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Abstract

We consider the problem of online adaptive con-
trol of the linear quadratic regulator, where the
true system parameters are unknown. We prove
new upper and lower bounds demonstrating that
the optimal regret scales as ©(1/dZ3dx1"), where
T is the number of time steps, d is the dimension
of the input space, and dy is the dimension of the
system state. Notably, our lower bounds rule out
the possibility of a poly (log T')-regret algorithm,
which had been conjectured due to the apparent
strong convexity of the problem. Our upper bound
is attained by a simple variant of certainty equiv-
alent control, where the learner selects control
inputs according to the optimal controller for their
estimate of the system while injecting exploratory
random noise (Mania et al., 2019).

Central to our upper and lower bounds is a new
approach for controlling perturbations of Riccati
equations called the self-bounding ODE method,
which we use to derive suboptimality bounds
for the certainty equivalent controller synthesized
from estimated system dynamics. This in turn en-
ables regret upper bounds which hold for any sta-
bilizable instance and scale with natural control-
theoretic quantities.

1. Introduction

Reinforcement learning has recently achieved great success
in application domains including Atari (Mnih et al., 2015),
Go (Silver et al., 2016), and robotics (Lillicrap et al., 2015).
All of these breakthroughs leverage data-driven methods
for continuous control in large state spaces. Their success,
along with challenges in deploying RL in the real world, has
led to renewed interest on developing continuous control
algorithms with improved reliability and sample efficiency.
In particular, on the theoretical side, there has been a push to
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develop a non-asymptotic theory of data-driven continuous
control, with an emphasis on understanding key algorithmic
principles and fundamental limits.

In the non-asymptotic theory of reinforcement learning,
much attention has been focused on the so-called “tabular”
setting where states and actions are discrete, and the optimal
rates for this setting are by now relatively well-understood
(Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al.,
2017). Theoretical results for continuous control setting
have been more elusive, with progress spread across var-
ious models (Kakade et al., 2003; Munos & Szepesvari,
2008; Jiang et al., 2017; Jin et al., 2020), but the linear-
quadratic regulator (LQR) problem has recently emerged as
a candidate for a standard benchmark for continuous control
and RL. For tabular reinforcement learning problems, it is
widely understood that careful exploration is essential for
sample efficiency. Recently, however, it was shown that
for the online variant of the LQR problem, relatively sim-
ple exploration strategies suffice to obtain the best-known
performance guarantees (Mania et al., 2019). In this paper,
we address a curious question raised by these results: Is so-
phisticated exploration helpful for LQR, or is linear control
in fact substantially easier than the general reinforcement
learning setting? More broadly, we aim to shed light on the
question:

To what extent to do sophisticated exploration
strategies improve learning in online
linear-quadratic control?

Is e-Greedy Optimal for Online LQR? In the LQR
problem, the system state x; evolves according to
X411 = Axy + Buy + wy, where x; =0,

(1.1)

and where u; € R% is the learner’s control input, w; €

R% is a noise process drawn as w; "~ N(0,1),and A €
R%Xdx B € R%*du are unknown system matrices.

Initially the learner has no knowledge of the system dynam-
ics, and their goal is to repeatedly select control inputs and
observir%g states over 1" rounds so as to minimize their total
cost >, c(x¢,ug), where ¢(z,u) = 2" Rxx + u' Ryu
is a known quadratic function. In the online variant of the
LQR problem, we measure performance via regret to the
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optimal linear controller:

RegretAvB,T[ﬂ] = [Z c(x¢,uy)
=1

- T minjAB[K],
K
(1.2)

where K is a linear state feedback policy and—Iletting
E 4,5,k || denote expectation under this policy—where

T
. 1
Ja,B[K] = Am —Ba Bk lz c(x¢, uy)

t=1

)

is the average infinite-horizon cost of K, which is finite as
long as K is stabilizing in the sense that p(A + BK) < 1,
where p(-) denotes the spectral radius.! We further define
\7273 = minK jA,B[K}.

This setting has enjoyed substantial development beginning
with the work of (Abbasi-Yadkori & Szepesvari, 2011), and
following a line of successive improvements (Dean et al.,
2018; Faradonbeh et al., 2018a; Cohen et al., 2019; Mania
et al., 2019), the best known algorithms for online LQR
have regret scaling as /7.

We investigate a question that has emerged from this re-
search: The role of exploration in linear control. The first ap-
proach in this line of work, (Abbasi-Yadkori & Szepesviri,
2011), proposed a sophisticated though computationally
inefficient strategy based on optimism in the face of un-
certainty, upon which (Cohen et al., 2019) improved to
ensure optimal v/7-regret and polynomial runtime. Another
approach which enjoys v/T-regret, due to (Mania et al.,
2019), employs a variant of the classical e-greedy explo-
ration strategy (Sutton & Barto, 2018) known in control
literature as certainty equivalence: At each timestep, the
learner computes the greedy policy for the current estimate
of the system dynamics, then follows this policy, adding
exploration noise proportional to e. While appealing in its
simplicity, e-greedy has severe drawbacks for general re-
inforcement learning problems: For tabular RL, it leads to
exponential blowup in the time horizon (Kearns et al., 2000),
and for multi-armed bandits, bandit linear optimization, and
contextual bandits, it leads to suboptimal dependence on the
time horizon T' (Langford & Zhang, 2007).

This begs the question: Can we improve beyond /7 regret
for online LQR using more sophisticated exploration strate-
gies? Or is exploration in LQR simply much easier than in
general reinforcement learning settings? One natural hope
would be to achieve logarithmic (i.e. poly(logT)) regret.
After all, online LQR has strongly convex loss functions,
and this is a sufficient condition for logarithmic regret in
many simpler online learning and optimization problems

"For potentially asymmetric matrix A € R¥?, p(A) =
max{|A| | A is an eigenvalue for A}.

(Vovk, 2001; Hazan et al., 2007; Rakhlin & Sridharan, 2014),
as well as LQR with known dynamics but potentially chang-
ing costs (Agarwal et al., 2019b). More subtly, the /T
online LQR regret bound of (Mania et al., 2019) requires
that the pair (A, B,) be controllable;? it was not known if
naive exploration attains this rate for arbitrary stabilizable
problem instances, or if it necessarily leverages controllabil-
ity to ensure its efficiency.

1.1. Contributions

We prove new upper and lower bounds which characterize
the minimax optimal regret for online LQR as ©(1/d2dyT).
Beyond dependence on the horizon T', dimensions dy, dy,,
and logarithmic factors, our bounds depend only on operator
norms of transparent, control theoretic quantities, which do
not hide additional dimension dependence. Our main lower
bound is Theorem 1, which implies that no algorithm can
improve upon /T regret for online LQR, and so simple
e-greedy exploration is indeed rate-optimal.

Theorem 1 (informal). For every sufficiently non-
degenerate problem instance and every (potentially random-
ized) algorithm, there exists a nearby problem instance on
which the algorithm must suffer regret at least Q(y/d2dxT).

Perhaps more surprisingly, our main upper bound shows that
a simple variant of certainty equivalence is also dimension-
optimal, in that it asymptotically matches the \/d3dxT
lower bound of Theorem 1.

Theorem 2 (informal). Certainty equivalent control with
continual e-greedy exploration (Algorithm 1) has regret at

most O (\ /d2dyT + di) for every stabilizable online LQR
instance.

Our upper bound does not require controllability, and is the
first bound for any algorithm to attain the optimal dimension
dependence. In comparison, result of (Mania et al., 2019)
guarantees +/(dx + dy )3T regret and imposes strong ad-
ditional assumptions. In the many control settings where
dy < dx, our bound constitutes a significant improvement.
Other approaches not based on certainty equivalence suffer
considerably larger dimension dependence (Cohen et al.,
2019). Together, Theorem 1 and Theorem 2 characterize the
asymptotic minimax regret for online LQR, showing that
there is little room for improvement over naive exploration.

Our results leverage a new perturbation bound for con-
trollers synthesized via certainty equivalence. Unlike prior
bounds due to (Mania et al., 2019), our guarantee depends

2(A,, B,) are said to be controllable if and only the control-
lability Gramian C,,C,, = """ ALB.B/] (A%)T is strictly pos-
itive definite for some n > 0. For any n for which C,, > 0,
the upper bounds of (Mania et al., 2019) scale polynomially in
1, 1/Amin (CnC,T ). Controllability implies stabilizability, but the
converse is not true.
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only on natural control-theoretic quantities, and crucially
does not require controllability of the system.

Theorem 3 (informal). Fix an instance (4, B). Let (4, B),
and let i denote the optimal infinite horizon controller from
instance (A4, B). Then if (A, B) are sufficiently close to
(A, B), we have

Ja.BlK] = Ti p < 142 P[5, - (|4 = A& + || B = BlIg),
where P is the solution to the DARE for the system (A, B).

For simplicity, the bound above assumes the various normal-
ization conditions on the noise and cost matrices, described
in Section 1.4. With these conditions, our perturbation
bound only requires that the operator norm distance between
(A, B) and (A, B) be at most 1/poly(|| P|lop). Hence, we
establish perturbation bounds for which both the scaling
of the deviation and the region in which the bound applies
can be quantified in terms of a single quantity: the norm of
DARE solution P. We prove this bound through a new tech-
nique we term the Self-Bounding ODE method, described
below. Beyond removing the requirement of controllability,
we believe this method is simpler and more transparent than
past approaches.

1.2. Our Approach

Both our lower and upper bounds are facilitated by the self-
bounding ODE method, a new technique for establishing
perturbation bounds for the Riccati equations that character-
ize the optimal value function and controller for LQR. The
method sharpens existening perturbation bounds, weakens
controllability and stability assumptions required by pre-
vious work (Dean et al., 2018; Faradonbeh et al., 2018a;
Cohen et al., 2019; Mania et al., 2019), and yields an up-
per bound whose leading terms depend only on the horizon
T, dimension parameters dy, dy, and the control-theoretic
parameters sketched in the prequel.

In more detail, if (A, B) is stabilizable and Ry, Ry > 0,
there exists a unique PSD solution P, (A, B) for the dis-
crete algebraic Riccati equation (DARE),

P=ATPA+ Ry
—A"PB(R,+B"PB)"'B"PA (1.3)
The unique optimal infinite-horizon controller is given by
Koo(A,B) = _(Ru+BTPoc<A7 B)B)ilBTPoo(Av B)A,

and the matrix P, (A, B) induces a positive definite
quadratic form which can be interpreted as a value func-
tion for the LQR problem.

