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Abstract
We consider the problem of online adaptive con-
trol of the linear quadratic regulator, where the
true system parameters are unknown. We prove
new upper and lower bounds demonstrating that
the optimal regret scales as Θ̃(

√
d2

udxT ), where
T is the number of time steps, du is the dimension
of the input space, and dx is the dimension of the
system state. Notably, our lower bounds rule out
the possibility of a poly(log T )-regret algorithm,
which had been conjectured due to the apparent
strong convexity of the problem. Our upper bound
is attained by a simple variant of certainty equiv-
alent control, where the learner selects control
inputs according to the optimal controller for their
estimate of the system while injecting exploratory
random noise (Mania et al., 2019).

Central to our upper and lower bounds is a new
approach for controlling perturbations of Riccati
equations called the self-bounding ODE method,
which we use to derive suboptimality bounds
for the certainty equivalent controller synthesized
from estimated system dynamics. This in turn en-
ables regret upper bounds which hold for any sta-
bilizable instance and scale with natural control-
theoretic quantities.

1. Introduction
Reinforcement learning has recently achieved great success
in application domains including Atari (Mnih et al., 2015),
Go (Silver et al., 2016), and robotics (Lillicrap et al., 2015).
All of these breakthroughs leverage data-driven methods
for continuous control in large state spaces. Their success,
along with challenges in deploying RL in the real world, has
led to renewed interest on developing continuous control
algorithms with improved reliability and sample efficiency.
In particular, on the theoretical side, there has been a push to
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develop a non-asymptotic theory of data-driven continuous
control, with an emphasis on understanding key algorithmic
principles and fundamental limits.

In the non-asymptotic theory of reinforcement learning,
much attention has been focused on the so-called “tabular”
setting where states and actions are discrete, and the optimal
rates for this setting are by now relatively well-understood
(Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al.,
2017). Theoretical results for continuous control setting
have been more elusive, with progress spread across var-
ious models (Kakade et al., 2003; Munos & Szepesvári,
2008; Jiang et al., 2017; Jin et al., 2020), but the linear-
quadratic regulator (LQR) problem has recently emerged as
a candidate for a standard benchmark for continuous control
and RL. For tabular reinforcement learning problems, it is
widely understood that careful exploration is essential for
sample efficiency. Recently, however, it was shown that
for the online variant of the LQR problem, relatively sim-
ple exploration strategies suffice to obtain the best-known
performance guarantees (Mania et al., 2019). In this paper,
we address a curious question raised by these results: Is so-
phisticated exploration helpful for LQR, or is linear control
in fact substantially easier than the general reinforcement
learning setting? More broadly, we aim to shed light on the
question:

To what extent to do sophisticated exploration
strategies improve learning in online

linear-quadratic control?

Is ε-Greedy Optimal for Online LQR? In the LQR
problem, the system state xt evolves according to

xt+1 = Axt +But + wt, where x1 = 0, (1.1)

and where ut ∈ Rdu is the learner’s control input, wt ∈
Rdx is a noise process drawn as wt

i.i.d.∼ N (0, I), and A ∈
Rdx×dx , B ∈ Rdx×du are unknown system matrices.

Initially the learner has no knowledge of the system dynam-
ics, and their goal is to repeatedly select control inputs and
observing states over T rounds so as to minimize their total
cost

∑T
t=1 c(xt,ut), where c(x, u) = x>Rxx + u>Ruu

is a known quadratic function. In the online variant of the
LQR problem, we measure performance via regret to the
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optimal linear controller:

RegretA,B,T [π] =

[
T∑
t=1

c(xt,ut)

]
− T min

K
JA,B [K],

(1.2)

where K is a linear state feedback policy and—letting
EA,B,K [·] denote expectation under this policy—where

JA,B [K] := lim
T→∞

1

T
EA,B,K

[
T∑
t=1

c(xt,ut)

]
,

is the average infinite-horizon cost of K, which is finite as
long as K is stabilizing in the sense that ρ(A+BK) < 1,
where ρ(·) denotes the spectral radius.1 We further define
J ?A,B := minK JA,B [K].

This setting has enjoyed substantial development beginning
with the work of (Abbasi-Yadkori & Szepesvári, 2011), and
following a line of successive improvements (Dean et al.,
2018; Faradonbeh et al., 2018a; Cohen et al., 2019; Mania
et al., 2019), the best known algorithms for online LQR
have regret scaling as

√
T .

We investigate a question that has emerged from this re-
search: The role of exploration in linear control. The first ap-
proach in this line of work, (Abbasi-Yadkori & Szepesvári,
2011), proposed a sophisticated though computationally
inefficient strategy based on optimism in the face of un-
certainty, upon which (Cohen et al., 2019) improved to
ensure optimal

√
T -regret and polynomial runtime. Another

approach which enjoys
√
T -regret, due to (Mania et al.,

2019), employs a variant of the classical ε-greedy explo-
ration strategy (Sutton & Barto, 2018) known in control
literature as certainty equivalence: At each timestep, the
learner computes the greedy policy for the current estimate
of the system dynamics, then follows this policy, adding
exploration noise proportional to ε. While appealing in its
simplicity, ε-greedy has severe drawbacks for general re-
inforcement learning problems: For tabular RL, it leads to
exponential blowup in the time horizon (Kearns et al., 2000),
and for multi-armed bandits, bandit linear optimization, and
contextual bandits, it leads to suboptimal dependence on the
time horizon T (Langford & Zhang, 2007).

This begs the question: Can we improve beyond
√
T regret

for online LQR using more sophisticated exploration strate-
gies? Or is exploration in LQR simply much easier than in
general reinforcement learning settings? One natural hope
would be to achieve logarithmic (i.e. poly(log T )) regret.
After all, online LQR has strongly convex loss functions,
and this is a sufficient condition for logarithmic regret in
many simpler online learning and optimization problems

1For potentially asymmetric matrix A ∈ Rd×d, ρ(A) :=
max{|λ| | λ is an eigenvalue for A}.

