Second-Order Provable Defenses against Adversarial Attacks

Appendix

A. Related work

Many defenses have been proposed to make neural networks
robust against adversarial examples. These methods can be
classified into empirical defenses which empirically seem
to be robust against known adversarial attacks, and certified
defenses, which are provably robust against such attacks.

Empirical defenses The best known empirical defense is
adversarial training (Kurakin et al., 2016; Madry et al., 2018;
Zhang et al., 2019b). In this method, a neural network is
trained to minimize the worst-case loss over a region around
the input. Although such defenses seem to work on existing
attacks, there is no guarantee that a more powerful attack
would not break them. In fact, most such defenses proposed
in the literature were later broken by stronger attacks (Atha-
lye & Carlini, 2018; Athalye et al., 2018; Carlini & Wagner,
2017; Uesato et al., 2018). To end this arms race between
defenses and attacks, a number of works have tried to focus
on certified defenses that have formal robustness guarantees.

Certified defenses A classifier is said to be certifiably ro-
bust if one can easily obtain a guarantee that a classifier’s
prediction remains constant within some region around the
input. Such defenses typically rely on certification methods
which are either exact or conservative. Exact methods report
whether or not there exists a adversarial perturbation inside
some [, norm ball. In contrast, conservative methods either
certify that no adversarial perturbation exists or decline to
make a certification; they may decline even when no such
perturbation exists. Exact methods are usually based on
Satisfiability Modulo Theories (Carlini et al., 2017; Ehlers,
2017; Huang et al., 2016; Katz et al., 2017) and Mixed In-
teger linear programming (Bunel et al., 2017; Cheng et al.,
2017; Dutta et al., 2018; Fischetti & Jo, 2018; Lomuscio
& Maganti, 2017). Unfortunately, they are computation-
ally inefficient and difficult to scale up to even moderately
sized neural networks. In contrast, conservative methods
are more scalable and efficient which makes them useful for
building certified defenses (Croce et al., 2018; Dvijotham
et al., 2018a;b; Gehr et al., 2018; Gowal et al., 2018; Mir-
man et al., 2018; Raghunathan et al., 2018a;b; Singh et al.,
2018; Wang et al., 2018a;b; Weng et al., 2018; Wong &
Kolter, 2017; Wong et al., 2018; Zhang et al., 2018b). How-
ever, even these methods have not been shown to scale to

practical networks that are large and expressive enough to
perform well on ImageNet, for example. To scale to such
large networks, randomized smoothing has been proposed
as a probabilistically certified defense.

Randomized smoothing Randomized smoothing was pre-
viously proposed by several works (Cao & Gong, 2017; Liu
et al., 2017) as a empirical defense without any formal guar-
antees. (Lécuyer et al., 2018) first proved robustness guaran-
tees for randomized smoothing classifier using inequalities
from differential privacy. (Li et al., 2018) improved upon the
same using tools from information theory. Recently, (Cohen
et al., 2019) provided a even tighter robustness guarantee
for randomized smoothing. (Salman et al., 2019) proposed
a method of adversarial training for the randomized smooth-
ing classifier giving state of the art results in the l; norm
metric.

B. The Attack problem

For a given input x(°) with true label y and attack target ,
consider the attack problem. We are given that the eigen-

values of the Hessian Vi(zz(,L) -

ie:
ml< v (ZéL) - ZEL))

Here m < O (since zl(,L) - sz)

z{")) are bounded below

vx e RP

is not convex in general).

The goal here is to find an adversarial example inside a l»

ball of radius p such that (zZ(IL) - ZEL))(X) is minimized.

That is, we want to solve the following optimization:
* . (L)

D = min ( -z ) b'q
attack ||x—x(0) ng |: Y t ( )]

- i (22 -2() 09+ (Jx-xO - 7) |
(D

This optimization can be hard in general. Using the max-
min inequality (primal > dual), we have:

2D

Dattack > MAX dattack (1)
1n20
dattack(n) = m}zn [ (Z;L) - Zi(tL)) (X)

+727(||x—x(0)||2—p2):| 2
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We know that for every 1 > 0, daiack(n) gives a lower
bound to the primal solution p,, . ... But solving dqsiqcr (1)
for any 1 > 0 can be hard unless the objective is convex.
We prove that if the eigenvalues of the Hessian are bounded
below i.e:

ml < V,Q( (zg(JL) - ZEL)) vx e RP

In general m < 0, since (zéL) - zEL)) is non-convex.
dattack (1) is a convex optimization problem for —m < 7.
Equivalently the objective function, i.e the function inside
the miny:

[ -9) 0 201

is a convex function in x for -m < 7).
The Hessian of the above function is given by:

V,Q( (zéL) (L)) +nl

Since we know that eigenvalues of V2 (z, () ZEL)) = ml,
we know that eigenvalues of the above Hess1an are > 7 +m.
For ) > —m, the eigenvalues are positive implying that the
objective function is convex.

Since dgrack (1) gives a lower bound to p?,, ... for every
n > 0, we get the following result:

* * *
Pattack 2 dattack: where dattack: = ElnaéX dattdc’k(n) (3)

Note that if x(2*%2¢¥) ig the solution to d? 1aer SUch that:
[x(attack) — x(©)| = p, by the definition of d

% _ (zéL) _

attack —

attack:

sz) ) (X(attack) )

But then by the definition of p7,,. ... Priock < Dotracks
implying that the duality gap is zero, i. D}, .k = Dottack:
This procedure leads to the Theorem 2.

C. Implementation Details
C.1. Computing the derivative of largest singular value

Our objective is to compute derivative of the largest singular
value, i.e [W)| with respect to W, Let u?,v(!)
be the singular vectors such that WD v () = |[W D |uD),
Then the derivative is given by:

Vo [WO| = u® (viD)”

vD | W) |2 can be computed by running power itera-

T
tion on (W(I)) W u) can be computed using the
identity:

o - WDy (D)
~(D)

We use 25 iterations of the power method to compute the
above quantities.

C.2. Update equation for the certificate problem

Our goal is to minimize HX—X(O)H such that
L L
AP~ 4D) (0

satisfies the following LMIs:

We know that the Hessian

ml< V2 ({2 - 2(") < M1 @)

K is given by Theorem 4 for neural network of any depth
(L > 2). For 2 layer networks, M and m are given by

Theorem 3. But for deeper networks (L > 3), M = K,
m = —K. In either case, K > max(|m|,|M|). Thus, we
also have:

~K1< V3 (2" - 2(") < K1 )

We will solve the dual (d},,,) of the attack problem (p},, ;).

The primal problem (p},,,) is given by:

. 1 2
Peert = (L)(I?l (L)( )[2 HX_X(O)H :|

Diert = m)inm;lx [2 ||x —x© “2 +1 (zz(/L) _ sz)) (x)]

Using inequality (4) and Theorem 1 part (a), we know that
the dual of the above problem is convex when —1/M <7 <
-1/m.

The corresponding dual problem (d7,,.,) is given by:

cert

* p—
cert —

max deert (1)

-1/M<n<-1/m

inll 2 L L
deert(n) =Inx1n[2 HX—X(O)H +77(Z@(, ) _ZE ))(x)]
For a given 7, we have the following optimization:

1
deere(1) = min [2||x O 4 (- 2P (X)]
We will use majorization-minimization to solve this opti-

mization.

At a point x(®), we aim to solve for the point x(**1) that
decreases the objective function. Using the Taylor’s theorem
at point x(k), we have:

(2 —zi“) (x)
(59 - () (6 (x-x)
1

(x - x®) HO (x - x®)

+
[\

where g() is the gradient of (2" —z{*)) at x*) and H(®
is the Hessian at a point & on the line connecting x and x(*),
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Multiplying both sides by 7, we get the following equation:

n( - 2") (x)
= (2 - 2(") (x )+ (g9) " (x-x*)
g(x X(k)) HE® (x - x#) 6)

Using inequality (5), we know that —KI < H© <
KI V¢eRDP,

n N ) < 1K )2
2 (- x0)"HO (- x0) < P <]
Using equation (6) and inequality (7):
n (2" -2(") (x)
< [17 (22~ 20) (9) 4.1 () (x - x)
8 x|
2
Adding 1/2||x - x(%)||2 to both sides, we get the following
inequality:
s - x@) (L) _ (D)
5 X - +n(zy -z )(x)

1
|3 ) o) (<)
()" (o) + ] e

LHS is the objective function of d..-+(n) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

1
a3 O e a2 ()

T K 2
e (6)" Ge-x®) + I ) ]

x-x 4+ ng® 4 |nK]| (x—x(k)) =0

(1+nK])x - x +ng® —nK|x*) =0

= ~(1+ KD (ng™ - nK]x® - x®)

This gives the following iterative equation:

x =~ (14 K| (ng® - InKx® - x(D)  (8)

C.3. Update equation for the attack problem

Our goal is to minimize z( ) sz) within an I ball of

radius of p. We know that the Hessian satisfies the following

LMIs:
ml< V2 (2" - 2(") < M1 )

K is given by Theorem 4 for neural network of any depth
(L > 2). For 2 layer networks, M and m are given by

Theorem 3. But for deeper networks (L > 3), M = K,
m = —K. In either case, K > max(|m|,|M|). Thus, we
also have:

~KI<V2 (z;“ - sz)) < KT (10)

We solve the dual (d,,,.;.) of the attack problem (p,,,...)
for the given radius p.