Both our upper and lower bounds make use of novel pertur-
bation bounds to control the change in P, and K, when

we move from a nominal instance (A, B) to a nearby in-
stance (/T, E) For our upper bound, these are used to show
that a good estimator for the nominal instance leads to a
good controller, while for our lower bounds, they show that
the converse is true. The self-bounding ODE method al-
lows us to prove perturbation guarantees that depend only
on the norm of the value function || Px (A4, B)||,,, for the
nominal instance, which is a weaker assumption that sub-
sumes previous conditions. The key observation underpin-
ning the method is that the norm of the directional deriva-
tive of %POC(A(t),B(t))]t:u at a point t = w along a
line (A(t), B(t)) is bounded in terms of the magnitude of
| Poo (A(w), B(u))||; we call this the self-bounding property.
From this relation, we show that bounding the norm of the
derivatives reduces to solving a scalar ordinary differential
equation, whose derivative saturates the scalar analogue of
this self-bounding property. Notably, this technique does not
require that the system be controllable, and in particular does
not yield guarantees which depend on the smallest singular
value of the controllability matrix as in (Mania et al., 2019).
Moreover, given estimates (A, B) and an upper-bound on
their deviation from the true system (A,, B, ), our bound
allows the learner to check whether the certainty-equivalent
controller synthesized from A, B stabilizes the true system
and satisfies the preconditions for our perturbation bounds.

On the lower bound side, we begin with a nominal in-
stance (Ag, Bp) and consider a packing of alternative in-
stances within a small neighborhood. Specifically, if K is
the optimal controller for (A, By), we consider perturba-
tions of the form (Aa, Ba) = (A9 — AKy, By + A) for
A € R%% The self-bounding ODE method facilitates a
perturbation analysis which implies that the optimal con-
troller KA on each alternative (A, Ba) deviates from K
by || Ko — Ka|lr > Q(]|A||r) for non-degenerate instances.
Using this reasoning, we show that any low-regret algorithm
can approximately recover the perturbation A.

On the other hand, if the learner selects inputs u; = Kox;
according to the optimal control policy for the nominal
instance, all alternatives are indistinguishable from the nom-
inal instance. Indeed, the structure of our perturbations
ensures that Ax + BAKy = Ag + By K for all choices
of A. Thus, since low regret implies identification of the
perturbation, any low regret learner must substantially de-
viate from the nominal controller K. Equivalently, this
can be understood as a consequence of the fact that play-
ing u; = Kyx, yields a degenerate covariance matrix for
the random variable (x;, u;), and thus some deviation from
K is required to ensure this covariance is full rank. The
regret scales proportionally to the deviation from K, which
scales proportionally to the minimum eigenvalues of the
aforementioned covariance matrix, but the estimation error
rate scales as 1/T (the typical “fast rate”) times the inverse
of these eigenvalues. Balancing the tradeoffs leads to the
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“slow” /T lower bound. Crucially, our argument exploits
a fundamental tension between control and indentification
in linear systems, first described by Polderman (1986), and
summarized in Polderman (1989).

Our upper bound refines the certainty equivalent control
strategy proposed in (Mania et al., 2019) by re-estimating
the system parameters on a doubling epoch schedule to
advantage of the endogenous excitation supplied by the w;-
sequence. A careful analysis of the least squares estimator
shows that the error in a dxd,-dimensional subspace decays
as O ( 1/ \/{f) , and in the remaining d2 dimensions decays
at a fast rate of O (1/t).

Related Work Non-asymptotic guarantees for learning
linear dynamical systems have been the subject of intense
recent interest (Dean et al.; Hazan et al., 2017; Tu & Recht,
2018; Hazan et al., 2018; Simchowitz et al., 2018; Sarkar &
Rakhlin, 2019; Simchowitz et al., 2019; Mania et al., 2019;
Sarkar et al., 2019). The online LQR setting we study was
introduced by (Abbasi-Yadkori & Szepesvari, 2011), which
considers the problem of controlling an unknown linear sys-
tem under stationary stochastic noise.> They showed that
an algorithm based on the optimism in the face of uncer-
tainty (OFU) principle enjoys /T, but their algorithm is
computationally inefficient and their regret bound depends
exponentially on dimension. The problem was revisited by
(Dean et al., 2018), who showed that an explicit explore-
exploit scheme based on e-greedy exploration and certainty
equivalence achieves 7%/3 regret efficiently, and left the
question of obtaining v/7 regret efficiently as an open prob-
lem. This issue was subsequently addressed by (Faradonbeh
et al., 2018a) and (Mania et al., 2019), who showed that
certainty equivalence obtains v/7 regret, and (Cohen et al.,
2019), who achieve /T regret using a semidefinite program-
ming relaxation for the OFU scheme. The regret bounds in
(Faradonbeh et al., 2018a) do not specify dimension depen-
dence, and (for dx > dy), the dimension scaling of (Cohen
etal., 2019) can be as large as /d07T’;* (Mania et al., 2019)
incurs an almost-optimal dimension dependence of +/d3T
(suboptimal when d,, < dx), but at the expense of imposing
a strong controllability assumption.

The question of whether regret for online LQR could be im-
proved further (for example, to log T') remained open, and
was left as a conjecture by (Faradonbeh et al., 2018b). Our
lower bounds resolve this conjecture by showing that v/7'-
regret is optimal. Moreover, by refining the upper bounds of
(Mania et al., 2019), our results show that the asymptotically
optimal regret is ©(+/dZdxT), and that this achieved by cer-

3A more recent line of work studies a more general non-
stochastic noise regime (see (Agarwal et al., 2019a) et seq.), which
we do not consider in this work.

“The regret bound of (Cohen et al., 2019) scales as d3VT -
(JA, B, )3; typically, T4, B, scales linearly in dx

tainty equivalence. Beyond attaining the optimal dimension
dependence, our upper bounds also enjoy refined depen-
dence on problem parameters, and do not require a-priori
knowledge of these parameters.

Logarithmic regret bounds are ubiquitous in online learning
and optimization problems with strongly convex loss func-
tions (Vovk, 2001; Hazan et al., 2007; Rakhlin & Sridharan,
2014). (Agarwal et al., 2019b) demonstrate that for the prob-
lem of controlling an known linear dynamic system with
adversarially chosen, strongly convex costs, logarithmic re-
gret is also attainable. Our \/T lower bound shows that
the situation for the online LQR with an unknown system
parallels that of bandit convex optimization, where (Shamir,
2013) showed that +/T is optimal even for strongly con-
vex quadratics. That is, in spite of strong convexity of the
losses, issues of partial observability prevent fast rates in
both settings.

Our lower bound carefully exploits the online LQR problem
structure to show that /7" is optimal. To obtain optimal
dimension dependence for the lower bound, we build on
well-known lower bound technique for adaptive sensing
based on Assouad’s lemma (Arias-Castro et al., 2012) (see
also (Assouad, 1983; Yu, 1997)).

Finally, a parallel line of research provides Bayesian and fre-
quentist regret bounds for online LQR based on Thompson
sampling (Ouyang et al., 2017; Abeille & Lazaric, 2017),
with (Abeille & Lazaric, 2018) demonstrating \/T—regret
for the scalar setting. Unfortunately, Thompson sampling is
not computationally efficient for the LQR.

1.3. Organization

Section 1.4 introduces basic notation and definitions. Sec-
tion 2 introduces our main results: In Section 2.1 and Sec-
tion 2.2 we state our main lower and upper bounds respec-
tively and give an overview of the proof techniques, and in
Section 2.3 we instantiate and compare these bounds for the
simple special case of strongly stable systems. In Section 3
we introduce the self-bounding ODE method and show how
it is used to prove key perturbation bounds used in our main
results. All additional proofs and proof details are given
in the appendix, whose organization is described at length
in Appendix A. Future directions and open problems are
discussed in Section 4.

1.4. Preliminaries

Assumptions We restrict our attention stabilizable sys-
tems (A, B) for which there exists a stabilizing controller
K such that p(A + BK) < 1. Note that this does not re-
quire that the system be controllable. We further assume that
R, = I and Ry > I. The first can be enforced by a change
of basis in input space, and the second can be enforced by
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rescaling the state space, increasing the regret by at most a
multiplicative factor of min {1, 1/omin(Rx)}. We also as-
sume that the process noise w; has identity covariance. We
note that non-identity noise can be adressed via a change of
variables, and in Appendix 1.8 we sketch extensions of our
results to (a) independent, sub-Gaussian noise with bounded
below covariance, and (b) more general martingale noise,
where we remark on how to achieve optimal rates in the
regime dy < d?

X ~ Yu*

Algorithm Protocol and Regret Formally, the learner’s
(potentially randomized) decision policy is modeled as a
sequence of mappings 7 = (7;)7_, where each function 7,
maps the history (x1,...,Xs,u1,...,us—1) and an internal
random seed £ to an output control signal u;. For a linear
system evolving according to Eq. (1.1) and policy 7, we let
P4 p,» and E4 p - [-] denote the probability and expecta-
tion with respect to the dynamics (1.1) and randomization
of 7. For such a policy, we use the notation Regret 4 g 1[7]
as in Eq. (1.2) for regret, which is a random variable with
law P4 g r[-]. We prove high-probability upper bounds on
Regret 4 p [, and prove lower bounds on the expected
regret ERegret 4 p (7] := Ea,p «[Regret 4 p (7))

Additional Notation For vectors » € R?, ||z|| denotes
the ¢, norm. For matrices X € R4*dz || X o denotes
the spectral norm, and || X||. the Frobenius norm. When
dy < ds, 01(X),...,04,(X) denote the singular values of
X, arranged in decreasing order. We say f < g to denote
that f(z) < Cg(x) for a universal constant C, and f < g to
denote informal inequality. We write f <~ gif g < f < g.

For “starred” systems (A, By), we adopt the shorthand
P, .= P(As, By), K, := K (A,, B,) for the opti-
mal controller, 7, := J} g, = Ja,,B, [K,] for optimal
cost, and A¢y . := A, + B, K, for the optimal closed loop
system. We define ¥, := max{1, || As|lop, || Bx|lop} and
Up, = max{l,|Bllop}. For systems (Ag, By), we let
Bop(es Ao, Bo) = {(A, B) | [ A~ Aollo, VIIB — Boll,, <
€} denote the set of nearby systems in operator norm.

2. Main Results

‘We now state our main upper and lower bounds for online
LQR and give a high-level overview of the proof techniques
behind both results. At the end of the section, we instantiate
and compare the two bounds for the simple special case of
strongly stable systems.

5One might consider as a stronger benchmark described the
expected loss of the optimal policy for fixed horizon T'. A fortiori,
our lower bounds apply for this benchmark as well: In view of the
proof of Lemma F.3 in Appendix G.2, this benchmark differs from
T Jk 5 by a constant factor which depends on (A, B) but does
not grow with T'.

