
A. Quantum-Chemical Calculations
For the calculation of the energy E we use the fast semi-
empirical Parametrized Method 6 (PM6) (Stewart, 2007).
In particular, we use the implementation from the software
package SPARROW (Husch et al., 2018; Bosia et al., 2019).
For each calculation, a molecular charge of zero and the
lowest possible spin multiplicity are chosen. All calculations
are spin-unrestricted.

Limitations of semi-empirical methods are highlighted in,
for example, recent work by Husch & Reiher (2018). More
accurate methods such as approximate density functionals
need to be employed especially for systems containing tran-
sition metals.

For the quantum-chemical calculations to converge reliably,
we ensured that atoms are not placed too close (< 0.6 Å) nor
too far away from each other (> 2.0 Å). If the agent places
an atom outside these boundaries, the minimum reward of
−0.6 is awarded and the episode terminates.

B. Learning the Dihedral Angle
We experimentally validate the benefits of learning |ψ| ∈
[0, π] and κ ∈ {−1, 1} instead of ψ ∈ [−π, π] by compar-
ing the two models on the single-bag task with bag CH4
(methane). Methane is one of the simplest molecules that
requires the model to learn a dihedral angle. As shown in
Fig. 9, learning the sign of the dihedral angle separately
(with κ) speeds up learning significantly. In fact, the ablated
model (without κ) fails to converge to the optimal return
even after 100 000 steps (not shown).
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Figure 9. Average offline performance on the single-bag task for
the bag CH4 across 10 seeds. Estimating κ and |ψ| separately
(with κ) significantly speeds up learning compared to estimating
ψ directly (without κ). Error bars show two standard deviations.
The dashed line denotes the optimal return.

C. Experimental Details
C.1. Model Architecture

The model architecture is summarized in Table 3. We initial-
ize the biases of each MLP with 0 and each weight matrix
as a (semi-)orthogonal matrix. After each hidden layer,
a ReLU non-linearity is used. The output activations are
shown in Table 3. As explained in the main text, both MLPf
and MLPe use a masked softmax activation function to guar-
antee that only valid actions are chosen. Further, we rescale
the continuous actions (µd, µα, µψ) ∈ [−1, 1]3 predicted
by MLPcont to ensure that µd ∈ [dmin, dmax], µα ∈ [0, π]
and µψ ∈ [0, π]. For more details on the SchNet, see the
original work (Schütt et al., 2018b).

Table 3. Model architecture for actor and critic networks.
Operation Dimensionality Activation

SchNet n(C)× 4, ∗, n(C)× 64 ∗ (cf. Table 7)
MLPβ emax, 128, 32 linear
tile 32, n(C)× 32 —
concat n(C)× (64, 32), n(C)× 96 —
MLPf n(C)× 96, n(C)× 128, n(C)× 1 softmax
select n(C)× 96, 96 —
MLPe 96, 128, emax softmax
concat (96, emax), 96 + emax —
MLPcont 96 + emax, 128, 3 tanh
MLPκ 2× 96, 2× 128, 2× 1 softmax
pooling n(C)× 96, 96 —
MLPφ 96, 128, 128, 1 linear

C.2. Hyperparameters

We manually performed an initial hyperparameter search
on a single holdout validation seed. The considered hy-
perparameters and the selected values are listed in Table 4
(single-bag), Table 5 (multi-bag) and Table 6 (solvation).
The hyperparameters used for SchNet are shown in Table 7.

D. Baselines
Below, we report how the baselines for the single-bag and
multi-bag tasks were derived. First, we took all molecular
structures for a given chemical formula (i.e. bag) from the
QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014). Subsequently, we performed a structure optimiza-
tion using the PM6 method (as described in Section A) on
the structures. This was necessary as the structures in this
dataset were optimized with a different quantum-chemical
method. Then, the most stable structure was selected and
considered optimal for this chemical formula; the remaining
structures were discarded. Since the undiscounted return is
path independent, we determined the return R(s) by com-



Table 4. Hyperparameters for the single-bag task. Adapted values
for the scalability (large) experiment are in parentheses.

Hyperparameter Search set Value (large)

Range [dmin, dmax] (Å) — [0.95, 1.80]
Max. atomic number emax — 10
Workers — 16
Clipping ε — 0.2
Gradient clipping — 0.5
GAE parameter λ — 0.95
VF coefficient c1 — 1
Entropy coefficient c2 {0.00, 0.01, 0.03} 0.01
Training epochs {5, 10} 5
Adam stepsize {10−4, 3× 10−4} 3× 10−4

Discount γ {0.99, 1.00} 0.99
Time horizon T {192, 256} 192 (256)
Minibatch size {24, 32} 24 (32)

Table 5. Hyperparameters for the multi-bag task.

Hyperparameter Search set Value

Range [dmin, dmax] (Å) — [0.95, 1.80]
Max. atomic number emax — 10
Workers — 16
Clipping ε — 0.2
Gradient clipping — 0.5
GAE parameter λ — 0.95
VF coefficient c1 — 1
Entropy coefficient c2 {0.00, 0.01, 0.03} 0.01
Training epochs {5, 10} 5
Adam stepsize {10−4, 3× 10−4} 3× 10−4

Discount γ {0.99, 1.00} 0.99
Time horizon T {384, 512} 384
Minibatch size {48, 64} 48

puting the total interaction energy in the canvas C, i.e.