The primal problem (p?,,,..) is given by:

* _ . (Ly (L)
. = min Z —Z
Pattack ||x—x(0) HSP
* . L Ly N 012 2
Plttack = m,gn%gg[zz(/ Va4 D (- x O )]

Using inequality (9) and Theorem 2 part (a), we know that
the dual of the above problem is convex when —m < 7.

The corresponding dual problem (d?,,.,) is given by:

*
dattack = max dattack (77)
nz-m

where daiiack(n) is given as follows:

dattack (1) = mln [( (5 (L)) (x)

(o)

For a given 7, we have the following optimization:

dattack () = min [ (25" - 27) (x)

(o)

We will use majorization-minimization to solve this opti-
mization.

At a point x(’“), we have to solve for the point x(F+1) that
decreases the objective function. Using the Taylor’s theorem
at point x(* ), we have:

(2" —zi“)(x)

_ 2B (x®) + (g™ (x - x®)
(26" - 2(") (x®) + () ( )
1
2

( (k)) H®© (X_X(k)) an

+
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where g(*) is the gradient of (zl(/L) - zEL)) at x(®) and H(®)

is the Hessian at a point & on the line connecting x and x(*),

Using inequality (10), we know that —-KT < H© <
KI VéeRP,

% (x - x®) HO (x - x®0) < % Ix—x®° (12
Using equation (11) and inequality (12):
(z?(f) _ sz)) (x)
< [(Zém ~2(M) (x)

&) (e x) + 5 x|

Adding 1/2(|x - x(?|2 - p?) to both sides, we get the
following inequality:

(7 -2 00+ 3 (I =<1 - ?)

[ (a2 ) )+ (2 ()
K 2 2

e R (]

LHS is the objective function of dattack(17) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

Y

] (7)) 4 (6) )
K 2 7 2
o IO o (ex- 2) | -0

Rearranging the above equation, we get:
g +K(X—X(k)) +n(x—x(0)) =0
(K +n)x+g® - Kx® —px® =0
x=—(K+n)™! (g(k) - Kx® - nx(o))

This gives the following iterative equation:

xFD = (K +n)7 (g™ - Kx® - nx™)  (13)

C.4. Algorithm to compute the certificate

We start with the following initial values of
X, 1, Nminy Mmazx:
Nmin = _]./]\47 Nmaz = _1/m
1
n= 5(7]min + Nmaz), x = x(®

To solve the dual for a given value of 77, we run 20 iterations
of the following update (derived in Appendix C.2):

x5 = (1 + K7 (ng™ - InK[x® - x@)

To maximize the dual d...:(n) over n in the range
[-1/M, —-1/m], we use a bisection method: If the solution
x for a given value of 7, (zg(/L) - sz))(x) > 0, set Dpmin =1,
else set Nmaz = N. Set the new 1 = (Nmin + Nmaz)/2 and
repeat. The maximum number of updates to n are set to 30.
This method satisfied linear convergence. The routine to

compute the certificate example is given in Algorithm 1.

Algorithm 1 Certificate optimization

Require: input x(9), label y, target ¢
m,M,K < compute,bounds(zém - sz))
Nmaz < _1/m
N < 1/2(Mmin + Mmaz)
x « x(©
foriin[1,...,30] do
for jin [1,...,20] do

g « compute,gradient(zém - ZEL),X)
if [ng + (x - x(9)| < 107° then
break
end if
x < =(L+[nK[)™" (ng - InKx -x®)
end for
if (20 - 2{")(x) > 0 then
Nmin < 1]
else
nmaw - "7
end if
n < (nmin + nma.’t)/z
end for
return x
C.5. Algorithm to compute the attack
We start with the following initial values of

X, 15 NMmin, Mmax:

Nmin = —M, Nmazx = 20(1 - m)

1
n= i(nmin + nmax), X = X(O)
To solve the dual for a given value of 7, we run 20 iterations

of the following update (derived in Appendix C.3):
x(k+1) —(K +n)™" (g(k) ~Kx® UX(O))
To maximize the dual d..;(n) over n in the range

[-m, 20(1 —m)], we use a bisection method: If the so-
lution x for a given value of 7, |x - x(9|| < p, set ez = 7



Second-Order Provable Defenses against Adversarial Attacks

else set Nmin = 1. Set new 1 = (Nmin + Mmaz ) /2 and repeat.
The maximum number of updates to 7 are set to 30. This
method satisfied linear convergence. The routine to compute
the attack example is given in Algorithm 2.

Algorithm 2 Attack optimization

Require: input x(9), label y, target t , radius p
m, M, K < compute,bounds(zéL) - ZEL))
Nmin < —M
Nmaz < 20(1 - m)
n< 1/2(77m1n + nmam)
x « x
for i in[1,...,30] do
for jin [1,...,20] do
g « compute,gradient(zl(f) - ZEL)
if g+ n(x-x(©)| <107° then
break
end if
x <« —(K+n)*t (g -Kx- nX(O))
end for
if [x - x(*)| < p then
Nmazx <N
else
end if
end for
return x

7X)

C.6. Computing certificate using local curvature
bounds

To compute the robustness certificate in a local region
around the input, we first compute the certificate using the
global bounds on the curvature. Using the same certificate
as the initial /5 radius of the safe region, we can refine our
certificate. Due to the reduction in curvature, this will surely
increase the value of the certificate. We then use the new
robustness certificate as the new [, radius of the safe region
and repeat. We iterate over this process 5 times to compute
the local version of our robustness certificate.

To ensure that the optimization trajectory does not escape
the safe region, whenever the gradient descent step lies
outside the ’safe” region, we reduce the step size by a factor
of two until it lies inside the region.

D. Summary Table comparing out
certification method against existing
methods

Table 1 provides a summary table comparing our certifica-
tion method against the existing methods.

E. Proofs

E.1.

(a)

(b)

Proof of Theorem 1

dcert(n) = min [; ”X - X(O) ||2

(289 (%) - zE”(x))]

1
w25 lxxO a(alP 00 -2 ) |
=1+ r]Vi (z?(/L) - sz))

(L) _
Yy

We are given that the Hessian V2 (z sz)) satisfies

the following LMIs:

mIﬁVi(sz)—sz))ﬁMI Vx eR"

The eigenvalues of I + T)Vi(Z?SL) - sz)) are bounded

between:
(1+n9M, 1+ngm), ifn<0

(1+ngm, 1+nM), ifn>0

We are given that 7 satisfies the following inequalities
where m < 0,M > 0 since (z?(f) - sz)) is neither
convex, nor concave as a function of x:

-1 -1

—<n<

v o m<0,M>0

We have the following inequalities:
1+nM 20, 1+nm >0

Thus, T+ 7v2(z$ - 2") is a PSD matrix for all
x € RP when -1/M <n<-1/m.

Thus 1/2||x - x| + n(zl(,L) - sz))(x) is a convex
function in x and d..,+(7n) is a convex optimization
problem.

