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Abstract

Great computational effort is invested in generat-
ing equilibrium states for molecular systems us-
ing, for example, Markov chain Monte Carlo. We
present a probabilistic model that generates statis-
tically independent samples for molecules from
their graph representations. Our model learns a
low-dimensional manifold that preserves the ge-
ometry of local atomic neighborhoods through a
principled learning representation that is based on
Euclidean distance geometry. In a new benchmark
for molecular conformation generation, we show
experimentally that our generative model achieves
state-of-the-art accuracy. Finally, we show how to
use our model as a proposal distribution in an im-
portance sampling scheme to compute molecular
properties.

1. Introduction
Over the last few years, many highly-effective deep learning
methods generating small molecules with desired proper-
ties (e.g., novel drugs) have emerged (Gómez-Bombarelli
et al., 2018; Segler et al., 2018; Dai et al., 2018; Jin et al.,
2018; Bradshaw et al., 2019a; Liu et al., 2018; You et al.,
2018; Bradshaw et al., 2019b). These methods operate
using graph representations of molecules in which nodes
and edges represent atoms and bonds, respectively. A rep-
resentation that is closer to the physical system is one in
which a molecule is described by its geometry or conforma-
tion. A conformation x of a molecule is defined by a set of
atoms {(εi, ri)}Nvi=1, whereNv is the number of atoms in the
molecule, εi ∈ {H,C,O, ...} is the chemical element of the
atom i, and ri ∈ R3 is its position in Cartesian coordinates.
Importantly, the relative positions of the atoms are restricted
by the bonds in the molecule and the angles between them.
Due to thermal fluctuations resulting in stretching of and
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Figure 1. Standard graph representation G of a molecule (left)
with a set of possible conformations {xi} (right). It is the goal of
this work to generate such conformations from the graph represen-
tation of a molecule. Conformations feature the same atom types
and bonds but the atoms are arranged differently in space. These
differences arise from rotations around and stretching of bonds in
the molecule. Hydrogen (H), carbon (C), and oxygen (O) atoms
are colored white, gray, and red, respectively.

rotations around bonds, there exist infinitely many confor-
mations of a molecule. A molecule’s graph representation
and a set of its conformations are shown in Fig. 1. Under
a wide range of conditions, the probability p(x) of a con-
formation x, is governed by the Boltzmann distribution and
is proportional to exp{−E(x)/kBT}, where E(x) is the
conformation’s energy, kB is the Boltzmann constant, and
T is the temperature.

To compute a molecular property for a molecule, one must
sample from p(x). The main approach is to start with one
conformation and make small changes to it over time, e.g.,
by using Markov chain Monte Carlo (MCMC) or molec-
ular dynamics (MD). These methods can be used to ac-
curately sample equilibrium states of molecules, but they
become computationally expensive for larger ones (Shim
& MacKerell, 2011; Ballard et al., 2015; De Vivo et al.,
2016). Other heuristic approaches exist in which distances
between atoms are set to fixed idealized values (Havel, 2002;
Blaney & Dixon, 2007). Several methods based on statis-
tical learning have also recently been developed to tackle
the issue of conformation generation. However, they are
mainly geared towards studying proteins and their folding
dynamics (AlQuraishi, 2019). Some of these models are
not targeting a distribution over conformations but the most
stable folded configuration, e.g. AlphaFold (Senior et al.,
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2020), while others are not transferable between different
molecules (Lemke & Peter, 2019; Noé et al., 2019).

This work includes the following key contributions:

• We introduce a novel probabilistic model for learning
conformational distributions of molecules with graph
neural networks.

• We create a new, challenging benchmark for conforma-
tion generation, which is made publicly available. To
the best of our knowledge, this is the first benchmark
of this kind.

• By combining a conditional variational autoencoder
(CVAE) with an Euclidean distance geometry (EDG)
algorithm we present a state-of-the-art approach for
generating one-shot samples of molecular conforma-
tions for unseen molecules that is independent of their
size and shape.

• We develop a rigorous experimental approach for eval-
uating and comparing the accuracy of conformation
generation methods based on the mean maximum devi-
ation distance metric.