Both our upper and lower bounds start with the following
question: Suppose that the learner is selecting near opti-
mal control inputs u; ~ K, x;, where K, = K (A4, By)
is the optimal controller for the system (A, B,). What
information can she glean about the system?

2.1. Lower Bound

We provide a local minimax lower bound, which captures
the difficulty of ensuring low regret on both a nominal in-
stance (A, By) and on the hardest nearby alternative. For
a distance parameter ¢ > 0, we define the local minimax
complexity at scale € as

Ra, B, r(€) := minmax {ERegretA grlTl:
™ AB .

|4 - AJEVIB = B <.

Local minimax complexity captures the idea certain in-
stances (A, B,) are more difficult than others, and allows
us to provide lower bounds that scale only with control-
theoretic parameters of the nominal instance. Of course, the
local minimax lower bound immediately implies a lower
bound on the global minimax complexity as well.®

Intuition Behind the Lower Bound. We show that if the
learner plays near-optimally on every instance in the neigh-
borhood of (A, B,), then there is a dyxd,-dimensional
subspace of system parameters that the learner must ex-
plore by deviating from K, when the underlying instance
is (A, By). Even though the system parameters can be
estimated at a fast rate, such deviations preclude logarithmic
regret.

In more detail, if the learner plays near-optimally, she is not
be able to distinguish between whether the instance she is
interacting with is (A, B,), or another system of the form

(A,B) = (A, — K,A, B, + A), @.1)

for some perturbation A € R%*%u_ This is because all
the obsevations (x;, u;) generated by the optimal controller
lie in the subspace {(z,u) : u — K,z = 0}, and likewise
all observations generated by any near-optimal controller
approximately lie in this subspace. Since the learner cannot
distinguish between (A,, B,) and (A, B), she will also play
u; ~ K,x; on (A4, B). This leads to poor regret when the
instance is (A, B), since the optimal controller in this case
has u; = K (A, B)x;. This is made concrete by the next
lemma, which shows to a first-order approximation that if
A is large, the distance between K, and K. (A, B) must
also be large.

Some care must be taken in defining the global complexity, or
it may well be infinite. One sufficient definition, which captures
prior work, is to consider minimax regret over all instances subject
to a global bound on || Ps||, || B«||, and so on.

>
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Lemma 2.1 (Derivative Computation (Abeille & Lazaric
(2018), Proposition 2)). Let (A, B, ) be stabilizable, and
recall Aq) « := A, + B, K,. Then,

d

— Koo (As
dt (

—tAK,, B, +tA)],_,

—(Ru+ B, P,B,)" " - ATP, Aq,.

In particular, when the closed loop system A, is (ap-
proximately) well-conditioned, the optimal controllers
for (A,, By) and for (A, B) are Q(||A||r)-apart, and so
the learner cannot satisfy both u; ~ K,x; and u; ~
K (A, B)x; simultaneously. More precisely, for the
learner to ensure Y, [x; — Koo (A, B)us||% < dxdyue® on
every instance, she must deviate from optimal by at least
S % — Kyu||3 2 duT/€? on the optimal instance;
the d,, factor here comes from the necessity of exploring all
control-input directions. Balancing these terms leads to the
final Q(4/T'dd2) lower bound (proven in Appendix F).

Theorem 1. Let c1,p > 0 denote universal constants. For
m € [dy], define vy, = 0 (Acs)/||Ru + B PiByl|op-
Then if vy, > 0, we have

1A u

RA*,B*, (ET)Z\/d mT - ||P|

Vd2m/T, provided that T is at least
d v 1vy,
11 Py (v 2 G20V Lo 1+ P o))

where ep =

Let us briefly discuss some key features of Theorem 1.

e The only system-dependent parameters appearing in
the lower bound are the operator norm bounds ¥,
and || P,||op, which only depend on the nominal in-
stance. The latter parameter is finite whenever the
system is stabilizable, and does not explicitly depend
on the spectral radius or strong stability parameters.

e The lower bound takes e < T—1/2, so the alternative

instances under consideration converge to the nominal
instance (Ay, By) as T — oo.

e The theorem can be optimized for each instance by
tuning the dimension parameter m € [dy|: The leading
\/d2mT term is increasing in m, while the parameter
Uy, scales with 0, (A ) and thus is decreasing in
m. The simplest case is when ., (A ,) is bounded
away from 0 for m 2 dy; here we obtain the optimal
v/ d2dxT lower bound. In particular, if d,, < dx/2, we
can choose m = %dx to get 0 (Aclx) > Omin(Ax)-

2.2. Upper Bound

While playing near-optimally prevents the learner from rul-
ing out perturbations of the form Eq. (2.1), she can rule per-
turbations in orthogonal directions. Indeed, if u; ~ K,x,

then x;41 &~ (A, + B, K,)x: + wy. As a result, the persis-
tent noise process w; allows the learner recover the closed
loop dynamics matrix A, = A, + B, K, to Frobenius
error dye after just T’ 2, 1/€? steps, regardless of whether
she incorporates additional exploration (Simchowitz et al.,
2018). Hence, for perturbations perpendicular to those in
Eq. (2.1), the problem closely resembles a setting where
log T is achievable.

Our main algorithm, Algorithm 1, is detailed in Appendix H.
It is an e-greedy scheme that takes advantage of this prin-
ciple. The full pseudocode and analysis are deferred to
Appendix H, but we sketch the intuition here. The algo-
rithm takes as input a stabilizing controller K and pro-
ceeds in epochs k of length 7, = 2F. After an initial
burn-in period ending with epoch ks, the algorithm can
ensure the reliability of its synthesized controllers, and uses
a (projected) least-squares estimate (Ak, Bk) of (A,, By)
to synthesize a controller K = (Ak, Bk) known as
the certainty equivalent controller. The learner then selects
inputs by adding white Gaussian noise with variance o7:
u = K X+ N (0, ak I). We show that this scheme exploits
the rapid estimation along directions orthogonal to those in
Eq. (2.1), leading to optimal dimension dependence.

To begin, we show (Theorem 3) that the cost of the certainty-
equivalent controller is bounded by the estimation error for
Ay, and By, i.e.

Ja, B, [f(k] - Jx
S poly (| Pellop) - (1Ak — ALl + | Bk — Bill§),

once (A\k,ék) are sufficiently accurate, as guaranteed
by the burn-in period. Through a regret decomposi-
tion based on the Hanson-Wright inequality (Lemma I.1),
we next show that the bulk of the algorithm’s regret
scales as the sum of the suboptimality in the controller
for a given epoch, plus the cost of the exploratory

noise: ffzife Th (jA*,B* [IA(;@] - J*) + dutko; S
log, T -~ 5
s T m (1A - AR + 1Be — Bl + durio?. In

the above, we also incur a term of approximately
log, T

P \/(dx +du)Tk < \/T(dx + dy), which is lower
order than the overall regret of \/T'dxd?. This term arises
from the random fluctuations of the costs around their expec-
tation, and crucially, the Hanson-Wright inequality allows
us to pay of the square root of the dimension.’

"The use of the Hanson-Wright crucially leverages indepen-
dence of the noise process; for general sub-Gaussian martingale
noise, an argument based on martingale concentration would mean
that the fluctuations contribute (dx+du )+v/T to the regret up to log-

arithmic factors, yielding an overall regret of \/max{dx, d% }dxT.

This is suboptimal regret for dx > d=, but still an improvement

over the /(dx + du)3T-bound of (Mania et al., 2019). It is un-
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Paralleling the lower bound, the analysis crucially relies
on the exploratory noise to bound the error in the dyd,,-
dimensional subspace corresponding to Eq. (2.1), as the
error in this subspace grows as ‘i’;‘i: However, for the

k
directions parallel to those in Eq. (2.1), the estimation er-
ror is at most d2 /7y, and so the total regret is bounded

2
as Regrets, p, 7[Alg] £ Y750 7 (d*’”rdxd?) +

~ k=ksase Tk TROD

logy T dydy
duTkO']% ~ d2logT + p ] Seu duTk(T,%.
k

Trading off 07 = +/dx/7 gives regret dZlogT +
082 TS 27y, ~ d2 log T + \/dyd%T. We emphasize
that to ensure that the d2 term in this bound scales only with
log T" due to rapid exploration perpendicular to Eq. (2.1),
and it is crucial that the algorithm uses doubling epochs to
take advantage of this. We now state the full guarantee.

Theorem 2. When Algorithm 1 is invoked with sta-
bilizing controller Ky and confidence parameter § €
(0,1/T), it guarantees that with probability at least 1 — 0,
Regretp[Alg; A, By| is bounded as

P Jlop
< BT - 03, [P, log Ll
d¥p.Po 21
5 8y
where Py := Ja, g, [Ko]/dx is the normalized cost of Ky,
and d = dy + dy.

+d* - PoWl || Pullop(1 + [ Kol3,) log

Ignoring dependence on problem parameters, the upper
bound of Theorem 2 scales asymptotically as /d2dxT,
matching our lower bound. Like the lower bound, the the-
orem depends on the instance (A, B,) only through the
operator norm bounds W5, and || B,||,,. Similar to previ-
ous work (Dean et al., 2018; Mania et al., 2019), the regret
bound has additional dependence on the stabilizing con-
troller K through ||K0H0p and Py, but these parameters
only affect the lower-order terms.

2.3. Consequences for Strongly Stable Systems

To emphasize the dependence on dimension and time hori-
zon in our results, we now present simplified findings for a
special class of strongly stable systems.

Definition 2.1 (Strongly Stable System (Cohen et al.,
2018)). We say that A, is (v, x)-strongly stable if there
exists a transform 7" such that || T'||op - |77 |lop < & and

|ITATop <1—7. When A, is (v, k)-strongly stable,
we define Vyia 1= v/K2.

For the simplified results in this section we make the follow-
ing assumption.

clear if one can do better in this setting without improved concen-
tration bounds for quadratic forms of martingale vectors, because
it is unclear how an algorithm can ameliorate these random fluctu-
ations.

Assumption 1. The nominal instance (A, By) is such that
A, is (v, k)-strongly stable and || B, ||op < 1. Furthermore,
Ry=R,=1

For strongly stable systems under Assumption 1, our main
lower bound (Theorem 1) takes the following particularly
simple form.

Corollary 1 (Lower Bound for Strongly Stable Systems).
Suppose that Assumption 1 holds, and that d, < %dx
and omin(Ay) > 0.8 Then for any T > (dxdy +
dy log dx )poly (1/%sta, 1/0min(Ax)), we have

Ra,.B,,T (er) 2 v d%d, T - Umill(A*)27§cav

where e 1= /d%dy/T.