For every value of 1), d..-+(n) is a lower bound for

pZert' Thus d:;ert = Ina“X—l/MS n <-1/m dcert(ﬂ) is a
lower bound for p;,,.,, i.e:
(14)

* *
dcert < Peert

Let n(cer) x(cert) pe the solution of the above dual
optimization (d7,,.,) such that

ZéL)(x(cert)) _ zEL)(x(CeTt)) (15)
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Table 1. Comparison of methods for providing provable robustness certification. Note that (Cohen et al., 2019) is a probabilistic certificate.
Method Non-trivial Multi- Activation
bound layer functions Norm
(Szegedy et al., 2014) X v All lo
(Katz et al., 2017) v v ReLU loo
(Hein & Andriushchenko, 2017) v X Differentiable lo
(Raghunathan et al., 2018a) v X RelLU loo
(Wong & Kolter, 2017) v v ReLU loo
(Weng et al., 2018) v v ReLU I1,02,l0
(Zhang et al., 2018b) v ve All l1,02,l0
(Cohen et al., 2019) v e All lo
Ours v v Differentiable lo

d.,, i given by the following:

« 1 Hx(cert) () “2
2

cert —

i 77(ce'r‘t) (ZZ(JL) (X(cert)) _ ZEL)(X(CeH))) ]

=0

Since we are given that z$") (x(¢e1)) = z{") (x(cerD),

*

we get the following equation for d,,.,:

s = 3 0 <O

Since p;,,, is given by the following equation:

* . 1 2
pcerfzgm(ilzm(x)[? [x - x| ] (17

Using equations (15) and (17), pZ.,., is the minimum

(16)

value of 1/2|x - x@|?  vx: ZZ(/L)(X) = ZEL)(X)Z

* 1 cer 2
Deert < 5 ||X( R X(O) ||
From equation (16), we know that d,.,
1/2||x(et) — x(9) |2, Thus, we get:
pZert < d:ert

*
cert

Using equation (14) we have d
(19)’ pZert < dZert

pZert = dzert
E.2. Proof of Theorem 2
(a)

dattack(n) = m)zn [ (ZQ(JL) - ZgL)) (X)

(x|

(18)

19)

. .
< Plere and using

(b)

2
il (- 2) 00 - L -xT |
= Vi (Z?SL) - ZEL)) +nl
Since the Hessian Vi(z?(f) - ZEL)) is bounded below:

ml< vV (Zz(;L) - ZEL)) Vx eR"

The eigenvalues of Vi(zéL) - sz)) + nI are bounded
below:

(m+n)I< V2 (zl(!L) - sz)) +nl

Since n > -m.
n+m=>0

Thus v2(z{") - 2*)) + 5 is a PSD matrix for all
x € RP when n > -m.

L L .
Thus (2" = 2{")) (%) + n/2(|x - x©[2 = p?) is a
convex function in x and dg¢sac (7)) is @ convex opti-
mization problem.

For every value of 1), duiack(n) is a lower bound

* * = i
for Pottack: Thus dattack = MaX-mzny dathk(n) 18
a lower bound for p7,,. .-

d;ttack < p;ttack (20)

Let plattack) x(attack) pe the solution of the above
dual optimization (d},,,.) such that

attac
||X(attack) _ X(0) ” =p 21
d’ 1 1ack 1 given by the following:
 tack = [ (Z?SL) _ sz)) (X(attack)) (22)
(attack)
L . (”X(attack) ) ”2 B p2)]

=0
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Since we are given that |x(@/*ak) — x(0)| = 5 we get
the following equation for d;,, , ..:

ek = (257 —2(") (D) 23)

Since P, 1S given by the following equation:

* _ : (L) (L)
Pattack = 10 [ (=" -=") (X)] (24)

Using equations (21) and (24), p},, .. is the minimum
value of (zg(/L) - ZEL))(X) v ||x -x(© || < p

Pittacr < (257 =2(2) xRy 25)

From equation (23), we know that d},, ... = (zéL)

z1))(x(@ttack) ) Thus, we get:

p;ttack < d;ttack (26)

Using equation (20) we have d7,,,.. < Diiiacr and
l.lSlIlg (26)’ pattack = dattack

* g%
Pattack = Cattack

E.3. Proof of Lemma 1

We have to prove that for an L layer neural network, the
hessian of the 7*" hidden unit in the L!" layer with respect

to the input x, i.e Vizz(.L) is given by the following formula:

E

-1
=> (B(I))T diag(FZ(-L’I) o}

I=1

o (z() )B(f)

27)

where BU), I € [L] is a matrix of size N; x D defined as
follows:

B _ [v 2D 9D, szm] 28)

and F(5D | T e [L - 1] is a matrix of size Ny, x Ny defined
as follows:

T
FD 2 [Va(z)ziL), Va(z)ZgL), e va(”Zg\fLL)] 29)

Vizl(.L) can be written in terms of the activations of the

previous layer using the following formula:

Nr_y
viz? = 3 Wi (vialth) (30)
j=1

Using the chain rule of the Hessian and al!) = (z(1)), we

can write Via(-L_l) in terms of Vxz (L Y and viz (L D as
the following:
2 (L-1) _ " ( (L-1) (L-1) (L-n\T
viay =" (2777) (vag ) (V)
1 (L-1) 2 (L-1)
o () () o
Replacing Viagbl) using equation (31) into equation (30),
we get: '
Vi (Z(L)) =
Np-1
(L) (L-1) (L-1) (L-1)
£ WO (670) (maat ) ()

o () 52

vi(#") = (32)
W () (o) (o)
+ ]\;21 WS?U’ (Z;Lil)) (Vizg‘L*l)) (33)

For each I € [2, L], i € Ny, we define the matrix Agl) as
the following:

()
Z W(l) ”( §1—1))(Vx (I- 1))(Vx (I- 1))
AD
W ) (2 @
A= W () () ()

j=1
(35)

Substituting AZ(L) using equation (35) into equation (33),
we get:

V2 (o) = A z WO (2170) (v220))
(36)
We first simplify the expression for AgL). Note

that A(L) is a sum of symmetric rank one ma-

trices (sz(L 1))(Vx (L= 1)) with the coefficient
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W%)a" (Z§L71)) for each j. We create a diagonal ma-

trix for the coefficients and another matrix B(*~1) such that
each j* row of B(*~1) is the vector szg.L_l). This leads
to the following equation:

Z RGRr " (2870) (T2 ) (T2 1))

= (B(L—l)) diag (WZ(L) oo (Z(L—l))) B(E-D
(37

AP -

B() where I € [L] is a matrix of size Ny x D defined as
follows:

T
B - [ 2D 7.2, . wvxz%}] , Ie[L]

Thus B is the jacobian of z(/ ) with respect to the input
X.

Using the chain rule of the gradient, we have the following
properties of B():

BD =w®
BD = WWdiag (o (2°1)) BUY

(38)
(39)

Similarly, F*”) where I € [L], J € [I - 1] is a matrix of
size N; x N defined as follows:

T
FU [Vang ) Vanzs”, . Vangvf)]

Thus F7) is the jacobian of z{!) with respect to the acti-
vations a().
Using the chain rule of the gradient, we have the following
properties for F(51):

FL-D) _w)

FOD = W diag (o (20°D) ) B

(40)
(41)

Recall that in our notation: For a matrix E, E; denotes the
column vector constructed by taking the transpose of the ‘"
T
row of the matrix E. Thus i*" row of W) is (W,EL))
T
and F(&D) g (FEL’I)) . Equating the i rows in equation
(41), we get:

(FZ(L,I))T _ (WEL))Tdiag (U' (z(L_l))) FE-1D)

Taking the transpose of both the sides and expressing the
RHS as a summation, we get:

FZ(L,I) _ ((WEL))T diag (0' (Z(L_1))) F(L—l,I))T

(L n_ Z W(L) ,( (- 1))F(_L—1,I)

{ (42)

Substituting w(L) using equation (40) into equation (37),
we get:

NG (B(L_l))T diag (F(L’Lfl) o0 (Z(L_l))) B*D

(43)

Substituting AZ(L) using equation (43) into (36), we get:
V2 Z(L) =

(L-\T . (L,L-1) "o (L-1) (L-1)
(B ) diag (F; oo (z ))B

Np-1
(L) ", (L-1) 2, (L-1)
+ Zl Wo' (27D) (v2al )] (44)
j=
Thus, equation (44) allows us to write the hessian of it unit

at layer L, i.e (V2 (L )) in terms of the hessian of 5" unit
at layer L — 1, i.e (Visz_l)).

We will prove the following using induction:

L-1
vz = 5 (BD) diag (B 00" (1)) BO
I=1

(45)

Note that for L = 2, Vizglﬁl) =0, Vj € Ny. Thus using
(44) we have:
T "

V)Q(ZZ(?) = (B(l)) diag (ng’l) o0 (z(l))) B
Hence the induction hypothesis (45) is true for L = 2.
Now we will assume (45) is true for L — 1. Thus we have:
(L-1)
va xZ;

L-2

- 1; (B™)" diag (R o

jENL_l

o (z(”)) B®
(46)

We will prove the same for L.
Using equation (44), we have:

® a" (Z(L—l))) B(E&-D

+ W(L_)U’( ;_L-l)) (Vizgp—l))

In the next set of steps, we will be working
with the second term of the above equation, i.e:

i WD () (v )
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Substituting Viz;L_l) using equation (46) we get: Since o (z1) is independent of j, we can take it out of

the summation over j:

2 (L)

Vi V2 (L) (B(L_l))T diag (F(.L’Lfl) oo (Z(L_l))) B
T B ” B B 1
= (BED) dz‘ag(FgL’L Voo’ (2 1>))B<L 1 I
B di

+NHW§§)0'( ;L‘”)[ (47) ' ;( ) mg[

;:1 (Nilw(” ( (L-l))F(L—1,1))®U" (Z(I)):|B(I)
i (BY) diag (FD 00" (a (”))(B(’)) ] a0 Y !