• We show how this generative model can be used as a
proposal distribution in an importance sampling (IS)
scheme to estimate molecular properties.

2. Method
Our goal is to build a statistical model that generates molec-
ular conformations in a one-shot fashion from a molecule’s
graph representation. First, we describe how a molecule’s
conformation can be represented by a set of pairwise dis-
tances between atoms and why this presentation is advan-
tageous over one in Cartesian coordinates (Section 2.1).
Second, we present a generative model in Section 2.2 that
will generate sets of atomic distances for a given molecu-
lar graph. Third, we explain in Section 2.3 how a set of
predicted distances can be transformed into a molecular con-
formation and why this transformation is necessary. Finally,
we detail in Section 2.4 how our generative model can be
used as a proposal distribution in an IS scheme to estimate
molecular properties.

2.1. Extended Molecular Graphs and Distance
Geometry

In this study, a molecule is represented by an undirected
graph which is defined as a tupleG = (V,E). V = {vi}Nvi=1

is the set of nodes representing atoms, where each vi ∈ RFv
holds atomic attributes (e.g., the element type εi). E =
{(ek, rk, sk)}Nek=1 is the set of edges, where each ek ∈ RFe
holds an edge’s attributes (e.g., the bond type), and rk and

sk are the nodes an edge is connecting. Here, E represents
the molecular bonds in the molecule.

We assume that, given a molecular graph G, one can repre-
sent one of its conformations x by a set of atomic distances
d = {dk}Nek=1, where dk = |rrk − rsk | is the Euclidean
distance between the positions of the atoms rk and sk in
this conformation. As the set of edges between the bonded
atoms (Ebond) alone would not suffice to describe a confor-
mation, we expand the traditional graph representation of a
molecule by adding auxiliary edges to obtain an extended
graph G. Auxiliary edges between atoms that are second
neighbors in the original graph G fix angles between atoms,
and those between third neighbors fix dihedral angles (de-
noted Eangle and Edihedral, respectively). In this work, Eangle
are added between nodes in G which are second neighbors
in G. After all Eangle have been added, additional edges
are added to G from a node v to a randomly chosen third
neighbor of v in G if v has less then three neighbors in
G. Therefore, a graph G can give rise to multiple different
extend graphs G. In Fig. 2, the process of extending the
molecular graph and the extraction of d from x and G are
illustrated.

A key advantage of a representation in terms of distances
is its invariance to rotation and translation; by contrast,
Cartesian coordinates depend on the (arbitrary) choice of
origin, for example. In addition, it reflects pair-wise physical
interactions and their generally local nature. Auxiliary edges
can be placed between higher-order neighbors depending on
how far the physical interactions dominating the potential
energy of the system reach.

We have a set of NG pairs, {Gi, xi}NGi=1, consisting of a
molecular graph and a conformation. With the protocol
described above, we convert each pair into a pair of an
extended molecular graph together with a set of distances
d to obtain {Gi,di}NGi=1. With this data, we will train a
generative model which we detail in the following section.

2.2. Generative Model

We employ a CVAE (Kingma & Welling, 2014; Pagnoni
et al., 2018) to model the distribution over distances d given
a molecular graph G. A CVAE first encodes G together with
d into a latent space z ∈ RkNv , where k ∈ N+, with an
encoder qφ(z|d,G). Subsequently, the decoder pθ(d|z,G)
decodes z back into a set of distances. A graphical model is
shown in Fig. 2, C.

A conformation has, in general, 3Nv − 6 spatial degrees of
freedom (dofs): one dof per spacial dimension per atom mi-
nus three translational and three rotational dofs. Therefore,
the latent space should be proportional to the number of
atoms in the molecule. In addition, the latent space should
be smaller than 3Nv as it is the role of the encoder to project
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Figure 2. A) The structural formula of a molecule G is converted to an extended molecular graph G consisting of nodes representing
atoms (circles, e.g., v1) and edges representing molecular bonds (solid lines, e.g., e1 ∈ Ebond) and auxiliary edges (dotted lines, e.g.,
e2 ∈ Eangle and e3 ∈ Edihedral). B) The distances d are extracted from a conformation x based on the edges E. C) Graphical model of the
variational autoencoder: generative model pθ(d|z,G)pθ(z|G) (solid lines) and variational approximation qφ(z|d,G) (dashed lines).