(Vovk, 2001; Hazan et al., 2007; Rakhlin & Sridharan, 2014),
as well as LQR with known dynamics but potentially chang-
ing costs (Agarwal et al., 2019b). More subtly, the

√
T

online LQR regret bound of (Mania et al., 2019) requires
that the pair (A?, B?) be controllable;2 it was not known if
naive exploration attains this rate for arbitrary stabilizable
problem instances, or if it necessarily leverages controllabil-
ity to ensure its efficiency.

1.1. Contributions

We prove new upper and lower bounds which characterize
the minimax optimal regret for online LQR as Θ̃(

√
d2

udxT ).
Beyond dependence on the horizon T , dimensions dx, du,
and logarithmic factors, our bounds depend only on operator
norms of transparent, control theoretic quantities, which do
not hide additional dimension dependence. Our main lower
bound is Theorem 1, which implies that no algorithm can
improve upon

√
T regret for online LQR, and so simple

ε-greedy exploration is indeed rate-optimal.
Theorem 1 (informal). For every sufficiently non-
degenerate problem instance and every (potentially random-
ized) algorithm, there exists a nearby problem instance on
which the algorithm must suffer regret at least Ω̃(

√
d2

udxT ).

Perhaps more surprisingly, our main upper bound shows that
a simple variant of certainty equivalence is also dimension-
optimal, in that it asymptotically matches the

√
d2

udxT
lower bound of Theorem 1.
Theorem 2 (informal). Certainty equivalent control with
continual ε-greedy exploration (Algorithm 1) has regret at
most Õ

(√
d2

udxT + d2
x

)
for every stabilizable online LQR

instance.

Our upper bound does not require controllability, and is the
first bound for any algorithm to attain the optimal dimension
dependence. In comparison, result of (Mania et al., 2019)
guarantees

√
(dx + du)3T regret and imposes strong ad-

ditional assumptions. In the many control settings where
du � dx, our bound constitutes a significant improvement.
Other approaches not based on certainty equivalence suffer
considerably larger dimension dependence (Cohen et al.,
2019). Together, Theorem 1 and Theorem 2 characterize the
asymptotic minimax regret for online LQR, showing that
there is little room for improvement over naive exploration.

Our results leverage a new perturbation bound for con-
trollers synthesized via certainty equivalence. Unlike prior
bounds due to (Mania et al., 2019), our guarantee depends

2(A?, B?) are said to be controllable if and only the control-
lability Gramian CnC>n :=

∑n
i=0A

i
?B?B

>
? (Ai

?)> is strictly pos-
itive definite for some n ≥ 0. For any n for which Cn � 0,
the upper bounds of (Mania et al., 2019) scale polynomially in
n, 1/λmin(CnC>n ). Controllability implies stabilizability, but the
converse is not true.
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only on natural control-theoretic quantities, and crucially
does not require controllability of the system.

Theorem 3 (informal). Fix an instance (A,B). Let (Â, B̂),
and let K̂ denote the optimal infinite horizon controller from
instance (Â, B̂). Then if (Â, B̂) are sufficiently close to
(A,B), we have

JA,B [K̂]− J ?A,B ≤ 142‖P‖8op · (‖Â−A‖2F + ‖B̂ −B‖2F),

where P is the solution to the DARE for the system (A,B).

For simplicity, the bound above assumes the various normal-
ization conditions on the noise and cost matrices, described
in Section 1.4. With these conditions, our perturbation
bound only requires that the operator norm distance between
(Â, B̂) and (A,B) be at most 1/poly(‖P‖op). Hence, we
establish perturbation bounds for which both the scaling
of the deviation and the region in which the bound applies
can be quantified in terms of a single quantity: the norm of
DARE solution P . We prove this bound through a new tech-
nique we term the Self-Bounding ODE method, described
below. Beyond removing the requirement of controllability,
we believe this method is simpler and more transparent than
past approaches.

1.2. Our Approach

Both our lower and upper bounds are facilitated by the self-
bounding ODE method, a new technique for establishing
perturbation bounds for the Riccati equations that character-
ize the optimal value function and controller for LQR. The
method sharpens existening perturbation bounds, weakens
controllability and stability assumptions required by pre-
vious work (Dean et al., 2018; Faradonbeh et al., 2018a;
Cohen et al., 2019; Mania et al., 2019), and yields an up-
per bound whose leading terms depend only on the horizon
T , dimension parameters dx, du, and the control-theoretic
parameters sketched in the prequel.

In more detail, if (A,B) is stabilizable and Rx, Ru � 0,
there exists a unique PSD solution P∞(A,B) for the dis-
crete algebraic Riccati equation (DARE),

P = A>PA+Rx

−A>PB(Ru +B>PB)−1B>PA (1.3)

The unique optimal infinite-horizon controller is given by

K∞(A,B) = −(Ru+B>P∞(A,B)B)−1B>P∞(A,B)A,

and the matrix P∞(A,B) induces a positive definite
quadratic form which can be interpreted as a value func-
tion for the LQR problem.

Both our upper and lower bounds make use of novel pertur-
bation bounds to control the change in P∞ and K∞ when

we move from a nominal instance (A,B) to a nearby in-
stance (Â, B̂). For our upper bound, these are used to show
that a good estimator for the nominal instance leads to a
good controller, while for our lower bounds, they show that
the converse is true. The self-bounding ODE method al-
lows us to prove perturbation guarantees that depend only
on the norm of the value function ‖P∞(A,B)‖op for the
nominal instance, which is a weaker assumption that sub-
sumes previous conditions. The key observation underpin-
ning the method is that the norm of the directional deriva-
tive of d

dtP∞(A(t), B(t))
∣∣
t=u

at a point t = u along a
line (A(t), B(t)) is bounded in terms of the magnitude of
‖P∞(A(u), B(u))‖; we call this the self-bounding property.
From this relation, we show that bounding the norm of the
derivatives reduces to solving a scalar ordinary differential
equation, whose derivative saturates the scalar analogue of
this self-bounding property. Notably, this technique does not
require that the system be controllable, and in particular does
not yield guarantees which depend on the smallest singular
value of the controllability matrix as in (Mania et al., 2019).
Moreover, given estimates (Â, B̂) and an upper-bound on
their deviation from the true system (A?, B?), our bound
allows the learner to check whether the certainty-equivalent
controller synthesized from Â, B̂ stabilizes the true system
and satisfies the preconditions for our perturbation bounds.