Using equation 42), we can replace
Combining the two summations in the second term, we get: ZZZL’I W§_§)o (ZE-L_D ) F;L_l’l) with F&0)

V25 V250
= (B(L—l))T diag (FZ(L-,L*D ® o (Z(L—l))) BZ-D (B(L 1)) diag (FZ(LvL—l) ® o (Z(L—l))) B(Z-D
LR [Wg?a' = LZ (BD)” diag(FgL’I) o0 (20) )Bm
Jj=1 I=1 I=1
L-1
(BD)" diag (F0 00" (20)) B(’)] v2z) = ¥ (BD)" dz‘ag(FgL”) od (z1) )BU)
I=1
Exchanging the summation over I and summation over j: E.4. Proof of Theorem 3
viz@) Using Lemma 1, we have the following formula for
' @) _ ).
= (BE™)" diag (P 06" (24°1)) BED vi(@? -2
2 (,(2) _,(2)
LSS Wy (2§77) [ )
= %

- (wy” diag( (WP -wP)os" (21) )W(1>
(B(I)) diag (F(L LD g (Z(I))) B(I)]

_ (2) )\ " (1) (1) (T
=2 (Wi -wiR) o () WN(W)T @)
Since BM) is independent of j, we take it out of the sum- =

mation over j:

We are also given that the activation function o satisfies the

V ( L) following property:
( (L—l))T dlag (F(L.,L—l) © 0—” (Z(L_l))) B(L_l) hL <o (-r) < hU VreR (49)
I- (a) We have to prove the following linear matrix inequali-
Z (BY >) [ ties (LMIs):
= (2) D

Nia N<vi(z§?)—zt )sP Vx eR (50)

(L) (L-1) . (L-1,I) " I I
Zl i ( z; )dzag(Fj Q0 (z( )))]B( )
j=

where P and N are given as following:
Using the property, «(diag(u)) + B(diag(v)) =

M T
_ P=yp (WH-w)wh (W) 1
diag (cu+ Bv) Va,B € Ryu,v € R™; we can move the i=1 ’
summation inside the diagonal:

N=Y o (W -wE)w® (W(l)) (52)
v2e" = (BED) diag (FEHD 00" (2470 ) BED '
o A (2) @)
L- _Jhu, W VVtZ >0
Z (B(I))Tdiag[ Di =
i W(L) /( (L- 1)) (FE_L—L]) 00" (zm) ):|B(I) n; = {

(53)

yZ
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We first prove: N < V2 (21(,2) - z§2)) vx e RP:
We substitute V2 (zg,z) - z§2)

(48) and (52) respectively in V2 (zg(f) - z§2)) -N:

) and N from equations

Vi (s -2?)-N
S W WE) ) W ()’
i=1

Thus V2 (25,2) - z§2)) - N is a weighted sum of sym-

T
metric rank one matrices i.e, ng) (ng)) and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W?SQZ) - Wg)) (U‘” zgl)) - nz) is positive.
Using equations (49) and (53), we have the following:

(WE-W2)20 — ni=hy
— (o (2")-n:) 20
(WE-WD)<0 — ni=hy
— (0" (27) - n:) <0
Putting the above results together we have:
(WE -w@) (0" (27) - ni) 20

Vi€ [Nl],

Vie[N;], VxeRP

Vie[N,], Yx eRP

(54)

Thus V2 (zf) - Z§2)) - N is a PSD matrix i.e:

- 252)) -N

S w2 ) ()
A " ' A ’

always positive using eq. (54)

— NxV2 (zz(f) - ZEZ))

vx e RP (55)

(2)

Zy —Z§2))<P vVx ¢ RD:

We substitute V2 (zg(f) - ZEQ)

(48) and (52) respectively in P — Vi (zz(f) - ZEQ)):

Now we prove that V2 (

) and P from equations

P-v2 (Zz(f) - zEQ))

-5 (W W) o (o)) W W

Thus P - v2 (zz(f) - ziz)) is a weighted sum of sym-

T
metric rank one matrices i.e, Wfl) (ng)) and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W;?l) - WEZZ)) (;Di = (zl(-l))) is positive.

(b)

Using equations (49) and (53), we have the following:
(W2 -WE)20 — -
= (pi s (zgl))) >0
(WP -W?)<0 = pi=hs

Yyt

= (pi -0 (zgl))) <0

Putting the above results together we have:

W) (- () 20

Vie[N;], xeRP

Vie Ny, x e RP

Vie Ny, xeRP

Y,

— (W(z? -
(56)

Thus P - v2 (zf) - zEQ)) is PSD matrix i.e:

P-vi (zéz) - zgz))
Ny

3 (W W) (= (x0) WO ()’

always positive using eq. (56)

— P>V2 (zg,2> - z§2>) vx ¢ RP (57)

Thus by proving the LMIs (55) and (57), we prove
(50).

We have to prove that if Ay > 0and Ay, <0, Pis a
PSD matrix, N is a NSD matrix.

We are given hyy > 0, b < 0. Using equation (53), we
have the following:

(WS -W)20 = pi=hy >0
— pi (W -W2) 20
(W -W2) <0 = p;=hp <0
= Dpi (Wﬁ) —ng)) >0
Putting these results together we have:
— (W) -W(?) 20

Vie[Ny] (58)

Thus P is a weighted sum of symmetric rank one
T

matrices 1i.e, W;l) (ng)) and each coefficient

Di (Wq(lzl) - W;i)) is positive.

Yyt

P Nz pe (W - W) W (W) 5

always positive using eq. (58)
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Using equation (53), we have the following:
(Wi - WD) 20 = ni=hs <0
— (W W) <0
(W.vfi) _WE?) <0 = n;=hy 20
— (W W) <0

Putting these results together we have:

— o (W-WE2)20 viel] 69

N - % ni (W) -wi?) w (WS))T <0

Yyt
i=1

always positive using eq. (59)

Thus P is a PSD and N is a NSD matrix if hyy > 0 and
hy <0.

(c) We have to prove the following global bounds on the

eigenvalues of Vi(zg(,z) - ZEZ))Z

mI< Va2 (Zz(;2) - z§2)) < MI,

where M = max v Pv, m = min v Nv
Ivi=1 Ivii=1

Since V2 (zf) - zﬁQ)) <P VvxeRP:

v [Vi (zf) - ziQ))] v<vIPv
vveRP, vxeR? (60)
Let v*, x* be vectors such that:

(V*)T [Vi (zéz) _ z§2))]v*

= m)zclx ﬁ’lﬁﬁ vl [Vi (Zg(;Q) - Z’Sz))] v

Thus using inequality (60):

(vH)T [V2 (Zf) - z§2))] v’ <maxv Pv (61)

* vi=1
Since N < V2 (21(12) - Z§2)) Vx e RP:
vINv <v! [Vi (zg(f) - ZEQ))] v
VveRP vxeRP (62)
Let v*, x* be vectors such that:
(v)T [Vi* (ZZSQ) - ZEQ)):I v

o 52 )]

Thus using inequality (62):

(vHT [Vi* (zf) - z§2))]v* > HI\Ilel:nl vINv (63)

Using the inequalities (61) and (63), we get:
ml < v2 (z752) - z§2)) <MI
where M = max|y|-; vIiPv, m = min|y|-1 vINv

E.5. Proof of Theorem 4

We are given that the activation function o is such that
o , o are bounded, i.e:
o' (z)|<g, |0 (x)]<h  VazeR (64)

We have to prove the following:

”Visz) H < hjzj (1"(1))2 mjax (Sf?) vx e RP

where S(1) is a matrix of size N, x N defined as follows:

(L) =I -
D _ [W )| I=L-1 ©5)
g|W|sE=tD  re[L-2]
and 7! is a scalar defined as follows:
(1) -
o (W] =1 »
g[WO [ Te[2,L-1]
We will prove the same in 3 steps.
In step (a), we will prove:
D <80 yxeRP (67)
In step (b), we will prove:
IBO| <rD  vxeRP (68)

In step (c), we will use (a) and (b) to prove:

|22 < hjzll (rDY’ max (s”)  ©9)

Note that B() and F(X-D) are defined using (28) and (29)
respectively.