the conformation into a lower-dimensional space. As a
result, we set k = 1.1

Here, qφ(z|d,G) and pθ(d|z,G) are Gaussian distributions,
the mean and variance of which are modeled by two ar-
tificial neural networks. At the center of this model are
message-passing neural networks (MPNNs) (Gilmer et al.,
2017). In short, an MPNN is a convolutional neural net-
work that allows end-to-end learning of prediction pipelines
whose inputs are graphs of arbitrary size and shape. In a
convolution, neighboring nodes exchange so-called mes-
sages between neighbors to update their attributes. Edges
update their attributes with the features of the nodes they
are connecting. The MPNN is a well-studied technique
that achieves state-of-the-art performance in representation
learning for molecules (Kipf & Welling, 2017; Duvenaud
et al., 2015; Kearnes et al., 2016; Schütt et al., 2017b; Gilmer
et al., 2017; Kusner et al., 2017; Bradshaw et al., 2019a).

In the following, we describe the details of the mode
which is illustrated in Fig. 3.2 In the encoder qφ(z|d,G),
each dk is concatenated with the respective edge fea-
ture ek to give e′k ∈ RFe+1. Then, each vi and
each e′k are passed to Fenc,v and Fenc,e (two multilayer
perceptrons, MLPs), respectively, to give G(0)enc , where
G(t)enc = ({v(t)i,enc}

Nv
i=1, {(e

(t)
k,enc, rk, sk)}

Ne
k=1), v

(t)
i,enc ∈ RLv ,

and e(t)k,enc ∈ RLe . Then, T MPNNs of depth 1, {MP(t)
enc}Tt=1,

are consecutively applied to obtain G(T )
enc . Finally, the read-

out function Renc (an MLP) takes each v(T )
i, enc to predict the

mean µzi ∈ R and the variance σ2
zi ∈ R of the Gaussian

distribution for zi. The so-called reparametrization trick is
employed to draw a sample for zi. In summary,

v
(0)
i,enc = Fenc,v(vi), e

(0)
k,enc = Fenc,e(e

′
i), (1)

1Experiments showed that our model performs similarly well
with a latent space of R2Nv and R3Nv . We chose to use k = 1 for
simplicity.

2The model is available online https://github.com/
gncs/graphdg

G(t+1)
enc = MP(t)

enc(G(t)enc), (2)

µzi , σ
2
zi = Renc(v

(T )
i,enc). (3)

In the decoder pθ(d|z,G), each zi is concatenated with
the respective node feature vi to give v′i ∈ RFv+1.
Each v′i and each ek are passed to Fdec,v and Fdec,e

(two MLPs), respectively, to give G(0)dec , where G(t)dec =

({v(t)i,dec}
Nv
i=1, {(e

(t)
k,dec, rk, sk)}

Ne
k=1), v

(t)
i,dec ∈ RLv , and

e
(t)
k,dec ∈ RLe . Then, T MPNNs of depth 1, {MP(t)

dec}Tt=1,

are consecutively applied to obtain G(T )
dec . Finally, the read-

out function Rdec (an MLP) takes each e(T )
k, dec to predict the

mean µdk ∈ R and the variance σ2
dk
∈ R of the Gaussian

distribution for dk. In summary,

v
(0)
i,dec = Fdec,v(v

′
i), e

(0)
k,dec = Fdec,e(ei), (4)

G(t+1)
dec = MP(t)

dec(G
(t)
dec), (5)

µdk , σ
2
dk

= Rdec(e
(T )
k,dec). (6)

The sets of parameters in the encoder and decoder, φ and θ
(i.e., parameters in Fenc,v, Fenc,e, {MP(t)

enc}Tt=1, Renc, Fdec,v,
Fdec,e, {MP(t)

dec}Tt=1, Rdec), respectively, are optimized by
maximizing the evidence lower bound (ELBO):

L = Ez∼qφ(z|d,G)[log pθ(d|z,G)]
−DKL[qφ(z|d,G)||pθ(z|G)],

(7)

where the prior pθ(z|G) consists of factorized standard Gaus-
sians. The optimal values for the hyperparameters for the
network dimensions, number of message passes, batch size,
and learning rate of the Adam optimizer (Kingma & Ba,
2014) were manually tuned by maximizing the validation
performance (ELBO) and are reported in the Appendix.