The upper bound from Theorem 2 takes on a similarly sim-
ple form, and is seen to be nearly matching.

Corollary 2 (Upper Bound for Strongly Stable Systems).
Suppose that Assumption 1 holds. Then Algorithm 1 with
stabilizing controller Ky = 0 and confidence parame-
ter 6 € (0,1/T), ensures that probability at least 1 — ¢,
Regretp[Alg; A, By| is bounded as

<\ Jd2d T -~y
N\/ u stta Og 5'Vsta

dy + du)?v5 121
+( + ) Vsta Og 575‘&1 5

We observe that the leading /d2dxT terms in the upper
and lower bounds differ only by factors polynomial in ~yg¢s,,
as well as a oy (A, ) factor incurred by the lower bound.
The lower order term (dx -+ dy, )? in the upper bound appears
unavoidable, but we leave a complementary lower bound for
future work. Both corollaries hold because strong stability
immediately implies a bound on || Py || ,,-

Proof of Corollary 1 and Corollary 2. First, observe that
under Assumption 1, ¥5 < 1. Next, note that if d,, <
dx/2, then for m = [dx/2], om(Ac+) = om(As +
B*K*) 2 Omtdy (A* + B*K*) > O'min(A*)' This gives
Vm > Omin(Ax)/(1+ || Py||op). Finally, Lemma B.7 (stated
and proven in Appendix B.3.1) gives || Py ||lop < 7oa- Plug-
ging these three observations into Theorem 1 and Theorem 2
concludes the proof. O

3. Perturbation Bounds via the Self-Bounding
ODE Method

Both Theorem 1 and Theorem 2 scale only with the natural
system parameter | P ||, and avoid explicit dependence

8The assumption dy, < %dx can be replaced with dy < adx
for any a < 1, and can be removed entirely for special instances.
See Corollary 7 in Appendix G.7 for more details.
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on the spectral radius or strong stability parameters found in
prior work. This is achieved using the self-bounding ODE
method, a new technique for deriving bounds on perturba-
tions to the DARE solution P, (A, B) and corresponding
controller K (A, B) as the matrices A and B are varied.
This method gives a general recipe for establishing perturba-
tion bounds for solutions to implicit equations. It depends
only on the norms of the system matrices and DARE solu-
tion P, (A, B), and it applies to all stabilizable systems,
even those that are not controllable.

In this section we give an overview of the self-bounding
ODE method and use it to prove a simplified version of the
main perturbation bound used in our main upper and lower
bounds. To state the perturbation bound, we first define the
following problem-dependent constants.

Csafe(A7 B) = 54||P00(A B)ng’ and

Cest(AvB) = 142HP00(A3B)H§13 (31)
The parameter Cs,f. (A, B) determines the radius of admis-
sible perturbations, while the parameter Ces (A, B) deter-
mines the quality of controllers synthesized from the re-
sulting perturbation. The main perturbation bound is as
follows.

Theorem 3. Let (A, By) be a stabilizable system. Given
an alternate pair of matrices (A, B), for each o € {op, F}
define e, := max{||A — A,|lo, || B — By|lo}. Then if €op <
]-/Csafc(A*a B*);

1. H A B)lloy S

Al < NPl and K. —
Koo(A,B)

||0p ~ W

2. Ja,.B.[Kx(A, B)] - «7/*1*,3* < Cest(Ax, B*)ﬁ%
This theorem is a simplification of a stronger version, Theo-
rem 5, stated and proven in Appendix B.1. Additional per-
turbation bounds are detailed in Appendix B.1; notably, The-
orem 11 shows that the condition €,p, < 1/Ciate(Ay, By)
can be replaced by a condition that can be certificated from
an approximate estimate of the system. In the remainder of
this section, we sketch how to use the self-bounding ODE
method to prove the following slightly more general version
of the first part of Theorem 3.

Proposition 4. Let (A, B,) be a stabilizable system and
let (//1\, E) be an alternate pair of matrices. Then, if u :=
8| Pu||2 €0p < 1, the pair (A, B) is stabilizable and the
following bounds hold:

1. ||Px (4, B)HOP <(1- u)_1/2||P*H0p'

2. Foreach o € {op, F}, | Koo (A, B) —
w) AP

op €o.

Ko <7(1-

To begin proving the proposition, set A4 := A— A, and
Ap := B — B,. We consider a linear curve between the
two instances, parameterized by ¢ € [0, 1]:

(A@®), B(t)) =

At each point ¢ for which (A(t), B(t)) is stabilizable, the
DARE has a unique solution, which allows us to define
associated optimal cost matrices, controllers, and closed-
loop dynamics matrices:

(A, +tA4, B, +tAp). (3.2)

P(1) = Pu(A(t), B(), K(t) = Kuo(A(t), B(1))
and Aq(t) := A(t) + B(t)K (). (3.3)

Our strategy will be to show that P(t) and K (t) are in fact
smooth curves, and then obtain uniform bounds on || P’ (¢)||o
and || K'(¢)||, over the interval [0, 1], yielding perturbation
bounds via the mean value theorem. To start, we express the
derivatives of the DARE in terms of Lyapunov equations.

Definition 3.1 (Discrete Lyapunov Equation). Let X,Y €
R%&>d with Y = YT and p(X) < 1. We let Tx[P] :=
XTPX — X, and let dlyap(X, Y') denote the unique PSD
solution Tx[P] =Y. We let dlyap[X] := dlyap(X, I).

The following lemma (proven in Appendix C.2) serves as
the basis for our computations, and also establishes the
requisite smoothness required to take derivatives.

Lemma 3.1 (Derivative and Smoothness of the DARE). Let
(A(¢), B(t)) be an analytic curve, and define A 4, (t) =
A'(t) + B'(t) Koo (A(t), B(t)). Then for any t such
that (A(t), B(t)) is stabilizable, the functions P(u) and
K (u) are analytic in a neighborhood around t, and we
have P'(u) = dlyap(Aa(u), Ql( )), where Q1(u) =
() P() A, (1) + A (1) P(a) A (1)

Lemma 3.1 expresses P’(t) as the solution to an ordinary
differential equation. While the lemma guarantees local
existence of the derivatives, it is not clear that the entire
curve (A(t), B(t)), t € [0, 1] is stabilizable. However, since
ODE:s are locally guaranteed to have solutions, we should
only expect trouble when the corresponding ODE becomes
ill-defined, i.e. if P’(t) escapes to infinity. We circumvent
this issue by observing that P’(t) satisfies the following
self-bounding property.

Lemma 3.2 (Bound on First Derivatives). Let (A(t), B(t))
be an analytic curve. Then, for all t at which (A(t), B(t))
is stabilizable, we have ||P'(t)|lo < 4||P(t)||2, €o0,and

1K @)l < TIPO5 €.
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The bound on P’(t) above follows readily from the expres-
sion for P’(t) derived in Lemma 3.1, and the bound on
K'(t) uses that K is an explicit, analytic function of P; see
Appendix C.2 for a full proof. Intuitively, the self-bounding
property states that if P does not escape to infinity, then
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P’(t) cannot escape either. Since the rate of growth for P(t)
is in turn bounded by P’(t), this suggests that there is an
interval for ¢ on which P and P’ self-regulate one another,
ensuring a well-behaved solution.

3.1. Norm Bounds for Self-Bounding ODEs

Informally, the self-bounding ODE method argues that if a
vector-valued ODE y(t) satisfies a self-bounding property
of the form ||/ (¢)|| < g(|ly(t)||) wherever it is defined, then
the ODE can be compared to a scalar ODE 2/ (t) =~ g(z(t))
with initial condition z(0) = ||y(0)||. Specifically, it admits
a solution y(t) which is well-defined on an interval roughly
as large as that of z(t). We develop the method in a general
setting where y(t) (when defined) is the zero of a sufficiently
regular function.

Definition 3.2 (Valid Implicit Function). A function
F(-,-) : R™ x R? — R is a called a valid implicit function
with domain ¢ C R?if F is continuously differentiable,
and if for any continuously differentiable curve x(¢) and any
t € [0,1], either (a) F(x(t),y) = 0 has no solution y € U,
or (b) it has a unique solution y(¢) € U, and there exists an
open interval around ¢ and a C* curve y(u) defined on this
interval for which F'(z(u),y(u)) = 0.

This setting captures as a special case the characterization of
P(t) from Lemma 3.1. As a consequence of the lemma, we
may take F = Fpare, where, identifying S% as a (d"zﬂ)—
dimensional euclidean space, Fpage : (Rdi x Réxdu) x
S% — S is the function whose zero-solution defines the
DARE: Fpare((A, B),P):= ATPA-P—ATPB(R,+
BTPB)"'!BTPA+ R,. Then Fpage is a valid implicit
function with unique solutions in the set of positive-definite
matrices U = S‘h_. To proceed, we introduce our self-
bounding condition.

Definition 3.3 (Self-bounding). Let g : R — R>( be non-
negative and non-decreasing, let £ be a valid implicit func-
tion with domain U, and let || - || be a norm. For a contin-
uously differentiable curve z(t) defined on [0, 1], we say
that F' is (g, || - ||)-self bounded on z(t) if F(z(0),y) =0
has a solution y € U and ||y’ (¢)|| < g¢(|ly||) for all
t € [0, 1] for which F(z(t),y) y € U. We call the tuple
(F\U, g, - |l,2(+)) a self-bounding tuple.

Lemma 3.2 shows that Fpage is (g, || - |lop)-self bounding
on the curve the (A(t), B(t)) with g(z) = ¢2* for ¢ o €op.
For functions g(z) with this form we have the following
general bound on ||y (¢)]].

Corollary 3. Let (F,U,g,| - |,2(-)) be a self-bounding
tuple, where g(z) = czP for ¢ > 0 and p > 1. Then,
if a = c(p — V|ly(0)||P~t < 1, there exists a unique
continuously differentiable function y(t) € U defined on
[0, 1] which satisfies F(x(t),y(t)) = 0, and this solution
satisfies Vt € [0,1], [|y(t)]| < (1—a)~ Y@=V ||y(0)]|, and

Iy (O] < e = o)~/ =D [y(0)]|P.

Corollary 3 is a consequence of a similar result for general
functions g (Theorem 13, in Appendix D). The condition
on the parameter « directly arises from the requirement that
the scalar ODE w’(u) = cw(u)? has a solution on [0, 1].

Finishing the Proof of Proposition 4 Finally, we use
Corollary 3 to conclude the proof of Proposition 4.