On the lower bound side, we begin with a nominal in-
stance (A0, B0) and consider a packing of alternative in-
stances within a small neighborhood. Specifically, if K0 is
the optimal controller for (A0, B0), we consider perturba-
tions of the form (A∆, B∆) = (A0 − ∆K0, B0 + ∆) for
∆ ∈ Rdudx . The self-bounding ODE method facilitates a
perturbation analysis which implies that the optimal con-
troller K∆ on each alternative (A∆, B∆) deviates from K0

by ‖K0−K∆‖F ≥ Ω(‖∆‖F) for non-degenerate instances.
Using this reasoning, we show that any low-regret algorithm
can approximately recover the perturbation ∆.

On the other hand, if the learner selects inputs ut = K0xt
according to the optimal control policy for the nominal
instance, all alternatives are indistinguishable from the nom-
inal instance. Indeed, the structure of our perturbations
ensures that A∆ + B∆K0 = A0 + B0K0 for all choices
of ∆. Thus, since low regret implies identification of the
perturbation, any low regret learner must substantially de-
viate from the nominal controller K0. Equivalently, this
can be understood as a consequence of the fact that play-
ing ut = K0xt yields a degenerate covariance matrix for
the random variable (xt,ut), and thus some deviation from
K0 is required to ensure this covariance is full rank. The
regret scales proportionally to the deviation from K0, which
scales proportionally to the minimum eigenvalues of the
aforementioned covariance matrix, but the estimation error
rate scales as 1/T (the typical “fast rate”) times the inverse
of these eigenvalues. Balancing the tradeoffs leads to the
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“slow”
√
T lower bound. Crucially, our argument exploits

a fundamental tension between control and indentification
in linear systems, first described by Polderman (1986), and
summarized in Polderman (1989).

Our upper bound refines the certainty equivalent control
strategy proposed in (Mania et al., 2019) by re-estimating
the system parameters on a doubling epoch schedule to
advantage of the endogenous excitation supplied by the wt-
sequence. A careful analysis of the least squares estimator
shows that the error in a dxdu-dimensional subspace decays
as O

(
1/
√
t
)
, and in the remaining d2

x dimensions decays
at a fast rate of O (1/t).

Related Work Non-asymptotic guarantees for learning
linear dynamical systems have been the subject of intense
recent interest (Dean et al.; Hazan et al., 2017; Tu & Recht,
2018; Hazan et al., 2018; Simchowitz et al., 2018; Sarkar &
Rakhlin, 2019; Simchowitz et al., 2019; Mania et al., 2019;
Sarkar et al., 2019). The online LQR setting we study was
introduced by (Abbasi-Yadkori & Szepesvári, 2011), which
considers the problem of controlling an unknown linear sys-
tem under stationary stochastic noise.3 They showed that
an algorithm based on the optimism in the face of uncer-
tainty (OFU) principle enjoys

√
T , but their algorithm is

computationally inefficient and their regret bound depends
exponentially on dimension. The problem was revisited by
(Dean et al., 2018), who showed that an explicit explore-
exploit scheme based on ε-greedy exploration and certainty
equivalence achieves T 2/3 regret efficiently, and left the
question of obtaining

√
T regret efficiently as an open prob-

lem. This issue was subsequently addressed by (Faradonbeh
et al., 2018a) and (Mania et al., 2019), who showed that
certainty equivalence obtains

√
T regret, and (Cohen et al.,

2019), who achieve
√
T regret using a semidefinite program-

ming relaxation for the OFU scheme. The regret bounds in
(Faradonbeh et al., 2018a) do not specify dimension depen-
dence, and (for dx ≥ du), the dimension scaling of (Cohen
et al., 2019) can be as large as

√
d16

x T ;4 (Mania et al., 2019)
incurs an almost-optimal dimension dependence of

√
d3

xT
(suboptimal when du � dx), but at the expense of imposing
a strong controllability assumption.

The question of whether regret for online LQR could be im-
proved further (for example, to log T ) remained open, and
was left as a conjecture by (Faradonbeh et al., 2018b). Our
lower bounds resolve this conjecture by showing that

√
T -

regret is optimal. Moreover, by refining the upper bounds of
(Mania et al., 2019), our results show that the asymptotically
optimal regret is Θ̃(

√
d2

udxT ), and that this achieved by cer-

3A more recent line of work studies a more general non-
stochastic noise regime (see (Agarwal et al., 2019a) et seq.), which
we do not consider in this work.

4The regret bound of (Cohen et al., 2019) scales as d3x
√
T ·

(J ?
A?,B?)5; typically, J ?

A?,B? scales linearly in dx

tainty equivalence. Beyond attaining the optimal dimension
dependence, our upper bounds also enjoy refined depen-
dence on problem parameters, and do not require a-priori
knowledge of these parameters.

Logarithmic regret bounds are ubiquitous in online learning
and optimization problems with strongly convex loss func-
tions (Vovk, 2001; Hazan et al., 2007; Rakhlin & Sridharan,
2014). (Agarwal et al., 2019b) demonstrate that for the prob-
lem of controlling an known linear dynamic system with
adversarially chosen, strongly convex costs, logarithmic re-
gret is also attainable. Our

√
T lower bound shows that

the situation for the online LQR with an unknown system
parallels that of bandit convex optimization, where (Shamir,
2013) showed that

√
T is optimal even for strongly con-

vex quadratics. That is, in spite of strong convexity of the
losses, issues of partial observability prevent fast rates in
both settings.