2.3. Conformation Generation through Euclidean
Distance Geometry

To compute molecular properties, quantum-chemical meth-
ods need to be employed which require the input, i.e., the

https://github.com/gncs/graphdg
https://github.com/gncs/graphdg
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Figure 3. The molecular graph G together with the distances d are passed through the model consisting of an encoder qφ(z|d,G) and a
decoder pθ(d|z,G). See Section 2.2 for details.

molecule, to be in Cartesian coordinates.3 Therefore, we use
an EDG algorithm to translate the set of distances {dk}Nek=1

to a set of atomic coordinates {ri}Nvi=1.4

EDG is the mathematical basis for a geometric theory of
molecular conformation. In the field of machine learning,
Weinberger & Saul (2006) used it for learning image man-
ifolds, Tenenbaum et al. (2000) for image understanding
and handwriting recognition, Jain & Saul (2004) for speech
and music, and Demaine et al. (2009) for music and musi-
cal rhythms. An EDG description of a molecular system
consists of a list of lower and upper bounds on the dis-
tances between pairs of atoms {(dk,min, dk,max)}Nek=1. Here,
pθ(d|z,G) is used to model these bounds, namely, we set
the bounds to {(µdk − σdk , µdk + σdk)}, where µdk and
σdk are the mean and standard deviation for each distance
dk given by the CVAE. Then, an EDG algorithm determines
a set of Cartesian coordinates {ri}Nvi=1 so that these bounds
are fulfilled (see the Appendix for details).5 Together with
the corresponding chemical elements {εi}Nvi=1, we obtain a
conformation x.

2.4. Calculation of Molecular Properties

We can get an MC estimate of the expectation E[O] of a
property O (e.g., the dipole moment) for a molecule rep-

3Even though quantum-chemical methods require the input
to be in Cartesian coordinates, calculated properties, such as the
energy, are invariant under translation and rotation.

4There are additional constraints due to chirality. However,
since they are given by G and are fixed, they are not modeled by
our method.

5Often there exist multiple solutions for the same set of bounds.
As the bounds are generally tight, the solutions are very similar.
Therefore, we only generate one set of coordinates per set of
bounds.

resented by G by generating an extended graph G, draw-
ing conformational samples xi ∼ p(x|G), and comput-
ing O(xi) ∈ R with a quantum-chemical method (e.g.,
density functional theory). Since we cannot draw sam-
ples from p(x|G) directly, we employ an IS integration
scheme (Bishop, 2009) with our CVAE as the proposal
distribution. We assume that we can readily evaluate the
unnormalized probability of a conformation p̃(x|G) =
exp{−E(x)/kBT}, where x must be a conformation of
the molecule and the energy E(x) is determined with
a quantum-chemical method. Since the EDG algorithm
is mapping the distribution pθ(d|z,G) to a point mass
in R3Nv , the MC estimate for the resulting distribution
pprop(x|G) is approximated by a mixture of delta functions,
each of which is centered at the xi resulting from map-
ping pθ(d|zi,G) to R3Nv , where zi ∼ pθ(z|G), that is,
pprop(x|G) ≈ 1

N

∑N
i=1 δ(x− xi). The IS estimator for the

expectation of O w. r. t. p̃(x|G) then reads

ÊG [O]
MC
≈ 1

N

N∑
i=1

O(xi)
IS
=

1

N

N∑
i=1

O(x′i)
p̃(x′i|G)

pprop(x′i|G)
,

(8)
where xi ∼ p̃(xi|G) and x′i ∼ pprop(x

′
i|G), so that the

expectation of O w. r. t. the normalized version of p̃(x) is
then

EG [O] =
ÊG [O]
ÊG [1]

