-
racy as well as standard accuracy compared to either of the
methods on both MNIST and Fashion-MNIST datasets for
both different values of ρ. Since shallow fully connected
networks are known to perform poorly on the CIFAR-10
dataset, we do not include those results in our comparison.

Table 3. Comparison with interval-bound propagation based ad-
versarial training methods: COAP i.e Convex Outer Adversarial
Polytope (Wong et al., 2018), CROWN-IBP (Zhang et al., 2019a))
and Curvature-based Robust Training (Ours) with attack radius
ρ = 1.58 on MNIST. For CROWN-IBP, we vary the final beta
hyperparameter between 0.8 and 3, and use the model with best
certified accuracy. Results with ρ = 0.5 are in Appendix Table 2.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus

CRT, 0.01 98.68% 69.79%
CROWN-IBP 88.48% 42.36%

2×[1024],
relu

COAP 89.33% 44.29%
CROWN-IBP 89.49% 44.96%

3×[1024],
softplus

CRT, 0.05 97.43% 57.78%
CROWN-IBP 86.58% 42.14%

3×[1024],
relu

COAP 89.12% 44.21%
CROWN-IBP 87.77% 44.74%

4×[1024],
softplus

CRT, 0.07 95.60% 53.19%
CROWN-IBP 82.74% 41.34%

4×[1024],
relu

COAP 90.17% 44.66%
CROWN-IBP 84.4% 43.83%

In Appendix Table 5, we compare CRT with Randomized
Smoothing (Cohen et al., 2019). For 2 & 3 layer networks,
we achieve higher robust accuracy. However, we note that
since our certificate is deterministic while the smoothing-
based certificate is probabilistic (although with high proba-
bility), the results are not directly comparable. As a separate
result, we also prove that randomized smoothing bounds the
curvature of the network (Theorem 1 in Appendix E.6). We
also include comparison with empirical defense methods
namely PGD and TRADES in Appendix Table 8.

7.3. Comparison with existing certificates

In Table 5, we compare CRC with CROWN-general (Zhang
et al., 2018a). For 2-layer networks, CRC outperforms
CROWN significantly. For deeper networks, CRC works
better than CROWN when the network is trained with cur-
vature regularization. However, with small γ = 0.01, we
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Table 4. Comparison between COAP (Wong et al., 2018),
CROWN-IBP (Zhang et al., 2019a)) and Curvature-based Robust
Training (Ours) with attack radius ρ = 1.58 on Fashion-MNIST.
Results with ρ = 0.5 for are in Appendix Table 3.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus

CRT, 0.01 80.31% 54.39%
CROWN-IBP 69.23% 47.19%

2×[1024],
relu

COAP 74.1% 46.3%
CROWN-IBP 70.73% 48.61%

3×[1024],
softplus

CRT, 0.05 78.39% 53.4%
CROWN-IBP 68.72% 46.52%

3×[1024],
relu

COAP 73.9% 46.3%
CROWN-IBP 70.79% 48.69%

4×[1024],
softplus

CRT, 0.07 75.61% 49.6%
CROWN-IBP 68.31% 46.21%

4×[1024],
relu

COAP 73.6% 45.1%
CROWN-IBP 70.21% 48.08%

see a significant increase in CRC but a very small drop in
the test accuracy (without any adversarial training). We
can see that with γ = 0.01, non-trivial certified accuracies
of 83.53%, 88.33%, 89.61% can be achieved on 2,3,4
layer sigmoid networks, respectively, without any adversar-
ial training. Adversarial training using CRT further boosts
certified accuracy to 95.59%, 94.99% and 93.41%, respec-
tively. We show some results on CIFAR-10 dataset in Ap-
pendix Table 7. We again observe improvements in the
robustness certificate and certified robust accuracy using
CRC and CRT.

7.4. Results using local curvature bounds

From Theorems 1 and 2, we can observe that if the curva-
ture is locally bounded within a convex region around the
input (we call it the ”safe” region), then the corresponding
dual problems (d∗cert, d

∗

attack) are again convex optimiza-
tion problems provided the optimization trajectory does not
escape the safe region.