Our lower bound carefully exploits the online LQR problem
structure to show that

√
T is optimal. To obtain optimal

dimension dependence for the lower bound, we build on
well-known lower bound technique for adaptive sensing
based on Assouad’s lemma (Arias-Castro et al., 2012) (see
also (Assouad, 1983; Yu, 1997)).

Finally, a parallel line of research provides Bayesian and fre-
quentist regret bounds for online LQR based on Thompson
sampling (Ouyang et al., 2017; Abeille & Lazaric, 2017),
with (Abeille & Lazaric, 2018) demonstrating

√
T -regret

for the scalar setting. Unfortunately, Thompson sampling is
not computationally efficient for the LQR.

1.3. Organization

Section 1.4 introduces basic notation and definitions. Sec-
tion 2 introduces our main results: In Section 2.1 and Sec-
tion 2.2 we state our main lower and upper bounds respec-
tively and give an overview of the proof techniques, and in
Section 2.3 we instantiate and compare these bounds for the
simple special case of strongly stable systems. In Section 3
we introduce the self-bounding ODE method and show how
it is used to prove key perturbation bounds used in our main
results. All additional proofs and proof details are given
in the appendix, whose organization is described at length
in Appendix A. Future directions and open problems are
discussed in Section 4.

1.4. Preliminaries

Assumptions We restrict our attention stabilizable sys-
tems (A,B) for which there exists a stabilizing controller
K such that ρ(A + BK) < 1. Note that this does not re-
quire that the system be controllable. We further assume that
Ru = I and Rx � I . The first can be enforced by a change
of basis in input space, and the second can be enforced by
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rescaling the state space, increasing the regret by at most a
multiplicative factor of min {1, 1/σmin(Rx)}. We also as-
sume that the process noise wt has identity covariance. We
note that non-identity noise can be adressed via a change of
variables, and in Appendix I.8 we sketch extensions of our
results to (a) independent, sub-Gaussian noise with bounded
below covariance, and (b) more general martingale noise,
where we remark on how to achieve optimal rates in the
regime dx . d2

u.

Algorithm Protocol and Regret Formally, the learner’s
(potentially randomized) decision policy is modeled as a
sequence of mappings π = (πt)

T
t=1, where each function πt

maps the history (x1, . . . ,xt,u1, . . . ,ut−1) and an internal
random seed ξ to an output control signal ut. For a linear
system evolving according to Eq. (1.1) and policy π, we let
PA,B,π and EA,B,π [·] denote the probability and expecta-
tion with respect to the dynamics (1.1) and randomization
of π. For such a policy, we use the notation RegretA,B,T [π]
as in Eq. (1.2) for regret, which is a random variable with
law PA,B,π[·]. We prove high-probability upper bounds on
RegretA,B,T [π], and prove lower bounds on the expected
regret ERegretA,B,T [π] := EA,B,π[RegretA,B,T [π]].5

Additional Notation For vectors x ∈ Rd, ‖x‖ denotes
the `2 norm. For matrices X ∈ Rd1×d2 , ‖X‖op denotes
the spectral norm, and ‖X‖F the Frobenius norm. When
d1 ≤ d2, σ1(X), . . . , σd1(X) denote the singular values of
X , arranged in decreasing order. We say f . g to denote
that f(x) ≤ Cg(x) for a universal constant C, and f / g to
denote informal inequality. We write f h g if g . f . g.

For “starred” systems (A?, B?), we adopt the shorthand
P? := P∞(A?, B?), K? := K∞(A?, B?) for the opti-
mal controller, J? := J ?A?,B? := JA?,B? [K?] for optimal
cost, and Acl,? := A? +B?K? for the optimal closed loop
system. We define Ψ? := max{1, ‖A?‖op, ‖B?‖op} and
ΨB? := max{1, ‖B?‖op}. For systems (A0, B0), we let
Bop(ε;A0, B0) = {(A,B) | ‖A−A0‖op∨‖B −B0‖op ≤
ε} denote the set of nearby systems in operator norm.

2. Main Results
We now state our main upper and lower bounds for online
LQR and give a high-level overview of the proof techniques
behind both results. At the end of the section, we instantiate
and compare the two bounds for the simple special case of
strongly stable systems.

5One might consider as a stronger benchmark described the
expected loss of the optimal policy for fixed horizon T . A fortiori,
our lower bounds apply for this benchmark as well: In view of the
proof of Lemma F.3 in Appendix G.2, this benchmark differs from
T J ?

A,B by a constant factor which depends on (A,B) but does
not grow with T .

Both our upper and lower bounds start with the following
question: Suppose that the learner is selecting near opti-
mal control inputs ut ≈ K?xt, where K? = K∞(A?, B?)
is the optimal controller for the system (A?, B?). What
information can she glean about the system?

2.1. Lower Bound

We provide a local minimax lower bound, which captures
the difficulty of ensuring low regret on both a nominal in-
stance (A?, B?) and on the hardest nearby alternative. For
a distance parameter ε > 0, we define the local minimax
complexity at scale ε as

RA?,B?,T (ε) := min
π

max
A,B

{
ERegretA,B,T [π] :

‖A−A?‖2F ∨ ‖B −B?‖2F ≤ ε
}
.

Local minimax complexity captures the idea certain in-
stances (A?, B?) are more difficult than others, and allows
us to provide lower bounds that scale only with control-
theoretic parameters of the nominal instance. Of course, the
local minimax lower bound immediately implies a lower
bound on the global minimax complexity as well.6

Intuition Behind the Lower Bound. We show that if the
learner plays near-optimally on every instance in the neigh-
borhood of (A?, B?), then there is a dxdu-dimensional
subspace of system parameters that the learner must ex-
plore by deviating from K? when the underlying instance
is (A?, B?). Even though the system parameters can be
estimated at a fast rate, such deviations preclude logarithmic
regret.