≈ 1

Z

N∑
i=1

O(xi)p̃(x′i|G), (9)

where ÊG [1] is the expectation of an operator that returns 1
for every conformation x, Z ≈

∑N
i=1 p̃(x

′
i | G), and N is

the number of samples. When dividing two delta functions
we have assumed that they take some arbitrarily large finite
value.
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3. Related Works
The standard approach for generating molecular conforma-
tions is to start with one, and make small changes to it over
time, e.g., by using MCMC or MD. These methods are con-
sidered the gold standard for sampling equilibrium states,
but they are computationally expensive, especially if the
molecule is large and the Hamiltonian is based on quantum-
mechanical principles (Shim & MacKerell, 2011; Ballard
et al., 2015; De Vivo et al., 2016).

A much faster but more approximate approach for confor-
mation generation is EDG (Havel, 2002; Blaney & Dixon,
2007; Lagorce et al., 2009; Riniker & Landrum, 2015).
Lower and upper distance bounds for pairs of atoms in
a molecule are fixed values based on ideal bond lengths,
bond angles, and torsional angles. These values are often ex-
tracted from crystal structure databases (Allen, 2002). These
methods aim to produce a low-energy conformation, not to
generate unbiased samples from the underlying distribution
at a certain temperature.

There exist several machine learning approaches as well,
however, they are mostly tailored towards studying protein
dynamics. For example, Noé et al. (2019) trained Boltzmann
generators on the energy function of proteins to provide un-
biased, one-shot samples from their equilibrium states. This
is achieved by training an invertible neural network to learn
a coordinate transformation from a system’s configurations
to a latent space representation. Further, Lemke & Peter
(2019) proposed a dimensionality reduction algorithm that
is based on a neural network autoencoder in combination
with a nonlinear distance metric to generate samples for
protein structures. Both models learn protein-specific coor-
dinate transformations that cannot be transferred to other
molecules.

AlQuraishi (2019) introduced an end-to-end differentiable
recurrent geometric network for protein structure learning
based on amino acid sequences. Also, Ingraham et al. (2019)
proposed a neural energy simulator model for protein struc-
ture that makes use of protein sequence information. Re-
cently, Senior et al. (2020) significantly advanced the field
of protein-structure prediction with a new model called Al-
phaFold. In contrast to amino acid sequences, molecular
graphs are, in general, not linear but highly branched and of-
ten contain cycles. This makes these approaches unsuitable
for general molecules.

Finally, Mansimov et al. (2019) presented a conditional
deep generative graph neural network to generate molecular
conformations given a molecular graph. Their goal is to pre-
dict the most likely conformation and not a distribution over
conformations. Instead of encoding molecular environments
in atomic distances, they work directly in Cartesian coor-
dinates. As a result, the generated conformations showed

significant structural differences compared to the ground-
truth and required refinement through a force field, which is
often employed in MD simulations.

We argue that our model has several advantages over the
approaches reviewed above:

• It is a fast alternative to resource-intensive approaches
based on MCMC or MD.

• Our principled representation based on pair-wise dis-
tances does not restrict our approach to any particular
molecular structure.

• Our model is, in principle, transferable to unseen
molecules.

4. The CONF17 Benchmark
The CONF17 benchmark is the first benchmark for molec-
ular conformation sampling.6 It is based on the ISO17
dataset (Schütt et al., 2017a) which consists of conforma-
tions of various molecules with the atomic composition
C7H10O2 drawn from the QM9 dataset (Ramakrishnan
et al., 2014). These conformations were generated by ab ini-
tio molecular dynamics simulations at 500 Kelvin. From the
ISO17 dataset, 430692 valid molecular graph-conformation
pairs could be extracted and 197 unique molecular graphs
could be identified. We split the dataset into training and
test sets such that no molecular graph in the training set can
be found in the test or vice versa. Training and test splits
consist of 176 and 30 unique molecular graphs, respectively
(see Appendix A for details).