Theorem 3 can be directly extended to compute the local
curvature bound using bounds on the second derivatives, i.e.
σ
′′(z(1)) in the local region. In Table 6, we show significant

improvements for the CRC certificate for two-layer sigmoid
networks on the MNIST dataset for γ = 0. However, with
the curvature regularization, the difference is insignificant.
We also observe that the certified accuracy for (CRT, 0.0)
improves from 95.04% to 95.31% and for standard improves
from 54.17% to 58.06%. The certified accuracy remains
the same for other cases. Implementation details are in the
Appendix Section C.6.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
sigmoid

standard 98.37% 54.17%
γ = 0.01 98.08% 83.53%
CRT, 0.01 98.57% 95.59%

3×[1024],
sigmoid

standard 98.37% 0.00%
γ = 0.01 97.71% 88.33%
CRT, 0.01 97.23% 94.99%

4×[1024],
sigmoid

standard 98.39% 0.00%
γ = 0.01 97.41% 89.61%
CRT, 0.01 97.83% 93.41%

(a) Effect of γ on certified robust accuracy

Network Training
Certificate (mean)

CROWN CRC

2×[1024],
sigmoid

standard 0.28395 0.48500
γ = 0.01 0.32548 0.84719
CRT, 0.01 0.43061 1.54673

3×[1024],
sigmoid

standard 0.24644 0.06874
γ = 0.01 0.39799 1.07842
CRT, 0.01 0.39603 1.24100

4×[1024],
sigmoid

standard 0.19501 0.00454
γ = 0.01 0.40620 1.05323
CRT, 0.01 0.40327 1.06208

(b) Comparison between CROWN-general (Zhang et al.,
2018a) and CRC.

Table 5. Effect of curvature regularization and CRT on certified
robust accuracy and robustness certificate

Computing local curvature bounds for deeper networks,
however, is more challenging due to the presence of terms
involving multiplication of first and second derivatives. A
straightforward extension of Theorem 4 4, wherein we com-
pute the upper bound on σ

′

and σ′′ in a local region around
the input across all neurons in all layers does not yield sig-
nificant improvements over the global method, therefore we
do not include those results in our comparison.

Table 6. Comparison between Certified Robust accuracy and CRC
for 2 layer sigmoid and tanh networks using global and local
curvature bounds on MNIST dataset with ρ = 0.5

Network Training CRC
(Global)

CRC
(Local)

2×[1024],
sigmoid

standard 0.5013 0.5847
CRT, 0.0 1.0011 1.1741
CRT, 0.01 1.5705 1.6047
CRT, 0.02 1.6720 1.6831
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8. Extension to convolutional neural networks
The formula derived in Lemma 1 is valid even for convo-
lutional neural networks. However, to derive the curvature
bound (using Theorem 4), we need to compute a bound
on the singular values of the Jacobian of the convolution
layer (i.e. ∥W(I)∥). In order to do this, one can use spec-
tral bounds for convolution layers derived in (Sedghi et al.,
2018). We present some preliminary results using this tech-
nique in (Singla & Feizi, 2019) for a single layer convolu-
tional neural network with softplus activations.

9. Conclusion
In this paper, we develop computationally-efficient convex
relaxations for robustness certification and adversarial at-
tack problems given the classifier has a bounded curvature.
We also show that this convex relaxation is tight under some
general verifiable conditions. To be able to use proposed
certification and attack convex optimizations, we derive
global curvature bounds for deep networks with differen-
tiable activation functions. This result is a consequence of a
closed-form expression that we derive for the Hessian of a
deep network. Adversarial training using our attack method
coupled with curvature regularization results in a signif-
icantly higher certified robust accuracy than the existing
provable defense methods. Our proposed curvature-based
robustness certificate significantly outperforms the CROWN
certificate when trained with our regularizer. Scaling up
our proposed curvature-based robustness certification and
training methods as well as further tightening the derived
curvature bounds are among interesting directions for the
future work.
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