In more detail, if the learner plays near-optimally, she is not
be able to distinguish between whether the instance she is
interacting with is (A?, B?), or another system of the form

(A,B) = (A? −K?∆, B? + ∆), (2.1)

for some perturbation ∆ ∈ Rdx×du . This is because all
the obsevations (xt,ut) generated by the optimal controller
lie in the subspace {(x, u) : u−K?x = 0}, and likewise
all observations generated by any near-optimal controller
approximately lie in this subspace. Since the learner cannot
distinguish between (A?, B?) and (A,B), she will also play
ut ≈ K?xt on (A,B). This leads to poor regret when the
instance is (A,B), since the optimal controller in this case
has ut = K∞(A,B)xt. This is made concrete by the next
lemma, which shows to a first-order approximation that if
∆ is large, the distance between K? and K∞(A,B) must
also be large.

6Some care must be taken in defining the global complexity, or
it may well be infinite. One sufficient definition, which captures
prior work, is to consider minimax regret over all instances subject
to a global bound on ‖P?‖, ‖B?‖, and so on.
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Lemma 2.1 (Derivative Computation (Abeille & Lazaric
(2018), Proposition 2)). Let (A?, B?) be stabilizable, and
recall Acl,? := A? +B?K?. Then,

d

dt
K∞(A? − t∆K?, B? + t∆)

∣∣
t=0

= −(Ru +B>? P?B?)
−1 ·∆>P?Acl,?.

In particular, when the closed loop system Acl,? is (ap-
proximately) well-conditioned, the optimal controllers
for (A?, B?) and for (A,B) are Ω(‖∆‖F)-apart, and so
the learner cannot satisfy both ut ≈ K?xt and ut ≈
K∞(A,B)xt simultaneously. More precisely, for the
learner to ensure

∑
t ‖xt −K∞(A,B)ut‖2F / dxduε

2 on
every instance, she must deviate from optimal by at least∑T
t=1 ‖xt − K?ut‖2F ' duT/ε

2 on the optimal instance;
the du factor here comes from the necessity of exploring all
control-input directions. Balancing these terms leads to the
final Ω(

√
Tdud2

x) lower bound (proven in Appendix F).

Theorem 1. Let c1, p > 0 denote universal constants. For
m ∈ [dx], define νm := σm(Acl,?)/‖Ru + B>? P?B?‖op.
Then if νm > 0, we have

RA?,B?,T (εT ) &
√
d2

umT ·
1 ∧ ν2

m

‖P?‖2op

,

where εT =
√
d2

um/T , provided that T is at least

c1(‖P?‖pop(dum∨
d2xΨ4

B?
(1∨ν−4

m )

md2u
∨dx log(1+dx‖P?‖op)).

Let us briefly discuss some key features of Theorem 1.

• The only system-dependent parameters appearing in
the lower bound are the operator norm bounds ΨB?

and ‖P?‖op, which only depend on the nominal in-
stance. The latter parameter is finite whenever the
system is stabilizable, and does not explicitly depend
on the spectral radius or strong stability parameters.

• The lower bound takes εT ∝ T−1/2, so the alternative
instances under consideration converge to the nominal
instance (A?, B?) as T →∞.

• The theorem can be optimized for each instance by
tuning the dimension parameterm ∈ [dx]: The leading√
d2

umT term is increasing in m, while the parameter
νm scales with σm(Acl,?) and thus is decreasing in
m. The simplest case is when σm(Acl,?) is bounded
away from 0 for m & dx; here we obtain the optimal√
d2

udxT lower bound. In particular, if du ≤ dx/2, we
can choose m = 1

2dx to get σm(Acl,?) ≥ σmin(A?).

2.2. Upper Bound

While playing near-optimally prevents the learner from rul-
ing out perturbations of the form Eq. (2.1), she can rule per-
turbations in orthogonal directions. Indeed, if ut ≈ K?xt,

then xt+1 ≈ (A? +B?K?)xt + wt. As a result, the persis-
tent noise process wt allows the learner recover the closed
loop dynamics matrix Acl,? = A? + B?K? to Frobenius
error dxε after just T ' 1/ε2 steps, regardless of whether
she incorporates additional exploration (Simchowitz et al.,
2018). Hence, for perturbations perpendicular to those in
Eq. (2.1), the problem closely resembles a setting where
log T is achievable.

Our main algorithm, Algorithm 1, is detailed in Appendix H.
It is an ε-greedy scheme that takes advantage of this prin-
ciple. The full pseudocode and analysis are deferred to
Appendix H, but we sketch the intuition here. The algo-
rithm takes as input a stabilizing controller K0 and pro-
ceeds in epochs k of length τk = 2k. After an initial
burn-in period ending with epoch ksafe, the algorithm can
ensure the reliability of its synthesized controllers, and uses
a (projected) least-squares estimate (Âk, B̂k) of (A?, B?)

to synthesize a controller K̂k = K∞(Âk, B̂k) known as
the certainty equivalent controller. The learner then selects
inputs by adding white Gaussian noise with variance σ2

k:
ut = K̂txt+N (0, σ2

kI). We show that this scheme exploits
the rapid estimation along directions orthogonal to those in
Eq. (2.1), leading to optimal dimension dependence.

To begin, we show (Theorem 3) that the cost of the certainty-
equivalent controller is bounded by the estimation error for
Âk and B̂k, i.e.

JA?,B? [K̂k]− J?
. poly(‖P?‖op) · (‖Âk −A?‖2F + ‖B̂k −B?‖2F),

once (Âk, B̂k) are sufficiently accurate, as guaranteed
by the burn-in period. Through a regret decomposi-
tion based on the Hanson-Wright inequality (Lemma I.1),
we next show that the bulk of the algorithm’s regret
scales as the sum of the suboptimality in the controller
for a given epoch, plus the cost of the exploratory
noise:

∑log2 T
k=ksafe

τk

(
JA?,B? [K̂k]− J?

)
+ duτkσ

2
k /∑log2 T

k=ksafe
τk

(
‖Âk −A?‖2F + ‖B̂k −B?‖2F

)
+duτkσ

2
k. In

the above, we also incur a term of approximately∑log2 T
k=ksafe

√
(dx + du)τk .