(a) We have to prove that for L > 2, I € [L-1], i €
]VL7 jGNIZ

5D <8P yxeRP
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where S(+1) is a matrix of size N x Ny defined as
follows:

gD _ |W(L)|
g |W(L)| g(L-1,J)

I=L-1
Te[L-2]

We first prove the case when [ = L — 1.
Using equation (40), F(L L1 _ Wfi)

Since S(L Ly _ |W(L) :

‘F(LL n| _ S%,L—n

Hence for L > 2, I = L — 1, we have equality in (67).

Hence proved.

Now, we will use proof by induction.

To prove the base case L = 2, notethat I = L -1 =1
is the only possible value for I. Thus, using the result
for I = L — 1, the theorem holds for L = 2. This proves
the base case.

Now we assume the induction hypothesis is true for
depth = L -1, I € [L - 2]. and prove for depth =
L, I € [L-1]. Since for I = L — 1, we have proven
already, we prove for I < L — 2.

Using equation (42), we have the following formula
for FEL’I):

(L I) Z W(L)o ( ISL—I))FECL—I,I)

Taking the j*" element of the vectors on both sides:

F(L I) Z W(L) ( ](CL_l))F](CL'_LI) (70)

)

By induction hypothesis, we know that:

B0 <t (71)

Using the absolute value properties for equation (70),
we have:

‘ FED]| _ il W;I,;)a’ (Z](Clﬁl)) F’(C’qu,z)
‘F(L I)‘ W(L) 4 ( I(CL—l)) F](CZ_LI)
‘F(L D < ( ;f_l))‘ |F(L 1,1)

Using |o,(a:)| <g VzeR (inequality (64)) :

Np_1

5D <g Y

k=1

W(L>| ‘Fw 1, 1)‘

(b)

(©)

Using the induction hypothesis (inequality (71)):

Np-1

9%

‘Fu 1)

W(L)‘ ‘Sw LI)

Using equation (65) for definition of SZ(.?I):

(L.1)
<s

Hence we prove (67) forall L > 2 and I < L — 1 using
induction.

We have to prove that for 1 <7 < M - 1:
IBO| <rD  vxeRP

where () is a scalar given as follows:

N {rwmn r-1

g [WO = e[2,L-1]

Using equation (38), for I = 1 we have:
[BV = [w®] =™ (72)
Using equation (39), for I > 1, we have:

[BD] = [WDdiag (o' (2-2)) BI)|

[BO] < [WO Jdiag (o' (2-2)) | B0
o (z§1_1))|, us-

[BOL <l WO [B] < g [w O
(73)

Since ”diag (ol (z(I‘l)))H = max;
ing equation (64):

Using inequalities (72) and (73), the proof follows
using induction.

We have to prove that:
HV (L)H <h Z ( (I)) maX(S(I))

Using Lemma 1, we have the following equation for
vz,

X (3

via" = Lf (BM)" dz’ag(FEL’I) oo (z1) )B(”
I=1
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Using the properties of norm we have:

|75

i (B(I))T diag (FEL’I) o0 (Z(I))) B
1

Hdwg( FD oo

< 3 m 7 500” (47)] ) )

(=0))|1B)°

h~
H,_.

In the last inequality, we use the property that norm of
a diagonal matrix is the maximum absolute value of
the diagonal element. Using the product property of
absolute value, we get:

L-1
[22(] < 5

(7)) Il
Since ‘Ff?”‘ and |a” (zgl))‘ are positive terms:
=7

< Z max(
=1 J

P40 s [0 (7)) B0

Since Hau H is bounded by h:

o] < g5 25 1B
Using inequality (67):
[2ai02] <0 S max (547 B0
Using inequality (68):
|v2 “Othéi(rUU2n?x(sﬁ)) vx € RP

E.6. Proof of Theorem 1

Theorem 1. For a binary classifier f, let g denote the indi-
cator function such that g(x) =1 < f(x) >0, g(x) =
0 otherwise. Let § be the function constructed by applying
randomized smoothing on g such that:

R 1 v —ul?
g(u)= (Gns?)i2 fRD g(v)exp (_| N | )dv

then the curvature of the resulting function § is bounded i.e:

I <I
IERACI AN

Proof.
Vu g (u)

1 (v-u) [v - ul?
= (2rs2) T2 /RD 9(v) 2 exp(— 952 )dv
Vi §(u)

_ 1 I v —ul?
_7(27752)"/2 fRDQ( )eXP( Tog2 )dv
v-u)(v-u)T
1 / g(v)( )(4 ) [

i (2ws2)n/2 Jrp s

[v—ul?
exp (—252 dv

Since 0 < g(v) < 1, -1/s?
exp(z) 20 Va:

. 1 -1 [v—ul?
2 _
VU g (u) - (27'['82)77’/2 ‘/RD g(V)? exp (_ 252 dv

Negative Semi-Definite

1 v-u)(v-u)T
s [ o

<0, (v-u)(v-u)T

Positive Semi-Definite

[v—ul?
exp (—252 dv

V2 g (u) < 1 (v-u)(v-u)T
u (2ms2)n/2 Jrp st
[v - ul?
exp (—252 dv
) 1 aq” lal*
2
Va d(u) < sty 2 Jro st exp( 52 dq
. I
Ve g (u) < 2
. 1 . | [v —ul?
2
Vad(u)> @rs) fRD -2 &XP (_232 dv
. I
Ve g(u) = 2

F. Computing g, h, hy; and hy, for different
activation functions

F.1. Softplus activation

For softplus activation, we have the following. We use S(xx)
to denote sigmoid:

o(x) =log(1 +exp(z))
ar(m) =5(x)
o' (z) = S(z)(1-S(x))
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To bound S(z)(1 - S(z)), let o denote S(z). We know
that 0 < < 1:

4 2

Thus, S(z)(1 - S(z)) is maximum at S(z) = 1/2 and
minimum at S(«) = 0 and S(z) = 1. The maximum value
is 0.25 and minimum value is 0.

a(l—a):l—(l—a)2

0<S(z)(1-S(2)) <025 = 0<o ()<0.25

Thus, hy = 0.25, hy = 0 (for use in Theorem 3) and g =
1, h =0.25 (for use in Theorem 4).

F.2. Sigmoid activation

For sigmoid activation, we have the following. We use S(x)
to denote sigmoid:

1
o'(z) = S(z)(1-S(x))
o' (z) = S(x)(1- S(x))(1-28(x))

o(x)=5(x) =

The second derivative of sigmoid (o (2)) can be bounded
using standard differentiation. Let « denote S(z). We
know that 0 < ar < 1:

hy <o () <hy
hy = Orsnalgla(l -a)(1-2a)
hy = nax a(l-a)(1-2a)

To solve for both hy, and hy, we first differentiate (1 —
a)(1 - 2«) with respect to a:

Vo (a(l-a)(1-2a)) =V, (2@3 -3a® + «)
= (6@2 - 6o + 1)

Solving for 602 —6a+1=0, we get the solutions:

L)

6

Since both (3 +1/3/6), (3 - V/3/6) lie between 0 and 1, we
check for the second derivatives:

V2 (a(l-a)(1-2a)) = Va (6a® —6a +1)
=120 -6 =620 1)
Ata = (3++/3)/6, V2 =6(2a—1) = 2+/3 > 0.
Ata = (3-/3)/6, V2 =6(2a—1) = -2/3 <0.

Thus a = (3 ++/3)/6 is a local minima, o = (3 - /3)/6 is
a local maxima.

Substituting the two critical points into a(1 — a)(1 - 2a),
we get hyy = 9.623 x 1072, hy, = -9.623 x 1072

Thus, hyy = 9.623 x 1072, hy, = =9.623 x 1072 (for use in
Theorem 3) and g = 0.25, h = 0.09623 (for use in Theorem
4).

F.3. Tanh activation

For tanh activation, we have the following:

exp(z) — exp(-2)
exp(x) + exp(-x)
o (z) = (1 - tanh(z)) (1 + tanh(z))
o (z) = —2tanh(z) (1 - tanh(z)) (1 + tanh(z))

o(x) = tanh(z) =

The second derivative of tanh , i.e (o (x)) can be bounded
using standard differentiation. Let « denote tanh(x). We
know that -1 < o < 1:

hp < 0'”(1‘) <hy
hr = Jnin “2a(l-a)(1+a)
hy = fnax -2a(l-a)(1+a)

To solve for both hr, and hyy, we first differentiate —2c(1 —
a)(1+ «) with respect to «:

Vo (-2a(1-a)(1+a)) = Vo (20° - 2a) = (60° - 2)
Solving for 6% — 2 = 0, we get the solutions:
1 1
"7
Since both -1/ V3,1 / V3 lie between -1 and 1, we check
for the second derivatives:

V2 (-2a(1 - a)(1+a)) = Va (60% - 2) = 12a

Ata=-1/v/3, V2 = 12a = -4/3 < 0.

Ata=1/v/3, V2 =12a = 44/3 > 0.