R(s) = E(C)−
N∑
i=1

E(ei), (9)

where N is the number of atoms placed on the canvas.

The baseline for the solvation task was determined in the
following way. 12 molecular clusters were generated by ran-
domly placing n H2O molecules around the solute molecule
(in the main text n = 5). Subsequently, the structure of
these clusters was optimized with the PM6 method (as de-
scribed in Section A). Similar to Eq. (9), the undiscounted
return of each cluster can be computed:

R(s) = E(C)− E(C0)−
N∑
i=1

{E(ei) + ρ‖xi‖2} , (10)

where the distance penalty ρ = 0.01. Finally, the maximum
return over the optimized clusters was determined.

Table 6. Hyperparameters for the solvation task.

Hyperparameter Search set Value

Range [dmin, dmax] (Å) — [0.90, 2.80]
Max. atomic number emax — 10
Distance penalty ρ — 0.01
Workers — 16
Clipping ε — 0.2
Gradient clipping — 0.5
GAE parameter λ — 0.95
VF coefficient c1 — 1
Entropy coefficient c2 {0.00, 0.01, 0.03} 0.01
Training epochs {5, 10} 5
Adam stepsize {10−4, 3× 10−4} 3× 10−4

Discount γ {0.99, 1.00} 0.99
Time horizon T {384, 512} 384
Minibatch size {48, 64} 48

Table 7. Hyperparameters for SchNet (Schütt et al., 2018a) used in
all experiments.

Hyperparameter Search set Value

Number of interactions — 3
Cutoff distance (Å) — 5.0
Number of filters — 128
Number of atomic basis functions {32, 64, 128} 64

E. Additional Results
E.1. Single-bag Task

In Fig. 10, we show a selection of molecular structures gen-
erated by trained models for the bags C4H7N and C3H8O.
Further, since the agent is agnostic to the concept of molec-
ular bonds, it is able to build multiple molecules if it results
in a higher return. An example of a bimolecular structure
generated by a trained model for the bag C3H8O is shown in
Fig. 11. Finally, in Fig. 12, we showcase a set of generated
molecular structures that are not chemically valid.

Figure 10. Selection of molecular structures generated by trained
models for the bags C4H7N (a) and C3H8O (b).



Figure 11. Bimolecular structure generated by a trained model for
the bag C3H8O in the single-bag task.

Figure 12. Selection of chemically invalid molecular structures
generated by trained models for the bags C3H8O (a), C3H5NO3

(b), and C4H7N (c).

E.2. Solvation Task

In Fig. 13, we report the average offline performances of
agents placing 5 H2O molecules around the solutes (i.e, C0)
acetonitrile and ethanol. As can be seen, the agents are able
to accurately place water molecules such that they interact
with the solute. However, we stress that more accurate
quantum-chemical methods for computing the reward are
required to describe hydrogen bonds to chemical accuracy.
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Figure 13. Average offline performances across 10 seeds on the
solvation task with n = 5 and the initial states being acetonitrile
and ethanol. Error bars show two standard errors. The plot is
smoothed across five evaluations for better readability. The dashed
lines denote the optimal returns. A selection of molecular clusters
generated by trained models are shown in circles.

In Fig. 14, we compare the average offline performance of
two agents placing in total 10 H and 5 O atoms around a
formaldehyde molecule. One agent is given 5 H2O bags
consecutively following the protocol of the solvation task
as described in the main text, another is given a single
H10O5 bag. Their average offline performances are shown

in Fig. 14 in blue and red, respectively. It can be seen that
giving the agent 5 H2O bags one at a time instead of a single
H10O5 bag improves performance.
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Figure 14. Average offline performance for the solvation task with
n = 5 (blue) and placing atoms from a single H10O5 bag (red).
In both experiments, C0 is formaldehyde. Error bars show two
standard errors. The plot is smoothed across five evaluations for
better readability. The dashed line denotes the optimal return. A
selection of molecular clusters generated by models trained on the
H10O5 bag are shown in red solid circles; for comparison, a stable
configuration obtained through structure optimization is depicted
in a black dashed circle.

E.3. Generalization and Transfer Learning
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Figure 15. Average offline performance for agents A/B: trained
on bags A of size 6 and tested on bags B of size 8, B/B: trained
and tested on B, and A → B/B: trained on A for 96 000 steps,
and fine-tune and tested on B. See main text for more details.
Error bars show two standard deviations. The dashed line denotes
the optimal average return.

To assess the generalization capabilities of our agent when
faced with previously unseen bags, we train an agent on
bags A = {C2H2O2,C2H3N,C3H2O,C3N2O,CH3NO,
CH4O} of size 6 and test on bagsB = {C3H2O3,C3H4O,
C4H2O2,CH4N2O,C4N2O2,C5H2O} of size 8. As



shown in Fig. 15, the agent A/B achieves an average re-
turn of 1.79, which is approximately 88% of the optimal
return. In comparison, an agent trained and tested on B
(B/B) reaches an average return of 1.96 (or 0.97% of the
optimal return). We additionally train an agent on A for
96 000 steps, and then fine-tune and test on B. The agent
A→ B/B reaches the same performance as if trained from
scratch within 20 000 steps of fine-tuning, showing success-
ful transfer. We anticipate that training on more bags and
incorporating best practices from multi-task learning would
further improve performance.