Proof of Proposition 4. Lemma 3.2 states that for any
t € [0,1] for which (A(t), B(t)) is stabilizable (i.e.,
Foare([A(t), B(t)], ) has a solution), we have the bound

[P (#)llop < 4I1P(£)]12, €op-

Applying Corollary 3 with p = 2 and ¢ = 4eyp, we
see that if o := 8eqp||Py]|Z, < 1, then P(t) is continu-
ously differentiable on the interval [0, 1] and V¢ € [0, 1],
I1P)lop < || Pellop/V/1 — . By Lemma 3.2, K(t) is
well defined as well, and satisfies max;¢jo,1) [|[K'(t)[o <

Teo maxie(o, | P55 < (1= a)~/4|[P.lop. The de-

sired bound on || Koo (A, By) — Koo (A, B) o follows from
the mean value theorem. O

4. Concluding Remarks

We have established that the asymptotically optimal regret
for the online LQR problem is ©(y/d2dxT), and that this
rate is attained by e-greedy exploration. We are hopeful that
the our new analysis techniques, especially our perturbation
bounds, will find broader use within the non-asymptotic the-
ory of control and beyond. Going forward our work raises
a number of interesting conceptual questions. Are there
broader classes of “easy” reinforcement learning problems
beyond LQR for which naive exploration attains optimal
sample complexity, or is LQR a fluke? Conversely, is there
a more demanding (eg, robust) version of the LQR problem
for which more sophisticated exploration techniques such
as robust synthesis (Dean et al., 2018) or optimism in the
face of uncertainty (Abbasi-Yadkori & Szepesvari, 2011;
Cohen et al., 2019) are required to attain optimal regret? On
the purely technical side, recall that while our upper and
lower bound match in terms of dependence on dy,, dx, and
T, they differ in their polynomial dependence on || Py||,,.
Does closing this gap require new algorithmic techniques,
or will a better analysis suffice?
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A. Organization and Notation

A.1. Notation
Notation Definition
T problem horizon
dy, dy state/input dimension
X¢, Wy state/input at time ¢
Wy noise at time ¢
Ry, Ry control costs
Regret 4 p 7[7] Regret of a policy (as a random variable)
ERegret 4 p (7] Expected Regret of a policy
Ra, B, 1(€) min, max4 g {ERegret 4 p plr] : [|[A — A3V ||B — B3 <€} .
P, (A, B) Solution to the DARE
K. (A, B) Optimal Controller for DARE
Ja,BlK] Infinite horizon control cost of K on instance (A, B)
”A |'Hoo max,ec:|z|=1 ”(ZI - A)71”0P
Boy(€; Ao, Bo) {(A,B) | |1A = Aoll,, VIIB = Boll,, <€}
Solves Tx[P] =Y, where Tx[P] := X" PX — X.
dlyap(X,Y) Requires p(X) < 1,Y =Y.
Givenby Y, (X)) TY X"
System parameters
(A,,B.) Upper bound: Ground truth for upper bound.
o Lower bound: Nominal instance for local minimax complexity.
P, Poo(Ay, By)
K, Koo (A, By)
Acl,* A* + B*K*
J* JA,.p, =ming Ja, B, [K] = Ja, B [K.]
W, max{1, || Axlop, [| Bxllop}
Vp, max{l, || Bu[lop}

A.2. Organization of the Appendices

The appendix is divided into three parts. Part I establishes the main technical tools used throughout the upper and lower
bounds. Appendix B describes and proves our main perturbation bounds, deferring additional proof details to Appendix C.
Appendix D proves guarantees for the Self-Bounding ODE method, summarized in Corollary 3, as well as a slightly more
general statement for generic self-bounding relations, Theorem 13. This part of the appendix concludes with Appendix E.1,
which describes a set of tools for analyzing ordinary least squares estimation, which we use in the proofs of both our upper
and lower bounds.

Part II provides the proof of our lower bound, Theorem 1. Appendix F presents a complete proof in terms of numerous
constituent lemmas, and Appendix G proves these supporting lemmas. Part III mirror the structure of Part II, with
Appendix H presenting formal pseudocode for our algortithm and a proof of the upper bound, and Appendix I verifying the
relevant constituent lemmas from Appendix H.
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Part I
Technical Tools

B. Main Perturbation Bounds

Preliminaries Throughout, we shall use extensively the dlyap operator, which we recall here.

Definition 3.1 (Discrete Lyapunov Equation). Let X,Y € R%*% with Y = YT and p(X) < 1. We let Tx[P] :=
XTPX — X, and let dlyap(X, Y) denote the unique PSD solution Tx[P] = Y. We let dlyap[X] := dlyap(X, I).

We shall need to describe the “P”’-matrix analogue of the functional 7.
Definition B.1. Suppose that (A, + B, K) is stable. We define Py (K; Ay, By) := dlyap(A, + B, K, Ry + KTR.K.

It is a standard fact (see e.g. Lemma B.6) that 74, p, [K] = tr(Puc(K; As, B,)) whenever A, + B, K is stable. We also
recall the definition of the H ..-norm.

Definition B.2 (#., norm). For any stable A € R% (e.g. A+ BK,o(A, B)), we define || A|j,_ := SUpecjz)=1 (21 —
A) " Hlop-

Organization of Appendix B The remainder of this appendix is organized as follows. Appendix B.1 states our main
perturbation upper bounds, and provides proofs in terms of various supporting propositions. Appendix B.2 walks the reader
through the relevant computations of various derivatives. Appendix B.3 states numerous technical tools which we use

in the proofs of our main perturbation bounds, and finally Appendix B.4 proves the supporting propositions leveraged in
Appendix B.1. Many supporting proofs are deferred to Appendix C.

B.1. Main Results

B.1.1. MAIN PERTURBATION UPPER BOUND

Recall Csate( Ay, By) = 54| P[5, and Cegt (A, By) = 142 P.||5,. We state a strengthening of our main perturbation

bound from the main text (Theorem 3) here.

Theorem 5. Let (A., B,) be a stabilizable system. Given an alternate pair of matrices (121\, B ), for each o € {op, F'} define
€0 := max{||A — Aillo, ||B — Bxllo}. Then if eop < 1/Ciate(Ax, By),

1. ||Pso(A, B)|lop < 1.0835|| P, ||op and || By (K, — Koo(A, B))||2 < W

2. jA*,B* [Koc(le\vé)] - *72*,3* < Cest(A*aB*)f%-
3. HPDO(KOO(I& §)§A*7B*) - P*”Op < Cest(A*aB*)fgp

4. Moreover, P, (KOO(A\, E);A*,B*) =< (21/20)P..

Proof. Throughout, we use P, > I (see Lemma F.2). This theorem requires two consituent results. First, we have a
perturbation bound for P, and K, which refines Proposition 4, and is proven in Section B.4.1.

Proposition 6. Let (A, B,) be a stabilizable system, and define the DARE solution P, := Py, (A, By) and controller
K, = K« (Ay, By). Given an alternate pair of matrices (A, B), define for norms o € {op, F} the error €, := max{|| A, —
Allo, | By = Bllo}. Then, if a := 8||P.||2 €op < 1, the pair (A, B) is stabilizable, and

| Poc (A, B)[lop < (1= a)_l/QHP*”om
00 A, B — Ny )|lo S —a) * €o
IRY? (Koo (A, B) = K)o < T(1 = a) | P|| 7] e,

~

B (Ko (A, B) — K,)|lo < 8(1 —a) "4||P,||"/2e.,.
| B« (Koo (A, B) )i ( ) ob
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In addition, if eq, < 32||Py||3,, then

1P B(Koo(A, B) = K. )llo < 9(1 = )74 P %
Next, we have a perturbation bound for the 7-functional as the controller K -is varied. The proof is deferred to Section B.4.2.

3/2

Proposition 7. Fix any controller K satisfying || By (K — K,)|l2 < 1/5||Pillop - Then,

T K] = Ta.m, < | Pellop maxc{ | K = K. |12, | P BL(K = KL)7},
| Pac (55 Avy Bu) = Poc(Aws B)lop < [[Pallop max{ | K = K. |35, | P22 B(K = KL)%, )

Now, observe that e,, < 1/54| P, |3, < 1/8||P.]|2, and o = 8|| P, ||2, €op» Proposition 6 gives that

[1Poo(As B)llop < [[Pullop/v/1 = 8/54 < 1.0835| Py lop,

and that

SIIPAI? - | Be (Koo (A, B) — Ko )llop < 8(1 — ) "I PIT, €op

< 40(1 - a)_7/4||P*||op €
<40/54 - (1 —8/54)""/* < 1.

Hence, for such ¢,, we find from Proposition 7 followed by Proposition C.3.1 that

Ta..5. K] = Ta. 5. < |Pllop max{|RY?(K — K.)|3, | P} B.(K — K.,) |2}
S81HP*||op(1_a) 7/26127
< 142|| P15, 6

and similarly, using || Py|op > 1,

1
1Poc (K3 A, Bi) = Poo(As, Bi)llop < 142|| Pel5p€5, < 20’

yielding Py (K; Ay, By) < (14 %)P* as P, = 1.

B.1.2. PERTURBATION OF H,, NORM AND LYAPUNOV FUNCTIONS

Next, we establish perturbation bounds on the H ., norm of the closed loop system, and show that all perturbed closed loop
systems share a common Lyapunov function.

Theorem 8. Let A,, B, be stabilizable, and let (ﬁ’ E) satisfy the conditions of Theorem 5, with Ry = I, and Ry = I.
Define Ac1 . := A, + B, K,, and given (A, B) € Bop(ex, Ax, By), define and Agy 5 := A, + B. K (A, B). Then,
1. I <dlyap[Ag 4] = P..

)dlyap[ o] X (1= 5lIPl5y) diyap[ A ).

2. [ Aazllne. < 2[[Aaolla., < 4lldlyap[Ac .]|lop
3. A;li’; . dlyap[AcL*} . Acl,* = (1 — —||d|yap[

Proof of Part 1. We can directly verify dlyap[Aq ] = I from the definition, and dlyap[A.; ,] < P, by Lemma B.5.

Proof of Part 2. We use a general-purpose perturbation bound for the H ., norm, proved in B.4.3.

Proposition 9 (Hoo Bounds) Fixu € (0, 1), and matrixes Agate, A1 € R with Agate stable. Then if |41 — Agate|| <
||Hoo = 7= a”AsafEHH

HAnfeHH
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From Part 1 of Theorem 5,
1

et = Aarsllop < 1B, (Foo(Ar, B) = Kool A B)llow < =

(B.1)

By Lemma B.11 followed by Lemma B.5, we have that
1 Actalle.. < 2lldlyap[Act lI357 < 20 Pull3.