Thus « = 1/\/§ is a local minima, o = —1/\/3 is a local
maxima.

Substituting the two critical points into —2a(1 — «)(1 + ),
we get hyy = 0.76981, hy, = —0.76981.

Thus, hy = 0.76981, hy, = —0.76981 (for use in Theorem
3)and g =1, h =0.76981 (for use in Theorem 4).

G. Quadratic bounds for two-layer ReLU
networks

For a 2 layer network with ReLU activation, such that the
input x lies in the ball ||x -x(© || < p, we can compute the

bounds over z(1) directly:
WX 1 b® [ W[ < 50
zgl) < Wz(l)x(o) + bgl) +p HWZO) H
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Thus we can get a lower bound and upper bound for each
zl(.l). We define d; and u; as the following:

di =W 4D - p Wb (74)
u = WO 1 b0 4 p W (75)

We can derive the following quadratic lower and upper
(1).

%

bounds for each a

—d: 2 2 4 g2 2.
d; . (ZEI)) LU +d; 2z§1) g d; .
(ui —d;) (u; - dy) (u; —dy)
if |d;| < |u;
a < if [di] < Jui
’ U (Z(l))2 _ 2ud; MCOM u;d?
(ui—d;)? \™ (wi-d)?™"  (ui—d;)?
0 2/ds] < Jul
a® > 2" |di| > 2|u;]
1 2 .
P (zgl)) - Ldzgl) otherwise
Ui = G4 Ui = G

The above steps are exactly the same as the quadratic upper
and lower bounds used in (Zhang et al., 2018a).
Using the above two inequalities and the identity:

2@, _ 3} (W - W)
Y t = Y, t,i 7

we can compute a quadratic lower bound for 2?52) -

z§2) in terms of zgl) by taking the lower bound for

agl) when (Wﬁ) - W(2)) > 0 and upper bound when

ti
(Wz(/zz) - Wg)) <= (. Furthermore since zgl) = ng)x +

bgl), we can express the resulting quadratic in terms of x.
Thus, we get the following quadratic function :

1
z(yz) - z§2) > §XTPX +q+r

The coefficients P, q and r can be determined using the
above procedure. Note that unlike in (Zhang et al., 2018a),
RHS can be a non-convex function.

Thus, it becomes an optimization problem where the goal

is to minimize the distance 1/2||x - x(©) ||2 subject to RHS
(which is quadratic in x) being zero. That is both our objec-
tive and constraint are quadratic functions. In the optimiza-
tion literature, this is called the S-procedure and is one of
the few non-convex problems that can be solved efficiently
(Boyd & Vandenberghe, 2004).

We start with two initial values called p;,,, (initialized to 0)
and pp;gn (initialized to 5).

We start with an initial value of p, initialized at
1/2 (prow + phigh) to compute d; (eq. (74)) and w; (eq.

(75)). If the final distance after solving the S-procedure
is less than p, we set pj,,, = p. if the final distance is greater
than p, we set prign, = p. Set new p = 1/2 (piow + Phigh )-
Repeat until convergence.

H. Additional experiments

Empirical accuracy means the fraction of test samples that
were correctly classified after running a PGD attack (Madry
et al., 2018) with an /> bound on the adversarial perturba-
tions. Certified accuracy means the fraction of test samples
that were classified correctly initially and had the robust-
ness certificate greater than a pre-specified attack radius p.
Unless otherwise specified, for both empirical and certified
accuracy, we use p = 0.5. Unless otherwise specified, we
use the class with the second largest logit as the attack target
for the given input (i.e. the class t). Unless specified, the
experiments were run on the MNIST dataset while noting
that our results are scalable for more complex datasets. The
notation (L x [1024], activation) denotes a neural network
with L layers with the specified activation function, (y = ¢)
denotes standard training with  set to ¢, (CRT, c¢) denotes
CRT training with y = ¢. Certificates CROWN and CRC are
computed over 150 correctly classified images.

H.1. Computing K, and K,

First, note that K does not depend on the input, but on net-
work weights W) label y and target ¢. Different images
may still have different K because label y and target ¢ may
be different.

To compute K7, in the table, first for each pair y and ¢, we
find the largest eigenvalue of the Hessian of all test images
that have label y and second largest logit of class ¢. Then we
take the max of the largest eigenvalue across all test images.
This gives a rough estimate of the largest curvature in the
vicinity of test images with label y and target t. We can
directly take the mean across all such pairs to compute K.
However, we find that some pairs y and ¢ were infrequent
(with barely 1,2 test images in them). Thus, for all such
pairs we cannot get a good estimate of the largest curvature
in vicinity. We select all pairs y and ¢ that have at least 100
images in them and compute K7, by taking the mean across
all such pairs.

To compute K, in the table, we compute K for all pairs y
and ¢ that have at least 100 images, i.e at least 100 images
should have label y and target . And then we compute the
mean across all K that satisfy this condition. This was done
to do a fair comparison with Kj;. Figure 1 shows a plot of
the K, and Kj;, with increasing  for a sigmoid network
(with 4 layers).
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Kup= 5365369

—— Upper bound (Kys)
——- Lower bound (Kyp)
® Upper bound (Kys) with PGD

105 4 A Lower bound (Kjp) with PGD

104 4

103 4
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Figure 1. Effect of v on K,; and K, for a 4 layer network. We
observe a similar trend as in 2 and 3 layer networks (Figure 1). At
v =0, we observe K, ~ 15418 x Kjp.

H.2. Comparison with provable defenses

In this section, we compare Curvature-based Robust Train-
ing (Ours) against state-of-the-art interval-bound propaga-
tion based adversarial training methods: COAP i.e Con-
vex Outer Adversarial Polytope (Wong & Kolter, 2017)
and CROWN-IBP (Zhang et al., 2019a) with different at-
tack radius on MNIST and Fashion-MNIST datasets. For
CROWN-IBP, we vary the final_beta parameter between 0.5
to 3 (using an interval of 0.1) and choose the model with
best certified accuracy.

Table 2. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius p = 0.5 on MNIST
dataset. Note that the certified accuracy of softplus network with
CROWN-IBP is significantly less than that of a similar ReLU
network.

Network Training Standard | Certified
Accuracy | Accuracy

2x[1024], | CRT, 0.01 98.69 % 95.5%
softplus | CROWN-IBP | 98.72% | 89.31%
2x[1024], | CROWN-IBP | 98.69% 91.38%
relu COAP 98.8% 90.2%
3x[1024], | CRT, 0.01 98.56 % 94.44%
softplus | CROWN-IBP | 98.55% | 88.67%
3x[1024], | CROWN-IBP | 98.9% 90.67%
relu COAP 98.9% 89.0%
4x[1024], | CRT, 0.01 98.43 % 93.35%
softplus CROWN-IBP | 98.34% 87.41%
4x[1024], | CROWN-IBP | 98.78% 90.45%
relu COAP 98.9% 89.0%

Table 3. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius p = 0.5 on Fashion-
MNIST dataset.

Certified

Network Training Standard Robust
Accuracy

Accuracy
2x[1024], CRT, 0.01 88.45% 78.45%
softplus
2x[1024], | COAP 86.0% 74.0%
relu CROWN-IBP | 85.89% 74.62%
3x[1024) | cge .01 86.21% | 76.94%
softplus
3x[1024], | COAP 85.9% 74.3%
relu CROWN-IBP | 86.27% 74.56%
1024 | ey .01 86.37% | 75.02%
softplus
4x[1024], | COAP 85.9% 74.2%
relu CROWN-IBP | 86.03% 74.38%

Table 4. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius p = 1.58 on MNIST
dataset. We again observe that the certified accuracy of softplus
network with CROWN-IBP is significantly less than that of a
similar ReLU network.