In Fig. 4, A, the structural formulae of a random selection of
molecules from this benchmark are shown. Most molecules
feature highly-strained, complex 3D structures such as rings
which are typical of drug-like molecules. It is thus the
structural complexity of the molecules, not their number of
degrees of freedom, that makes this benchmark challenging.
In Fig. 4, B–D, the frequency of distances (in Å) in the
conformations are shown for each edge type. It can be seen
that the marginal distributions of the edge distances are
multimodal and highly context-dependent.

5. Experiments
We assess the performance of our method, named Graph
Distance Geometry (GRAPHDG), by comparing it with two
state-of-the-art methods for molecular conformation gen-
eration: RDKIT (Riniker & Landrum, 2015), a classical
EDG approach, and DL4CHEM (Mansimov et al., 2019),

6Datasets such as the one published by Kanal et al. (2018) only
include conformers, i.e., the stable conformations of a molecule,
and not a distribution over conformations.
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Figure 4. Overview of the CONF17 benchmark. A: Structural
formulae of a random selection of molecules. B–D: Distribution
of distances (in Å) grouped by edge (B: Ebond, C: Eangle, and D:
Edihedral) and vertex type (chemical element).

a machine learning approach. We trained GRAPHDG and
DL4CHEM on three different training and test splits of the
CONF17 benchmark using Adam (Kingma & Ba, 2014). We
generated 100 conformations with each method for molecu-
lar graphs in a test set.

5.1. Distributions Over Distances

We assessed the accuracy of the distance distributions of
RDKIT, DL4CHEM, and GRAPHDG by calculating the
maximum mean discrepancy (MMD) (Gretton et al., 2012)
to the ground-truth distribution. In particular, we compute
the MMD using a Gaussian kernel, where we set the stan-
dard deviation to be the median distance between distances
d in the aggregate sample. For this, we determined the dis-
tances in the conformations from the ground-truth and those
generated by RDKIT, DL4CHEM, and GRAPHDG. For
each train-test split and each G in a test set, we compute the
MMD of the joint distribution of distances between C and O
atoms p({dk}|G) (H atoms are usually ignored), the MMDs
of pair-wise distances p(di, dj |G), and the MMDs between
the marginals of individual distances p(di|G). We aggregate
the results of three train-test splits, and, finally, compute
the median MMDs and average rankings. The results are

summarized in Table 1. It can be seen that the samples from
GRAPHDG are significantly closer to the ground-truth dis-
tribution than the other methods. RDKIT is slightly worse
than GRAPHDG while DL4CHEM seems to struggle with
the complexity of the molecules and the small number of
graphs in the training set.

In Fig. 5, we showcase the accuracy of our model by plotting
the marginal distributions p(di|G) for distances between C
and O atoms, given a molecular graph from a test set. It
can be seen that RDKIT consistently underestimates the
marginal variances. This is because this method aims to
predict the most stable conformation, i.e., the distribution’s
mode. In contrast, DL4CHEM often fails to predict the
correct mean. For this molecule, GRAPHDG is the most
accurate, predicting the right mean and variance in most
cases. Additional figures can be found in the Appendix,
where we also show plots for the marginal distributions
p(di, dj |G).

5.2. Generation of Conformations

We passed the distances from our generative model to an
EDG algorithm to obtain conformations. For 99.9% of the
sets of distances, all triangle inequalities held. For 83% of
the molecular graphs, the algorithm succeeded which is 7 pp
higher than the success rate we observed for RDKIT. For
each molecular graph in a test set, we generated 50 confor-
mations with each method. This took DL4CHEM, RDKIT,
and GRAPHDG on average around hundreds of millisec-
onds per molecule.7 In contrast, a single conformation in
the ISO17 dataset takes around a minute to compute.

To assess the approximations made in the IS scheme, we
studied the overlap between p(d|z,G) for a given G and
different samples of z. We found experimentally that for 50
samples the overlap between the distributions is small. This
finding can be explained by the high dimensionality of d
which is on average ≈ 60.