Therefore, since || Py ||op > 1, we have

1 1
A 1 - AC * < S
[ Act 1.2]lop (5/2)[[ Actallma — 20| Acts 2o

. Moreover, by Lemma B.11, we can upper bound this in term by

Propostion 9 then implies that || A ||x. < 2|/ Aa,
4]diyap[Ae, 15" < 4] P. 55"

Proof of Part 3. Here, we use a perturbation bound which we prove from first principles, without the self-bounding ODE
method (proved in Appendix B.4.4).

Proposition 10. Suppose that A is a stable matrix, and suppose that A satisfies

—~ 1 1
1A= Al Smin{ dlyap ||o”2},
» < 00\ TayapAllon Al <Y

Then, ATdlyap[A]A < (1 — }|dlyap[A][5;}) - dlyap[A].

By Lemma B.8, we have || Aci«|lop < || Ps H1/2 Since ||dlyap[Aci«]|lop < || Px]lop, combining with Eq. B.1 gives

1 1
Ac *714 *|lo < <
I = Aazllor < 2087 < AdbaplAa lop e

Similarly, we have || Aci » — A zllop < W, which means that, in particular, A ., A 3 satisfy the conditions
’ yap[Acl, « ’

for A, Ain Proposition 10. This means that A} sdlyap[Aci,.]Ac 5 = (1 — 3 ||dlyap[Ae ] Hop ) -dlyap[Ae ] (1 — %HP*ngl).
The last inequality follows from Part 1. [

B.1.3. CONTINUITY OF THE SAFE SET

We show that the size of the so-called “safe” set is continuous in nearby instances. This allows us to use an instance (Ag, By)
to guage whether the perturbed system (A, B) is sufficiently close to (A, By ) to ensure correctness of the perturbation
bounds.

Theorem 11. Let (Ao, Bo) be a stabilizable system.  Then, for any pair of systems (21\ B\),(A*,B*) €
Bop(m Ay, By) is stabilizable, and satisfies max{|| A, — A||Op7 |B — B, lop} < 1/Csate(Ax, Bi). Moreover,
HP (A*,B )HOP <L 0835||P (Ao,Bo)Hop

Proof. Let ¢y := max{||Ag — Al|op, [|Bo — Bxllop} < 1/Cuate(Ao, Bo). Applying Theorem 5 Part 1 with (4, B) «
(As, By) and (A, B,) < (Ao, By), we have | Poo(Ay, Bi)llop < 1.0835|| Psc (Ao, Bo)llop- Hence, Ciate(Ax, Bx) <
1.5Csafe(A07 Bo) Hence (A, B), (A*, B*) S Bop(m,

Ay, By) C Bop(%,AhB ), which means by
triangle inequality that max{||A — A.|lop, | B — Bxllop} < 1/Csate(Ax, By). O

B.1.4. QUALITY OF FIRST-ORDER TAYLOR APPROXIMATION

We bound the error of the first-order taylor expression in the following theorem.
Theorem 12. There exists universal constants ¢, p > 0 such that the following holds. Let (A, By) be stabilizable, and let
€o :=max{||A — Ai|lo, || B — Bxllo}, and suppose that €5, < 1/Ciate(Ax, By) and Rx = I, Ry = I. Let

K = %KOO(A* +t(A, — A), B, + t(B, — B)).

Koo(A,B) = (Ki + K')|lo < c|| Pu[Byedpel.
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Proof. Consider the curve K (t) = Koo (A(t), B(t)) for A(t) = (1—t)A, +tAand B(t) = (1—t)B, +tB. By Theorem 5,
the curve A(t), B(t) for t € [0, 1] consists of all stabilizable matrices with || Poo (A(t), B(£))|lop S || Psllop- By Lemma 3.1,
the curve K (t) is analytic on [0,1]. Moreover, from Lemma B.3 below, we have |[K"(t)|lc < col|P(t)||2 €2, €2 <

optopfo =
c|| P, |2, €2, €2 for universal constants o, p. The bound now follows by Taylor’s theorem.

B.2. Key Derivative Computations
In the following computations, let A 4 = A—A,and Ay = B — B,. We recall ¢, := max{|[Aallo, |AB|o}-

We consider derivatives allow curves (A(t), B(t)) = (A. + tAa, B, + tAp), and associated functions P(t) :=
P (A(t), B(t)) and Koo (A(t), B(t)) defined at stabilizes A(t), B(t). All proofs are given in Section C.2.

We begin by recalling the derivative computation from the main text, which also establishes local smoothness of K (¢) and
P(t).

Lemma 3.1 (Derivative and Smoothness of the DARE). Let (A(t), B(t)) be an analytic curve, and define A 4, (t) := A'(t)+
B'(t) Ko (A(t), B(t)). Then for any t such that (A(t), B(t)) is stabilizable, the functions P(u) and K (u) are analytic
in a neighborhood around t, and we have P'(u) = dlyap(Aa(u), Q1(u)), where Q1 (u) := Aq(u)" P(u)Aa,, (u) +
AAcl(u)TP(u)Acl(u)-

Note that the above lemma allows for general analytic curves (A(t), B(t)). For our purposes, we restrict to linear curves
given a above. For K’, we have the following computation

Lemma B.1 (Computation of K'). The first derivative of the optimal controller can be expressed as

K'=—(Ryu+B'"PB)™' (AfPAq+ B "P(A4,)+ B P'Ay). (B.2)

Of importance to our lower bound is the setting where the perturbations are of the form (A 4, Ap) := (AK,, A). In this
case, the expression for the derivative of K simplifies considerably. we recall the following from the main text

Lemma 2.1 (Derivative Computation (Abeille & Lazaric (2018), Proposition 2)). Let (A, By) be stabilizable, and recall
Acl = Ax + B K,. Then,

d
%KOO(A* —tAK,,B, + tA)]tZO

= —(Ru+B/P.B,) ' -ATP Ay,

Proof. Observe that for the perturbation in question, A 4_,(0) = AK, — AK(0) = AK, — AK, = 0. By Lemma 3.1 and
the fact that dlyap(X,0) = 0, we have that P’(0) = 0. Thus, the term B' P(A4_) + B P’ A, in Eq. (C.2)is 0 at t = 0.
The result follows. O]

B.2.1. BOUNDS ON THE DERIVATIVES

Here, we state bounds on the various derivatives. Recall €, := max{||A4||o, ||AB|lo}- These bounds are established in
Sections C.3.1 and C.3.2, respectively.

Lemma 3.2 (Bound on First Derivatives). Let (A(t), B(t)) be an analytic curve. Then, for all t at which (A(t), B(t)) is
stabilizable, we have || P'(t)|o < 4| P(t)]13, ec.and | K'(t)||o < 7||P(t)||g;/)2 €o.
In fact, it will be more useful to prove the following related bound.

LemmaB.2. |RY*K'||, V |PY2BK'||, V |BK'||o < 7||P||% €.

For our lower bounds, we shall also use a second-order derivative bound

Lemma B.3 (Bound on K”). If e, = max{||A, — Ao, || B, — Bllo} and K(t) = Koo (A(t), B(t)) for A(t) = (1—t)A, +
tA and B(t) = (1 — t) B, + tB, that at any t at which (A(t), B(t)) is stabilizable,

K" ()]0 < poly (| P(t)llop)€op€o-
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B.3. Main Control Theory Tools
B.3.1. PROPERTIES OF THE dlyap OPERATOR

We begin by describing relevant facts about dlyap operator. The first is standard (see e.g. (Bof et al., 2018; Boyd, 2008)),
and gives a closed-form expression for the function.
LemmaBd. LetY =Y " and p(X) < 1. Then Tx(Y) := X 'Y X — Y is an invertible map from S% — S%, and
dlyap(X,Y) =T '(V) =Y (X v xh. (B.3)
k=0

Next, we show that dlyap is order-preserving in the following sense.
Lemma B.5 (Elementary dlyap bounds). The following bounds hold
1. If Y =2 Z and Agage is stable, then dlyap(Agate, X ) =< dlyap(Asafe, Y)-
2. Y = 0 and Ao is stable, dlyap(Agate, Y) = Y.
3. Suppose Ry > I, and let A + BK is stable. Then,
tdlyap(A+ BK,Y) < dlyap(A+ BEK,I)||Y]lop = Y |lop - Peo[K; A, B].
4. When Ry = I, dlyap[A + BK] =< P [K; A, B], and I < dlyap[A + BK (4, B)] < P (A, B).
5. If Agage Is stable,

dlyap[Asate][lop = [[dlyap[Af,]llop-

Next, we give a standard identity which relates the cost functions J to the dlyap operator.
Lemma B.6 (PSD bounds on P). Let (A, B, ) be a stabilizable system, and let A,+ B, K be stable. Set K, = K (A, By).
Then,

Poo[K§ A, B*] = Py (As, By) = Poo(Ky; Ay, By).

Moreover, we have J} g K] = tr(Px[K; A, B), and in particular, T p = Ja, B, [Ki] = tr(Pw(Ax, By)). Asa
conseugnece, if Rx = I, then T} g, (K] > JA, B, = dx by Lemma B.5 part 4.

The following is a consequence of the above lemmas, and is useful for deriving interpretable corollaries of our main results.
Lemma B.7. Suppose that Rx = I. If A, is (7, k)-strongly stable, then || Py ||op < Voa and 3-TJa, 5, [0] < via. More
generally, if (A, + B.K) is (v, k)-strongly stable, then || Py|lop < vsa (1 + | K|2,).

Proof of Lemma B.7. By considering the controller K = 0, Lemma B.6 implies P, =< dlyap[A,, Rx] and Ja4, p,[0] =
tr(dlyap[A,, Ry]) < W. If Ry = I, and we can bound

ldlyap[As, Illop < D A3,
>0
If there exists a transform 7" with 0ax(T)/0min(T) < k such that |TA T op < 1 — 7, then [[Af]op < k(1 — 7).
2 —
Hence, [|Plop < [ldlyap[As, I][lop < K% 31507 < 1= < 1=(—57 = &7 . More generally, we have that

P, < dlyap[A, + B.K, Rx + K" RyK] for Ry, Ry = I, Rx + K" RyK =< (14 ||K||2,)1, and the bound follows by
invoking Lemma B.5. O

B.3.2. HELPFUL NORM BOUNDS
Lemma B.8 (Helpful norm bounds). Let (A., B,) be given, with P, = Po(A,, B,), K, = Koo(As, By), and Aq . =
A, + B, K,. If Ry = I, Ry = I, then the following bounds hold:

1. P, = I, sothat ||P 2 <1, and || P.||op > 1.

2. K2, < [1Pellop and [|Actilly < 1| Pillop-

3. More generally, if (A, + B.K) is stable, KT K < P (K; A, B,) = dlyap(A, + B, K, Ry + KT Ry K).
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B.3.3. BOUNDS ON P (K; Ay, By) AND Ja, B, [K]

We now state a variant of a result due to (Fazel et al., 2018), which bounds the effect of perturbations on P (K; A, By) —
Py (A, By).