‘ Standard Certified
Network Training Robust
Accuracy
Accuracy

2x[1024], | CRT, 0.01 98.68% | 69.79%
softplus | CROWN-IBP | 88.48% | 42.36%
2x[1024], | COAP 89.33% | 44.29%
relu CROWN-IBP | 89.49% | 44.96%

CRT, 0.01 98.26% | 14.21%
3x[1024], | CRT, 0.03 97.82% | 50.72%
softplus | CRT, 0.05 97.43% | 57.78%

CROWN-IBP | 86.58% | 42.14%
3x[1024], | COAP 89.12% | 44.21%
relu CROWN-IBP | 87.77% | 44.74%

CRT, 0.01 97.80% | 6.25%

CRT, 0.03 97.09% | 29.64%
j:fE;?fs4]’ CRT, 0.05 96.33% | 44.44%

CRT, 0.07 95.60% | 53.19%

CROWN-IBP | 82.74% | 41.34%
4x[1024], | COAP 90.17% | 44.66%
relu CROWN-IBP | 84.4% 43.83%
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Table 5. Comparison between CRT and Randomized Smooth-
ing(Cohen et al., 2019). s denotes the standard deviation for
smoothing. We use p = 0.5. For CRT, we use v = 0.01

Network Randomized Smoothing CRT
5=025 | 5-050 ] 5=10 |_

95.61%

2x[1024]. | o3 2500 | 93.009% | 88.91% | >01%

sigmoid

2x[1024]. | o4 6100 | 93.08% | 82.26% | 95.00%

tanh

3x[1024]. 1 o1 600, | 93.03% | 86.58% | 94.99%

sigmoid

3x[1024]. 1 o3 co0r | 91.68% | 80.55% | 94.16%

tanh

Ax[1024]. | o3 cea0 | 92.45% | 84.99% | 93.41%

sigmoid

f;EOM]’ 93.57% | 92.19% | 83.90% | 91.37%

H.3. Comparing Randomized Smoothing with CRT

Since, randomized smoothing is designed to work in untar-
geted attack settings while CRT is for targeted attacks, we
make the following changes in randomized smoothing. First,
we use ng = 100 initial samples to select the label class (1)
and false target class (). The samples for estimation were
n = 100, 000 and failure probability was o = 0.001. Then
we use the binary version of randomized smoothing for esti-
mation, i.e classify between y and ¢. To find the adversarial
example for adversarial training, we use the cross entropy
loss for 2 classes (y and t).

H.4. Additional experiments

Table 6. Table showing success rates (primal = dual) for differ-
ent values of v. Certificate success rate denotes the fraction of
points (x(o)) satisfying z,, — z; = 0, Attack success rate denotes
the fraction of points (x(*)) satisfying |x(@*@°¥) _ x|, = )
implying primal = dual in Theorems 1 and 2 respectively. We
observe that as we increase -y, the fraction of points satisfying
primal = dual increases for both the certificate and attack prob-
lems. This can be attributed to the curvature bound K (W, y,t)
becoming tight on increasing ~.

Attack Certificate
Network ¥ Accuracy | success success
rate rate
0. 98.77% 5.05% 2.24%
2x[1024], | 0.01 | 98.57% 100% 15.68%
sigmoid 0.02 | 98.59% 100% 31.56%
0.03 | 98.30% 100% 44.17%
0. 98.52% 0.% 0.12%
3x[1024], | 0.01 | 98.23% 44.86% 3.34%
sigmoid 0.03 | 97.86% 100% 11.51%
0.05 | 97.60% 100% 22.59%
0. 98.22% 0.% 0.01%
0.01 | 97.24% 24.42% 2.68%
4x[1024], | 0.03 | 96.27% 44.42% 6.45%
sigmoid 0.05 | 95.77% 99.97% 12.40%
0.06 | 95.52% 100% 15.87%
0.07 | 95.24% 100% 19.53%
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Table 7. Results for CIFAR-10 dataset (only curvature regularization, no CRT training)
N Standard Empirical | Certified Certificate
Network Training Robust | Robust (mean)
Accuracy

Accuracy | Accuracy | CROWN | CRC
standard | 46.23% 37.82% 14.10% 0.37219 | 0.38173
v=0.01 | 45.42% 38.17% 26.50% 0.40540 | 0.55010
standard | 48.57% 34.80% | 0.00% 0.19127 | 0.01404
v=0.01 | 50.31% 39.87% 18.28% 0.24778 | 0.37895
standard | 46.04% 34.38% | 0.00% 0.19340 | 0.00191
v=0.01 | 48.28% | 40.10% | 21.07% 0.29654 | 0.40005

2 x [1024], sigmoid

3 x [1024], sigmoid

4 x [1024], sigmoid

Table 8. Comparison between CRT, PGD (Madry et al., 2018) and TRADES (Zhang et al., 2019b) for sigmoid and tanh networks. CRC
outperforms CROWN significantly for 2 layer networks and when trained with our regularizer for deeper networks. CRT outperforms
TRADES and PGD giving higher certified accuracy.

N Standard Empirical | Certified Certificate
Network | Training Robust | Robust (mean)
Accuracy
Accuracy | Accuracy | CROWN | CRC
9x[1024] PGD 98.80% | 96.26% | 93.37% | 0.37595 | 0.82702
sigmoid > | TRADES | 98.87% | 96.76% | 95.13% | 0.41358 | 0.92300
CRT, 0.01 | 98.57% 96.28% 95.59% | 0.43061 1.54673
PGD 98.76% 95.79% 84.11% 0.30833 0.61340
t2a>1<1E11024]’ TRADES | 98.63% | 96.20% | 93.72% | 0.40601 | 0.86287
CRT, 0.01 | 98.52% | 95.90% | 95.00% | 0.37691 1.47016
3x[1024] PGD 98.84% | 96.14% | 0.00% 0.29632 | 0.07290
sigmoid > | TRADES | 98.95% | 96.79% | 0.00% 0.30576 | 0.09108
CRT, 0.01 | 98.23% 95.70% 94.99% | 0.39603 1.24100
PGD 98.78% 94.92% 0.00% 0.12706 | 0.03036
331%1024]’ TRADES | 98.16% | 94.78% | 0.00% 0.15875 | 0.02983
CRT, 0.01 | 98.15% | 95.00% | 94.16% | 0.28004 | 1.14995
4x[1024] PGD 98.84% | 96.26% | 0.00% 0.25444 | 0.00658
sigmoid > | TRADES | 98.76% | 96.67% | 0.00% 0.26128 | 0.00625
CRT, 0.01 | 97.83% 94.65% 93.41% | 0.40327 1.06208
PGD 98.53% 94.53% 0.00% 0.07439 | 0.00140
331&1024]’ TRADES | 97.08% | 92.85% | 0.00% 0.11889 | 0.00068
CRT, 0.01 | 97.24% | 93.05% | 91.37% | 0.33649 | 0.93890
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Table 9. Comparison between CRC and CROWN-general (CROWN-Ada for relu) for different targets. For CRT training, we use v = 0.01.
We compare CRC with CROWN-general for different targets for 150 correctly classified images. Runner-up means class with second
highest logit is considered as adversarial class. Random means any random class other than the label is considered adversarial. Least
means class with smallest logit is adversarial. For 2-layer networks, CRC outperforms CROWN-general significantly even without
adversarial training. For deeper networks (3 and 4 layers), CRC works better on networks that are trained with curvature regularization.
Both CROWN and CRC are computed on CPU but the running time numbers mentioned here are not directly comparable because our
CRC implementation uses a batch of images while the CROWN implementation uses a single image at a time.

Certificate (mean) Time per Image (s)
CROWN | CRC CROWN | CRC
runner-up | 0.50110 | 0.59166 | 0.1359 2.3492
2 x [1024], relu standard random 0.68506 | 0.83080 | 0.2213 3.5942
least 0.86386 | 1.04883 | 0.1904 3.0292
runner-up | 0.28395 | 0.48500 | 0.1818 0.1911
standard random 0.38501 0.69087 | 0.1870 0.1912
least 0.47639 | 0.85526 | 0.1857 0.1920
runner-up | 0.43061 | 1.54673 | 0.1823 0.1910
CRT, 0.01 | random 0.52847 | 1.99918 | 0.1853 0.1911
least 0.62319 | 2.41047 | 0.1873 0.1911
runner-up | 0.23928 | 0.40047 | 0.1672 0.1973
standard random 0.31281 | 0.52025 | 0.1680 0.1986
least 0.38964 | 0.63081 | 0.1726 0.1993
runner-up | 0.37691 | 1.47016 | 0.1633 0.1963
CRT, 0.01 | random 0.45896 | 1.87571 | 0.1657 0.1982
least 0.52800 | 2.21704 | 0.1697 0.1981
runner-up | 0.24644 | 0.06874 | 1.6356 0.5012
standard random 0.29496 | 0.08275 | 1.5871 0.5090
least 0.33436 | 0.09771 | 1.6415 0.5056
runner-up | 0.39603 | 1.24100 | 1.5625 0.5013
CRT, 0.01 | random 0.46808 | 1.54622 | 1.6142 0.4974
least 0.51906 | 1.75916 | 1.6054 0.4967
runner-up | 0.08174 | 0.01169 | 1.4818 0.4908
standard random 0.10012 | 0.01432 | 1.5906 0.4963
least 0.12132 | 0.01757 | 1.5888 0.5076
runner-up | 0.28004 | 1.14995 | 1.4832 0.4926
CRT, 0.01 | random 0.32942 | 1.41032 | 1.5637 0.4957
least 0.38023 | 1.65692 | 1.5626 0.4930
runner-up | 0.19501 | 0.00454 | 4.7814 0.8107
standard random 0.21417 | 0.00542 | 4.6313 0.8377
least 0.22706 | 0.00609 | 4.7973 0.8313
runner-up | 0.40327 | 1.06208 | 4.1830 0.8088
CRT, 0.01 | random 0.47038 | 1.29095 | 4.3922 0.7333
least 0.52249 | 1.49521 | 4.4676 0.7879
runner-up | 0.03554 | 0.00028 | 5.7016 0.8836
standard random 0.04247 | 0.00036 | 5.8379 0.8602
least 0.04895 | 0.00044 | 5.8298 0.9045
runner-up | 0.33649 | 0.93890 | 3.8815 0.8182
CRT, 0.01 | random 0.41617 | 1.18956 | 4.0013 0.8215
least 0.47778 | 1.41429 | 4.3856 0.8311