√
T (dx + du), which is lower

order than the overall regret of
√
Tdxd2

u. This term arises
from the random fluctuations of the costs around their expec-
tation, and crucially, the Hanson-Wright inequality allows
us to pay of the square root of the dimension.7

7The use of the Hanson-Wright crucially leverages indepen-
dence of the noise process; for general sub-Gaussian martingale
noise, an argument based on martingale concentration would mean
that the fluctuations contribute (dx+du)

√
T to the regret up to log-

arithmic factors, yielding an overall regret of
√

max{dx, d2u}dxT .
This is suboptimal regret for dx � d2u, but still an improvement
over the

√
(dx + du)3T -bound of (Mania et al., 2019). It is un-
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Paralleling the lower bound, the analysis crucially relies
on the exploratory noise to bound the error in the dxdu-
dimensional subspace corresponding to Eq. (2.1), as the
error in this subspace grows as dxdu

σ2
kτk

. However, for the
directions parallel to those in Eq. (2.1), the estimation er-
ror is at most d2

x/τk, and so the total regret is bounded
as RegretA?,B?,T [Alg] /

∑log2 T
k=ksafe

τk

(
d2x
τk

+ dxdu
τkσ2

k

)
+

duτkσ
2
k ≈ d2

x log T +
∑log2 T
k=1

dxdu
σ2
k

+ duτkσ
2
k.

Trading off σ2
k =

√
dx/τk gives regret d2

x log T +∑log2 T
k=1

√
dxd2

uτk ≈ d2
x log T +

√
dxd2

uT . We emphasize
that to ensure that the d2

x term in this bound scales only with
log T due to rapid exploration perpendicular to Eq. (2.1),
and it is crucial that the algorithm uses doubling epochs to
take advantage of this. We now state the full guarantee.

Theorem 2. When Algorithm 1 is invoked with sta-
bilizing controller K0 and confidence parameter δ ∈
(0, 1/T ), it guarantees that with probability at least 1− δ,
RegretT [Alg;A?, B?] is bounded as

.
√
d2

udxT ·Ψ2
B?
‖P?‖11

op log
‖P?‖op

δ

+ d2 · P0Ψ6
B?‖P?‖

11
op(1 + ‖K0‖2op) log

dΨB?P0

δ
log2 1

δ
,

where P0 := JA?,B? [K0]/dx is the normalized cost of K0,
and d = dx + du.

Ignoring dependence on problem parameters, the upper
bound of Theorem 2 scales asymptotically as

√
d2

udxT ,
matching our lower bound. Like the lower bound, the the-
orem depends on the instance (A?, B?) only through the
operator norm bounds ΨB? and ‖B?‖op. Similar to previ-
ous work (Dean et al., 2018; Mania et al., 2019), the regret
bound has additional dependence on the stabilizing con-
troller K0 through ‖K0‖op and P0, but these parameters
only affect the lower-order terms.

2.3. Consequences for Strongly Stable Systems

To emphasize the dependence on dimension and time hori-
zon in our results, we now present simplified findings for a
special class of strongly stable systems.

Definition 2.1 (Strongly Stable System (Cohen et al.,
2018)). We say that A? is (γ, κ)-strongly stable if there
exists a transform T such that ‖T‖op · ‖T−1‖op ≤ κ and
‖TA?T−1‖op ≤ 1− γ. When A? is (γ, κ)-strongly stable,
we define γsta := γ/κ2.

For the simplified results in this section we make the follow-
ing assumption.

clear if one can do better in this setting without improved concen-
tration bounds for quadratic forms of martingale vectors, because
it is unclear how an algorithm can ameliorate these random fluctu-
ations.

Assumption 1. The nominal instance (A?, B?) is such that
A? is (γ, κ)-strongly stable and ‖B?‖op ≤ 1. Furthermore,
Rx = Ru = I .

For strongly stable systems under Assumption 1, our main
lower bound (Theorem 1) takes the following particularly
simple form.
Corollary 1 (Lower Bound for Strongly Stable Systems).
Suppose that Assumption 1 holds, and that du ≤ 1

2dx

and σmin(A?) > 0.8 Then for any T ≥ (dxdu +
dx log dx)poly(1/γsta, 1/σmin(A?)), we have

RA?,B?,T (εT ) &
√
d2

udxT · σmin(A?)
2γ4

sta,

where εT :=
√
d2

udx/T .

The upper bound from Theorem 2 takes on a similarly sim-
ple form, and is seen to be nearly matching.
Corollary 2 (Upper Bound for Strongly Stable Systems).
Suppose that Assumption 1 holds. Then Algorithm 1 with
stabilizing controller K0 = 0 and confidence parame-
ter δ ∈ (0, 1/T ), ensures that probability at least 1 − δ,
RegretT [Alg;A?, B?] is bounded as

.

√
d2

udxT · γ−11
sta log

1

δγsta

+ (dx + du)2γ−12
sta log

d

δγsta
log2 1

δ
.

We observe that the leading
√
d2

udxT terms in the upper
and lower bounds differ only by factors polynomial in γsta,
as well as a σmin(A?) factor incurred by the lower bound.
The lower order term (dx +du)2 in the upper bound appears
unavoidable, but we leave a complementary lower bound for
future work. Both corollaries hold because strong stability
immediately implies a bound on ‖P?‖op.

Proof of Corollary 1 and Corollary 2. First, observe that
under Assumption 1, ΨB? ≤ 1. Next, note that if du <
dx/2, then for m = ddx/2e, σm(Acl,?) = σm(A? +
B?K?) ≥ σm+du(A? + B?K?) ≥ σmin(A?). This gives
νm ≥ σmin(A?)/(1+‖P?‖op). Finally, Lemma B.7 (stated
and proven in Appendix B.3.1) gives ‖P?‖op ≤ γ−1

sta . Plug-
ging these three observations into Theorem 1 and Theorem 2
concludes the proof.