Lemma B.9 (Generalization of Lemma 12 of (Fazel et al., 2018), see also Eq 3.2 in (Ran & Vreugdenhil, 1988)). Let K be
an arbitrary static controller which stabilizes Ay, By. Then,

Poo(K; Ay, B,) — Pso(A,, By) = dlyap(A, + B,K, (K — K,)"(Ru + B/ P.B,)(K — K,)).

As a consequence of Lemma B.9 and B.5, we have the following corollary.

Corollary 4. Let K be any arbitrary static controller which stabilities A, By, and suppose Ry = I. Define the adjoint’ as
EzdiB* [K] := dlyap(As + By K, I) covariance matrix. Then,

j 2
T, 5. IK] = Ta. 5, <550 5 [K]|lop max{|[RY2(K — K|}, | PF° B(K — K,)|}},
adj 1/2
1Poc (K5 Ay By) = Poo(As, B)llop < 1557 5, [K]llop max{ || RY2 (K — K,)|12,, [ P2 B(K - K.)II%,}-

B.3.4. LINEAR LYAPUNOV THEORY

We now state a classical result in Lyapunov theory (see, e.g. (Boyd, 2008)). Recall the notation dlyap[A] := dlyap(A4, I).
Lemma B.10. For any v € R% and stable A, we have dlyap[A] = I and

ATdlyap[A]A = (1 — [|dlyap[A]]|5,)) - dlyap[A].

Lemma B.11. For any stable A, || Al|., < 2||dlyap[A] ||§{)2 More generally, suppose that P = I is a matrix satisfying
(Az) Tdlyap[A](Az) < (1 — p)z " Px. Then,

VP
A < Alll, < 27” P
Al <A < 5

t>0

B.4. Proofs for Supporting Perturbation Upper Bounds
B.4.1. PROOF OF PROPOSITION 6

The proof is analogous to that of Proposition 4, except we also apply the derivative bound on RYPK (t) BK'(t) from
Lemma B.2. That bound also gives

IRY2K! (t)]lo < TIIP)]IT5 €0
IBK' ()llo = €opllE (1)l + IBEK' (1)llo < (1+ €op) TIP(1) |77 < 8] P(1)]|52 €0,
so that the desired bound follow by the mean value theorem.
Moreover, we have
1/2 1/2 _ 1/2 _
1P B ()]0 < | P 2PE) 2 |op|PBLE (1)]o < P2 P(t) 72 o8| P(1) ][5,

which translates to a bound of

|PB (Koo (A, B) = Ko < mave [[P2P(0) 2 lop < TIP3} 6o
€lo,
Finally, by the mean value theorem, we can bound for €., < 1/32[|P,[|2, and @ = 8eqp || P4 |2, < 1/4,

1P(8) = Pullop < 4 max 1P| cop < AN Pullon (1 — )= < —(4/3)Y2,

|~

“Note that the canonical state covariance matrix X 4, g, [K] is given by dlyap((A + B:K) ", I). By Lemma B.6, we have that
1= a5 [Klop = 1557 5, [K]llop
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Since P(t) > I, then, this implies that for ¢ € [0,1], P(t) = (1 — é(4/3)3/2)P*, yielding ||P*1/2P(t)’1/2||op <

\/ (1 — £(4/3)3/2) < 9/8. Hence, for this €,p,, we have

1P Bu(Koo(A, B) = K)o < 9P(1)||3feo.

B.4.2. PROOF OF PROPOSITION 7

Since the final bound we derive does not depend on the control basis, we may assume without loss of generality that R, = I.
Recall the steady state covariance matrix E?f*{ g, [K] := dlyap(A, + B, K, I). We shall prove the following lemma.

Lemma B.12. Suppose that || By(K — K, )||l2 < 1/5[|5%Y 5 [K.J|[[35, then | 53Y 5 (K| < 2539 5 (K.l

Note that a similar result was given by Lemma 16 (Fazel et al., 2018); we give our proof using the self-bounding ODE method
to demonstrate the generality of its scope, and to avoid dependence on system matrices. Noting that HZZ‘? 5. [Kllop <

| Py]lop as verified above, it is enough that || B, (K — K,)|l2 < 1/5||Ps]|op to ensure that ||Zf‘4d*j}B* [K]|| < 2P,. When this
holds, we have by Corollary 4, we have (assuming R,, = I)

adj 1/2
Tam. K] = a5, <250 5 [K]llop max{[|[ RY(K — K[}, [|PY* B (K - K.}
< || Pullop max{||RY2(K — K. )|}, | P2 Bu(K — K[},
1Poc (K5 Ay, Be) = Pillop < [[Pellop max{||Ru(K — K.)|[%,, | P/* B (K — K.},

as needed.

Proof of Lemma B.12. We shall now use the self-bounding machinery developed above to bound Efﬁj_ B. [K]. Introduce

the straight curve K (t) := K, 4+ tAg, where A = K — K,, and where the (N) is to avoid confusion with the curve
K(t) = Koo (A(t), B(t)). Let (t) = dlyap(A, + B,K(t), I), so that £(0) = % ; [K,]and £(1) = ¥%" , [K].

By the definition of dlyap, we have that at all ¢ for which K (¢) stabilizes A, B,
£(t) = (Au + BLK(t) " S(8)(As + BLK (1) + 1.
We shall now prove that ¥(¢) satisfies a self-bounding relation analogous to Proposition 4.

Claim B.13. Forall t € [0, 1] for which X(t) is defined, ||~ ()|lop < 2[|Z(8)[|*/?|| B+ Ak |lop-

Proof. Taking a derivative with respect to X, we have
¥/ (1) = (A + BK(1) TS (0)(As + BUE (1) + Qs(®),
where Qs (t) = (ByAg)TE(t)(Ay + BoK (1)) 4 (A, + BoK(t))T%(t) B, Ag. Thus, we can render
S(t) = diyap(A, + B,K(t), Qx(t)).

By an argument analogus to Lemma B.5, we have +5/(¢) < [|Qx(t)||dlyap(A, + B.K(t),I) = ||Qx(t)|=(t), yielding
the self-bounding relation

IZ' @)llop < 1Q(®)lop|IE(E)llop-

Moreover, we can bound for ¢ € [0, 1]

1Qs(®)llop < 212 llopll BeAsllop | Ax + BoK (#)llop
< 213711 B+ Ak llops

where we use thaat || A, + B, K (t)]|2, < ||dlyap(As + BoK(t),1)]lop = [|S(t)lop- O
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We check explicitly that $3(¢) corresponds to the solution of a valid implicit function with domain ¢/ := {24 : ¥adi > (0}
(using the more general second condition that ensures that ¢ — X(¢) is a continuously differentiable funciton, which
follows from the form of dlyap). Applying Corollary 3 with p = 5/2 and ¢ = 2||B,Ak||op. this yields that if o =

(p*1)0||2( )II?){)Q = 35051 BeAkllop < 1. then, (1) lop < (1—u)72/3[|5(0) |op. In particular, if | ByAx |lop <
1/5]|%2(0) 357, then we can show [[Z(1)lop < 2[[2(0)lop- O

B.4.3. PROOF OF PROPOSITION 9

Introduce the curve A(t) = Agate + tA 4, where Ay = Ay — Agate, define Y, (¢) := (21 — A(t)) L. Then, [|A(t)|l3., =
sup,cr || Y= (%)||2. Let us now use the self-bounding method to bound ||Y (¢)||. We can observe that

Y!(t) = (2 — A(t)) P Azl — A(t)) ™

so that ||Y/(t)]|2 < ||Y(t)||3]|A4].. Since Y, (t) corresponds to the zeros of the valid implicit function F)z(A,Y) =Y -

(21— A(t))—1, Theorem 13 implies that, if || A 4| < Thm s = MilzeT Jy(gy7; - then we have 1Y.(1)] < 2 1Y=(0)]]
for all z € T. Hence,
A1l = 1Y2(D) < 1Y2(0)[| = ! (| Asate |
WHe = I?ea% p < I?G%lez( z = 1—a safe||Hoo s
as needed. O]

B.4.4. PROOF OF PROPOSITION 10

Observe that we have
(Az) " diyap|A](Az
< (Az)Tdlyap[A](Az) + T (A — A)Tdlyap[A]Az + 2T (A — A) dlyap[A](A — A)z
< (1 — |[dlyap[Alllop) - = " dlyap[AJz + [|[3 (IlzZ — AllopllAllop + 1A - A\Iip) [[dlyap[A]lop)
< (1= lldyap[Allg + (14 = Allopll Allop + 14 = AJ12,) lldlyap[A]llop)) - 2™ diyap[A]a,

where we used that dlyap[A] = I. In particular, if

~ 1 1
|2~ Allp < g min] Nyl .
P4 [ Allop lldlyap[A][[op °
then, the above is at most, (1 — 1 [|dlyap[A]||=1) - z T dlyap[A]z. O
5 l[dlyap[A][|o, yap

C. Supporting Proofs for Appendix B
C.1. Proofs for Main Technical Tools (Section B.3)

We begin with the following lemma, which follows from a standard computation.

C.1.1. PROOF OF LEMMA B.5

Proof. Let p(Ap) < 1, and so from (B.3) we have that for any Z with Y < Z that
dlyap(4o,Y) = > (Af)TY Af < Z ART Z(AR).
k=0 k=0
Second, if Y = 0, > 77 ((AF) TY (AF)dlyap(4y,Y) = Y.

The third statement is a direct consequence of the first. Moreover, since ] < Ry X Rx + K TR.K, taking Z =
Y ||(Rx + KT RyK) yields the fourth inequality.
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For the last statement, let ||z||s = 1. Then, we have

2T diyap[Aole = & (A F(Ab)e = 3 tr(Abae T (A5)T)
k=0 k=0
= dlyap(Ao, 22"

= |lzz " |oplldlyap(A + BK, I)|lop! = [|dlyap(A + BK, I)||op!.

C.1.2. PROOF OF LEMMA B.6

We begin with the following lemma, whose proof is a straightforward computation.
Lemma C.1. Let A,, B, be stabilizable. For a controler K such that A, + B, K is stable, we define the value function

(o)
VE@) = (@ Kzl"), wherexf" =x, and x" = (A, + B,K)zT.
t=0

We then have z** = (A, + B, K)'z, Zfio(xtK’x)TYzf’m = dlyap(As + By K,Y), and in particular,
VE(x) = 2 "dlyap(A, + B,K,Rx + K RyK)z = 2" P (K)z,

‘We now prove Lemma B.6.