In Fig. 6, an overlay of these conformations of six molecules
generated by the different methods is shown. It can be seen
that RDKIT’s conformations show too little variance, while
DL4CHEM’s structures are mostly invalid, which is due in
part to its failure to predict the correct interatomic angles.
Our method slightly overestimates the structural variance
(see, for example, Fig. 6, top row, second column), but
produces conformations that are the closest to the ground-
truth.

5.3. Calculation of Molecular Properties

We estimate expected molecular properties for molecular
graphs from the test set with N = 50 conformational sam-

7All simulations were carried out on a computer equipped with
an i7-3820 CPU and a GeForce GTX 1080 Ti GPU.
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Table 1. Assessment of the accuracy of the distributions over conformations generated by three models compared to the ground-truth. We
compare the distributions with respect to the marginals p(dk|G), p(dk, dl|G), and the distribution over all edges between C and O atoms
p({dk}|G). Two different metrics are used: median MMD between ground-truth conformations and generated ones, and mean ranking (1
to 3) based on the MMD. Reported are the results for molecular graphs in a test set from three train-test splits. Standard deviations are
given in brackets.

Median MMD Mean Ranking
RDKIT DL4CHEM GRAPHDG RDKIT DL4CHEM GRAPHDG

p(dk|G) 0.37 (0.23) 1.11 (0.25) 0.13 (0.13) 1.98 (0.44) 2.90 (0.35) 1.12 (0.33)
p(dk, dl|G) 0.47 (0.18) 1.12 (0.15) 0.14 (0.11) 1.95 (0.29) 2.98 (0.13) 1.07 (0.26)
p({dk}|G) 0.57 (0.11) 1.03 (0.13) 0.19 (0.08) 2.00 (0.00) 3.00 (0.00) 1.00 (0.00)
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Table 2. Median difference in average properties between ground-
truth and RDKIT and GRAPHDG: total electronic energy Eelec

(in kJ/mol), the energy of the HOMO and the LUMO εHOMO and
εLUMO, respectively (in eV), and the dipole moment µ (in debye).
Reported are the results for molecular graphs from the test set,
averaged over three train-test splits. Standard errors are given in
brackets.

RDKIT GRAPHDG

Eelec 42.7 (4.3) 58.0 (21.0)
εHOMO 0.08 (0.04) 0.10 (0.05)
εLUMO 0.15 (0.03) 0.09 (0.05)
µ 0.29 (0.05) 0.33 (0.09)

ples each. Due to their poor quality, we could not compute
properties O(x), including the energy E(x), for conforma-
tions generated with DL4CHEM, and thus, this method is
excluded from this analysis. In Table 2, it can be seen that
RDKIT and GRAPHDG perform similarly well (computa-
tional details can be found in the Appendix). However, both
methods are still highly inaccurate for Eelec (in practice, an
accuracy of less than 5 kJ/mol is required). Close inspection
of the conformations shows that, even though GRAPHDG
predicts the most accurate distances overall, the variances
of certain strongly constrained distances (e.g., triple bonds)
are overestimated so that the energies of the conformations
increase drastically.

6. Limitations
The first limitation of this work is that the CVAE can sample
invalid sets of distances for which there exists no 3D struc-
ture. Second, the CONF17 benchmark covers only a small
portion of chemical space. Finally, a large set of auxiliary
edges would be required to capture long-range correlations
(e.g., in proteins). Future work will address these points.

7. Conclusions
We presented GRAPHDG, a transferable, generative model
that allows sampling from a distribution over molecular con-
formations. We developed a principled learning represen-
tation of conformations that is based on distances between
atoms. Then, we proposed a challenging benchmark for
comparing molecular conformation generators. With this
benchmark, we show experimentally that conformations
generated by GRAPHDG are closer to the ground-truth than
those generated by other methods. Finally, we employ our
model as a proposal distribution in an IS integration scheme
to estimate molecular properties. While orbital energies and
the dipole moments were predicted well, a larger and more
diverse dataset will be necessary for meaningful estimates
of electronic energies. Further, methods have to be devised

to estimate how many conformations need to be generated
to ensure all important conformations have been sampled.
Finally, our model could be trained on conformational distri-
butions at different temperatures in a transfer learning-type
setting.
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