3. Perturbation Bounds via the Self-Bounding
ODE Method

Both Theorem 1 and Theorem 2 scale only with the natural
system parameter ‖P?‖op, and avoid explicit dependence

8The assumption du ≤ 1
2
dx can be replaced with du ≤ αdx

for any α < 1, and can be removed entirely for special instances.
See Corollary 7 in Appendix G.7 for more details.
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on the spectral radius or strong stability parameters found in
prior work. This is achieved using the self-bounding ODE
method, a new technique for deriving bounds on perturba-
tions to the DARE solution P∞(A,B) and corresponding
controller K∞(A,B) as the matrices A and B are varied.
This method gives a general recipe for establishing perturba-
tion bounds for solutions to implicit equations. It depends
only on the norms of the system matrices and DARE solu-
tion P∞(A,B), and it applies to all stabilizable systems,
even those that are not controllable.

In this section we give an overview of the self-bounding
ODE method and use it to prove a simplified version of the
main perturbation bound used in our main upper and lower
bounds. To state the perturbation bound, we first define the
following problem-dependent constants.

Csafe(A,B) = 54‖P∞(A,B)‖5op, and

Cest(A,B) = 142‖P∞(A,B)‖8op. (3.1)

The parameter Csafe(A,B) determines the radius of admis-
sible perturbations, while the parameter Cest(A,B) deter-
mines the quality of controllers synthesized from the re-
sulting perturbation. The main perturbation bound is as
follows.

Theorem 3. Let (A?, B?) be a stabilizable system. Given
an alternate pair of matrices (Â, B̂), for each ◦ ∈ {op, F}
define ε◦ := max{‖Â−A?‖◦, ‖B̂ −B?‖◦}. Then if εop ≤
1/Csafe(A?, B?),

1. ‖P∞(Â, B̂)‖op . ‖P?‖op and ‖K? −
K∞(Â, B̂)‖op . 1

‖P?‖3/2op

.

2. JA?,B? [K∞(Â, B̂)]− J ?A?,B? ≤ Cest(A?, B?)ε
2
F.

This theorem is a simplification of a stronger version, Theo-
rem 5, stated and proven in Appendix B.1. Additional per-
turbation bounds are detailed in Appendix B.1; notably, The-
orem 11 shows that the condition εop ≤ 1/Csafe(A?, B?)
can be replaced by a condition that can be certificated from
an approximate estimate of the system. In the remainder of
this section, we sketch how to use the self-bounding ODE
method to prove the following slightly more general version
of the first part of Theorem 3.

Proposition 4. Let (A?, B?) be a stabilizable system and
let (Â, B̂) be an alternate pair of matrices. Then, if u :=

8‖P?‖2opεop < 1, the pair (Â, B̂) is stabilizable and the
following bounds hold:

1. ‖P∞(Â, B̂)‖op ≤ (1− u)−1/2‖P?‖op.

2. For each ◦ ∈ {op, F}, ‖K∞(Â, B̂)−K?‖◦ ≤ 7(1−
u)−7/4‖P?‖7/2op ε◦.

To begin proving the proposition, set ∆A := Â − A? and
∆B := B̂ − B?. We consider a linear curve between the
two instances, parameterized by t ∈ [0, 1]:

(A(t), B(t)) = (A? + t∆A, B? + t∆B) . (3.2)

At each point t for which (A(t), B(t)) is stabilizable, the
DARE has a unique solution, which allows us to define
associated optimal cost matrices, controllers, and closed-
loop dynamics matrices:

P (t) := P∞(A(t), B(t)), K(t) := K∞(A(t), B(t))

and Acl(t) := A(t) +B(t)K(t). (3.3)

Our strategy will be to show that P (t) and K(t) are in fact
smooth curves, and then obtain uniform bounds on ‖P ′(t)‖◦
and ‖K ′(t)‖◦ over the interval [0, 1], yielding perturbation
bounds via the mean value theorem. To start, we express the
derivatives of the DARE in terms of Lyapunov equations.

Definition 3.1 (Discrete Lyapunov Equation). Let X,Y ∈
Rdx×dx with Y = Y > and ρ(X) < 1. We let TX [P ] :=
X>PX −X , and let dlyap(X,Y ) denote the unique PSD
solution TX [P ] = Y . We let dlyap[X] := dlyap(X, I).

The following lemma (proven in Appendix C.2) serves as
the basis for our computations, and also establishes the
requisite smoothness required to take derivatives.

Lemma 3.1 (Derivative and Smoothness of the DARE). Let
(A(t), B(t)) be an analytic curve, and define ∆Acl

(t) :=
A′(t) + B′(t)K∞(A(t), B(t)). Then for any t such
that (A(t), B(t)) is stabilizable, the functions P (u) and
K(u) are analytic in a neighborhood around t, and we
have P ′(u) = dlyap(Acl(u), Q1(u)), where Q1(u) :=
Acl(u)>P (u)∆Acl

(u) + ∆Acl
(u)>P (u)Acl(u).

Lemma 3.1 expresses P ′(t) as the solution to an ordinary
differential equation. While the lemma guarantees local
existence of the derivatives, it is not clear that the entire
curve (A(t), B(t)), t ∈ [0, 1] is stabilizable. However, since
ODEs are locally guaranteed to have solutions, we should
only expect trouble when the corresponding ODE becomes
ill-defined, i.e. if P ′(t) escapes to infinity. We circumvent
this issue by observing that P ′(t) satisfies the following
self-bounding property.

Lemma 3.2 (Bound on First Derivatives). Let (A(t), B(t))
be an analytic curve. Then, for all t at which (A(t), B(t))
is stabilizable, we have ‖P ′(t)‖◦ ≤ 4‖P (t)‖3op ε◦,and

‖K ′(t)‖◦ ≤ 7‖P (t)‖7/2op ε◦.