Network Training Target

2 x [1024], sigmoid

2 x [1024], tanh

3 x [1024], sigmoid

3 x [1024], tanh

4 % [1024], sigmoid

4 x [1024], tanh
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Table 10. In this table, we measure the effect of increasing 7, when the network is trained with CRT on standard, empirical, certified
robust accuracy, K, and K,,; (defined in subsection H.1) for different depths (2, 3, 4 layer) and activations (sigmoid, tanh). We find
that for all networks v = 0.01 works best. We find that the lower bound, K7; increases (for v = 0) for deeper networks suggesting that
deep networks have higher curvature. Furthermore, for a given v (say 0.005), we find that the gap between K, and K, increases as we
increase the depth suggesting that K is not a tight bound for deeper networks.

Empirical | Certified Curvature bound (mean)
Standard
Network | ~ Accuracy Robust Robust Ky Ko
Accuracy | Accuracy v
0.0 98.77% 96.17% 95.04% 7.2031 72.0835
0.005 | 98.82% 96.33% 95.61 % 3.8411 8.2656
z;gﬁg?;]’ 0.01 98.57% 96.28% 95.59 % 2.8196 5.4873
0.02 | 98.59% 95.97% 95.22% 22114 3.7228
0.03 98.30% 95.73% 94.94% 1.8501 2.9219
0.0 98.65% 95.48% 92.69% 12.8434 107.5689
9x[1024] 0.005 | 98.71% 95.88% 94.76% 4.8116 10.1860
tanh 1 0.01 98.52% 95.90% 95.00 % 3.4269 6.3529
0.02 | 98.35% 95.71% 94.77% 2.3943 4.1513
0.03 98.29% 95.39% 94.54% 1.9860 3.933
0. 98.52% 90.26% 0.00% 19.2131 3294.9070
0.005 | 98.41% 95.81% 94.91% 2.6249 13.4985
3x[1024] 0.01 98.23% 95.70% 94.99 % 1.9902 8.6654
sigmoid 71 0.02 | 97.99% 95.33% 94.64% 1.4903 5.4380
0.03 97.86% 94.98% 94.15% 1.2396 4.1409
0.04 | 97.73% 94.60% 93.88% 1.0886 3.3354
0.05 97.60% 94.45% 93.65% 0.9677 2.7839
0. 98.19% 86.38% 0.00% 133.7992 | 17767.5918
0.005 | 98.13% 94.56% 93.01% 3.2461 17.5500
3x[1024] 0.01 98.15% 95.00% 94.16 % 2.2347 10.8635
tanh 71 0.02 | 97.84% 94.79% 94.05% 1.6556 6.7072
0.03 97.70% 94.19% 93.42% 1.3546 5.0533
0.04 | 97.57% 94.04% 92.95% 1.1621 4.0071
0.05 97.31% 93.66% 92.65% 1.0354 3.3439
0. 98.22% 83.04% 0.00% 86.9974 343582.3125
0.01 97.83% 94.65% 93.41% 1.6823 10.2289
0.02 | 97.33% 94.02% 92.94% 1.2089 6.5573
i;ﬁg?dzl]’ 0.03 97.07% 93.52% 92.65% 1.0144 4.9576
0.04 | 96.70% 92.78% 91.95% 0.8840 3.9967
0.05 96.38% 92.29% 91.33% 0.7890 3.4183
0.07 96.08% 91.83% 90.67% 0.6614 2.6905
0. 97.45% 75.18% 0.00% 913.6984 | 37148156
0.01 97.24% 93.05% 91.37% 1.9114 12.2148
0.02 | 96.82% 92.65% 91.35% 1.3882 7.1771
331&1024]’ 0.03 96.27% 91.43% 90.09% 1.1643 5.1671
0.04 | 95.62% 90.69% 89.41% 0.9620 3.9061
0.05 95.77% 90.69% 89.40% 0.9160 3.2909
0.07 95.24% 89.51% 87.91% 0.7540 2.5635
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Table 11. In this table, we measure the impact of increasing curvature regularization (y) on accuracy, empirical robust accuracy, certified
robust accuracy, CROWN-general and CRC when the network is trained without any adversarial training. We find that adding a very small
amount of curvature regularization has a minimal impact on the accuracy but significantly increases CRC. Increase in CROWN certificate
is not of similar magnitude. Somewhat surprisingly, we observe that even without any adversarial training, we can get nontrivial certified
accuracies of 84.73%), 88.66%, 89.61% on 2,34 layer sigmoid networks respectively.

Empirical | Certified Certificate (mean)
Network Standard Robust Robust
v Accuracy N CROWN | CRC
ccuracy | Accuracy
0 98.37% 76.28% 54.17% 0.28395 | 0.48500

0.005 | 97.96% 88.65% 82.68% 0.36125 | 0.83367
2 x [1024], sigmoid | 0.01 98.08% 88.82% 83.53% 0.32548 | 0.84719
0.02 | 97.88% 88.90% 83.68% 0.34744 | 0.86632
0.03 | 97.73% 89.28% 84.73% 0.35387 | 0.90490
0. 98.34% 79.10% 14.42% 0.23938 | 0.40047
0.005 | 98.01% 89.95% 85.70% 0.27262 | 0.89672
2 x [1024], tanh 0.01 97.99% 90.17% 86.18% 0.28647 | 0.93819
0.02 | 97.64% 90.13% 86.40% 0.30075 | 0.99166
0.03 | 97.52% 89.96% 86.22% 0.30614 | 0.98771
0. 98.37% 85.19% 0.00% 0.24644 | 0.06874
0.005 | 97.98% 91.93% 88.66% 0.38030 | 0.99044
0.01 97.71% 91.49% 88.33% 0.39799 | 1.07842
3 x [1024], sigmoid | 0.02 | 97.50% 91.34% 88.38% 0.38091 1.08396
0.03 | 97.16% 91.10% 88.63% 0.41015 | 1.15505
0.04 | 97.03% 90.96% 88.48% 0.42704 | 1.18073
0.05 | 96.76% 90.65% 88.30% 0.43884 | 1.19296
0. 97.91% 77.40% 0.00% 0.08174 | 0.01169
0.005 | 97.45% 91.32% 88.57% 0.28196 | 0.95367
0.01 97.29% 90.98% 88.31% 0.31237 | 1.05915
3 x [1024], tanh 0.02 | 97.04% 90.21% 87.77% 0.30901 1.08607
0.03 | 96.88% 90.02% 87.52% 0.34148 | 1.11717
0.04 | 96.53% 89.61% 86.87% 0.36583 | 1.11307
0.05 | 96.31% 89.25% 86.26% 0.38519 | 1.11689
0. 98.39% 83.27% 0.00% 0.19501 | 0.00454
0.01 97.41% 91.71% 89.61% 0.40620 | 1.05323
0.02 | 96.47% 90.03% 87.77% 0.45074 | 1.14219
4 x [1024], sigmoid | 0.03 | 96.24% 90.40% 88.14% 0.47961 1.30671
0.04 | 95.65% 89.61% 87.54% 0.49987 | 1.35129
0.05 | 95.36% 89.10% 87.09% 0.51187 | 1.36064
0.07 | 95.23% 88.03% 85.93% 0.54754 | 1.27948
0. 97.65% 69.20% 0.00% 0.03554 | 0.00028
0.01 96.52% 89.38% 86.40% 0.34778 | 0.97365
0.02 | 96.09% 88.79% 86.09% 0.41662 | 1.10860
4 x [1024], tanh 0.03 | 95.74% 88.36% 85.65% 0.44981 1.17400
0.04 | 95.10% 87.50% 84.74% 0.48356 | 1.21957
0.05 | 95.14% 87.72% 84.77% 0.49113 | 1.25076
0.07 | 94.34% 86.67% 83.90% 0.49750 | 1.24198
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