The bound on P ′(t) above follows readily from the expres-
sion for P ′(t) derived in Lemma 3.1, and the bound on
K ′(t) uses that K is an explicit, analytic function of P ; see
Appendix C.2 for a full proof. Intuitively, the self-bounding
property states that if P does not escape to infinity, then
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P ′(t) cannot escape either. Since the rate of growth for P (t)
is in turn bounded by P ′(t), this suggests that there is an
interval for t on which P and P ′ self-regulate one another,
ensuring a well-behaved solution.

3.1. Norm Bounds for Self-Bounding ODEs

Informally, the self-bounding ODE method argues that if a
vector-valued ODE y(t) satisfies a self-bounding property
of the form ‖y′(t)‖ ≤ g(‖y(t)‖) wherever it is defined, then
the ODE can be compared to a scalar ODE z′(t) ≈ g(z(t))
with initial condition z(0) ≈ ‖y(0)‖. Specifically, it admits
a solution y(t) which is well-defined on an interval roughly
as large as that of z(t). We develop the method in a general
setting where y(t) (when defined) is the zero of a sufficiently
regular function.

Definition 3.2 (Valid Implicit Function). A function
F (·, ·) : Rm×Rd → Rd is a called a valid implicit function
with domain U ⊆ Rd if F is continuously differentiable,
and if for any continuously differentiable curve x(t) and any
t ∈ [0, 1], either (a) F (x(t), y) = 0 has no solution y ∈ U ,
or (b) it has a unique solution y(t) ∈ U , and there exists an
open interval around t and a C1 curve y(u) defined on this
interval for which F (x(u), y(u)) = 0.

This setting captures as a special case the characterization of
P (t) from Lemma 3.1. As a consequence of the lemma, we
may take F = FDARE, where, identifying Sdx as a

(
dx+1

2

)
-

dimensional euclidean space, FDARE : (Rd2x × Rdxdu) ×
Sdx → Sdx is the function whose zero-solution defines the
DARE: FDARE((A,B), P ) := A>PA−P−A>PB(Ru+
B>PB)−1B>PA + Rx. Then FDARE is a valid implicit
function with unique solutions in the set of positive-definite
matrices U := Sdx++. To proceed, we introduce our self-
bounding condition.

Definition 3.3 (Self-bounding). Let g : R→ R≥0 be non-
negative and non-decreasing, let F be a valid implicit func-
tion with domain U , and let ‖ · ‖ be a norm. For a contin-
uously differentiable curve x(t) defined on [0, 1], we say
that F is (g, ‖ · ‖)-self bounded on x(t) if F (x(0), y) = 0
has a solution y ∈ U and ‖y′(t)‖ ≤ g(‖y‖) for all
t ∈ [0, 1] for which F (x(t), y) y ∈ U . We call the tuple
(F,U , g, ‖ · ‖, x(·)) a self-bounding tuple.

Lemma 3.2 shows that FDARE is (g, ‖ · ‖op)-self bounding
on the curve the (A(t), B(t)) with g(z) = cz3 for c ∝ εop.
For functions g(z) with this form we have the following
general bound on ‖y(t)‖.
Corollary 3. Let (F,U , g, ‖ · ‖, x(·)) be a self-bounding
tuple, where g(z) = czp for c > 0 and p > 1. Then,
if α := c(p − 1)‖y(0)‖p−1 < 1, there exists a unique
continuously differentiable function y(t) ∈ U defined on
[0, 1] which satisfies F (x(t), y(t)) = 0, and this solution
satisfies ∀t ∈ [0, 1], ‖y(t)‖ ≤ (1−α)−1/(p−1)‖y(0)‖, and

‖y′(t)‖ ≤ c(1− α)−p/(p−1)‖y(0)‖p.

Corollary 3 is a consequence of a similar result for general
functions g (Theorem 13, in Appendix D). The condition
on the parameter α directly arises from the requirement that
the scalar ODE w′(u) = cw(u)3 has a solution on [0, 1].

Finishing the Proof of Proposition 4 Finally, we use
Corollary 3 to conclude the proof of Proposition 4.

Proof of Proposition 4. Lemma 3.2 states that for any
t ∈ [0, 1] for which (A(t), B(t)) is stabilizable (i.e.,
FDARE([A(t), B(t)], ·) has a solution), we have the bound

‖P ′(t)‖op ≤ 4‖P (t)‖3opεop.

Applying Corollary 3 with p = 2 and c = 4εop, we
see that if α := 8εop‖P?‖2op < 1, then P (t) is continu-
ously differentiable on the interval [0, 1] and ∀t ∈ [0, 1],
‖P (t)‖op ≤ ‖P?‖op/

√
1− α. By Lemma 3.2, K(t) is

well defined as well, and satisfies maxt∈[0,1] ‖K ′(t)‖◦ ≤
7ε◦maxt∈[0,1] ‖P (t)‖7/2op ≤ (1 − α)−7/4‖P?‖op. The de-
sired bound on ‖K∞(A?, B?)−K∞(Â, B̂)‖◦ follows from
the mean value theorem.

4. Concluding Remarks
We have established that the asymptotically optimal regret
for the online LQR problem is Θ̃(

√
d2

udxT ), and that this
rate is attained by ε-greedy exploration. We are hopeful that
the our new analysis techniques, especially our perturbation
bounds, will find broader use within the non-asymptotic the-
ory of control and beyond. Going forward our work raises
a number of interesting conceptual questions. Are there
broader classes of “easy” reinforcement learning problems
beyond LQR for which naive exploration attains optimal
sample complexity, or is LQR a fluke? Conversely, is there
a more demanding (eg, robust) version of the LQR problem
for which more sophisticated exploration techniques such
as robust synthesis (Dean et al., 2018) or optimism in the
face of uncertainty (Abbasi-Yadkori & Szepesvári, 2011;
Cohen et al., 2019) are required to attain optimal regret? On
the purely technical side, recall that while our upper and
lower bound match in terms of dependence on du, dx, and
T , they differ in their polynomial dependence on ‖P?‖op.
Does closing this gap require new algorithmic techniques,
or will a better analysis suffice?
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