Proof. Introduce the shorthand P, = P, (A, B,), P (K) = P (K; A, B,). and in particular, V> (z) = 2T P, ().
It is well known that " Pooz = V() and that VE=(2) = infx VE(z) < VE(x) (Bertsekas, 2005). Hence,
P, (K) = P. Finally, observe that by using that A + BK is stable, we have

t
. 1
jA,B[L] = lim ; E EA7B)K[X;FRXXi+u;rRuui}
=1

t—o00

: T T
= lim EA,BJ([Xt RxXt + u, Ruut}
t— o0

= tr (i((A +BK) ) (Rx + K" RuK)(A + BK)S> :
s=0
= tr(Ps (K)).

The identity for P, is the special case where K = K. O
C.1.3. PROOF OF LEMMA B.8
Proof. We address each bound in succession.
l. Omin(Py) > 1 by Lemma B.5.
2. We have that
P, = dlyap(As + By Ky, Bx + K, RuK,) = Rx + K] RyK, = K] K,,

since R, = I and Ry >~ I. Moreover, we have that

((A, + B.K,) ") (Ry + K] RyK,)(A, + B,K,)*

M=~

Py, = dlyap(A, + B,K,Rx + K] R K,) =

o+

~ |l
o

= ((Aw + B.K.) ") (As + B.K,)"

o

t
> (A, + B,K,)" (A, + B.K,).
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C.1.4. PROOF OF LEMMA B.9

Proof. The first inequality is precisely Lemmas 12 in (Fazel et al., 2018). In light of Lemma C.1, it suffices to show that
VE(x) = VE«(2) = " dlyap(A, + BK,, (K — K,)" (Ry + B} P.B,)(K — K,))

Lemma 10 in (Fazel et al., 2018) implies (noting Ex, = 0 for Ex defined therein) that

.
VE(z) = VE(2) =) (e ") (K = K\) T (Ru+ B P.BL)(K — K, )z
t=0
= dlyap(A, + B,K, (K — K,) " (Ry + B, P.B,)(K — K,)),

where the second inequality uses Lemmas 12 in (Fazel et al., 2018).

C.1.5. PROOF OF LEMMA B.11

Let us prove the more general claim.

1Al <D 1A lop = D 4/ I(AD) T (A lop
t=0 =

1

< -
= Omin (dlyap[A])

<> — =0 1Ply

t=0 min

<[IPY2> " \/T—p since P =1
t=0

I(AD) T P(AY)lop

1

—||P 1/2
1+T=p
<Py
P 1—-(1-p

< 2||Pl|sh?/p.

C.2. Derivative Computations
C.2.1. PROOF OF LEMMA 3.1

Recall the function
Foare([4,B],P) = A"PA— P - A"PB(R,+ B"PB)"'B"PA+ R,.

Let us compute the differentiable of this map. To keep notation, let us suppress the dependence of the A, B arguments on t.
We have that

DFoareld P, dt]] ;) 5oy p = D(ATPA) —DP+D(A"PB)-(Ry+ B"PB)"'B"PA
—(ATPB)(Ry +B"PB)"'-(B"PA)D
—(A"PB) -D((Ru+B'PB)™")-B"PA
=D(ATPA)+D(ATPB)-K + K" -D(BTPA)

—(ATPB) -D((Ry+B"PB)™")-B"PA,
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where for compactness, we substituted in the formula
K = K(t,P) = —(Ru + B(t) " PB(t)) "' B(t) " PA(t). (C.1

Recall that for a symmetric matrix, we have (X 1)’ = —X ~1 X’ X ~1). Thus, substituting in the definition of K, we can
write the last term in the expression above as

~(A"PB)-D((Ry+ B"PB))B"PA

= (A"PB)(Ry+B"PB)"'(Ry+ B"PB)D(R, + B"PB)"'B"PA

= K'D(R, + B'"PB)K.
Hence, gathering terms, we have

DFpare[d P, dt ATPA)-D(P)+D(ATPB)K + K" -D(B"PA) + K'D(R, + B' PB)K.

HA(t),B(t),P = D(

Let us now adopt shorthand (-)" := % (). Expanding the derivatives using the product rule, we then have
DFpare|d P, dt =A'DPA-D(P)+A'DBK + K'B'"DA+ K'B" -DP - BK
+ATPA+ATPA + ATBK + (BK)"PA
+A"P(B'K)+ (B'K)"PA+ (B'K)" PBK + (BK)' P(B'K).

”A(t),B(t),P

Grouping terms, this is equal to
DF pare|dP, dt = (A+ BK)'dP(A+ BK) —dP|, 5, p
T T
+ A'"P(A + BK) + (A+ BK) PA’|A(t)’B(t)’P
+ (B'K)'"P(A+ BK)+ (A+ BK)"P(B'K
T

=(A+BK)' -dP-(A+ BK) — dP}A(t)vB(t)"P

+ (A'(t) + B'(t)K) " P(A(t) + B()K) + (A(t) + B(t)K)P(A'(t) + B'(1)K)
:=Q1(t,P), and K=(¢,P) asin Eq. (C.1)
= Taw)+ B x[dP] + Q(t, P)dt.

In particular, if Fpare([A(t), B(t)], P) = 0, then for K (¢, p) as in Eq. (C.1), the matrix A(¢) + B(¢)K (¢, P) is stable.
Hence, Ta()+B(1) K (1,P) [] is invertible on S9. Moreover, since the second term has no-explicit depending on d P, we find
that (dP, dt) — DFpare[dP, dt is full-rank, with zero solution

HA(t),B(t),P

N a).z.r

HA(t),B(t),P
dpP = A_(i)+B(t)K(t7P)[Q1(taP)dt] = dlyap(A(t) + B(t)K(t, P), Q1(t, P)).

By the implicit function theorem, this implies that there if Fpare([A(t), B(t)], P) = 0, then there exists a neighborhood
around ¢ on which the function v — P(u) is analytic (recall F page is analytic), and F pare([A(w), B(u)], P(v)) = 0 on this
neighborhood.By the above display then, we have P’(u) = dlyap(A(u)+B(u) K (u), Q1(u)), where Q1 (u) + Q1(u, P(u))
and K (t) < K (u, P(u)) are specializations of the above to the curve u — P(u).

O

C.2.2. COMPUTATION OF K’ (LEMMA B.1)

Throughout, we suppress dependence on ¢, and the computations are understood to hold only at those ¢ for which (A(t), B(t))
is stabilizable.

/

Proof. Note that we can take derivatives freely by Lemma 3.1. Invoking the product rule and the identity (X 1) =
_ Xfl X! Xﬁl),

K'=(Ry+B"PB)™' - (Ry + B"PB) - (Ry+ B"PB)"'B"PA— (R, +B"PB)"'. (BT PA)
= —(Ru+B"PB)"'(Ry+B"PB)-K — (Ry+ B"PB)"}(B"PA)
= —(Ru+B"PB)"' ((Ru+ B"PB)'K + (B"PA)).
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We simplify the expression inside the parentheses as
(Ru+B'PB)K + (B"PA) = B'"P(A+ BK)+ B'P(A' + B'K) + B' P/(A+ BK)
=B "PAq+ B P(Aa,)+ BTP Aq.

Since B’ = Ap, this yields the result. O

C.2.3. COMPUTATION OF P”

Again, suppress dependence on t. We compute P”, which Lemma 3.1 ensures exists whenever (A(¢), B(t)) is stabilizable.
Lemma C.2 (Computation of P"). The second derivative of the optimal cost matrix has the form

P’ = dlyap(AC17Q2)7
where Qz := A P'Aq + AL P' AL, + QY is a symmetric matrix defined in terms of

Q) = AT P(Aa,) + ALP'A s, + ALP(B'E') + (B'K')T PAq + A} P'Aq + A} PAL.
Proof. Applying the product rule to the expression for P’ from Lemma 3.1, we have

P = ALP"Aq+ AP Ag + AP AL

+ A PAL, + AGP Aay + AGP(A4,) + (Aa,) T PAa + A} P'Aa + A PA,
= dlyap(Adl, Q2),

where Q2 := Al] PPAq+ AL P AL+ AT PAA + A P Ay, +ALP(AA,) +(A4,) T PA —i—A}d P'Ag+ AEMPAQI.
We conclude by observing that (A4 ) = (A” + B"K + B'K’) = B'K’, since A and B are linear in ¢. O
C.3. Norm Bounds for Derivatives

C.3.1. NORM BOUNDS FOR FIRST DERIVATIVES

In this section, we work through obtaining concrete bounds on the derivatives of P(t), K () using the expressions derived in
the previous section. As above, we assume that R,, >~ I and Rx > I. We state some more bounds that will be of use to use.
Lemma C.3 (Norm-Bounds for Derivative Quantities). Let (A, By) be given, with P, = P (Ay, By), Ky = Koo (Ax, By),
and A1~ = A + B K, If Ry, Rx > I, then the following bounds hold:

1. Let Ry := Ry + B P,B,. Then forany X,Y € {B,, PY/*B,, R{/* I}, | XR;'Y T ||op < 1.

2. Foro € {op,F}, we have ||A 4|0 < QHPHéI/)zeo.

Proof. First, we have that || XR;'Y  |lop < IXR5 " *[loplY Ry ?llop < \/HXRo_lXT||0p\|YRO_1YTH0p. Since
Ry, P = I, we can verify that XX ", YY" < Ry, which means that | X Ry ' X " |lop, [V Ry 'Y T [|op < 1.

Second, for || - ||, denoting either the operator or Frobenius norm, we bound ||A 4 |l = ||Aa + ApK|o < [|Axllo +
[ABlol[Kllop = €0 (1 + [[Kllop) < 2¢/[|P[lop€o- o

C.3.2. PROOF OF LEMMA 3.2 AND LEMMA B.2
Recall that P’ = dlyap(Ac, Q1), where Q1 := A;P(AAcl) + (Aa,) T PAg. Hence, using Lemma B.5 with R, = I,
followed by Lemmas B.8 and C.3, we can bound
[P[lo = [|dlyap(Act, @1)llo
< [[Pllopll@1llo < 21IPlI3, 1 Actllopl Aag llo
< 2| PI3, - IIPllep” - 2lIPllsp eo = 41113,
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Next, recall from Lemma B.1 that we have the identity
K' = —Ry' (ALPAq+B"P(Aa,) + B P'Ad),

where Ry := R, +B T PB. Next bound each of the three terms that arise. Again using || Ry *|lop < 1and [|Aa|op < ||PH(1)F/,2
(Lemma B.8), we have

IRyt ApPAalle < [|P[3 e

Next, since || Ry ' BT P'/2||,, < 1 (Lemma C.3), we have

I(Ru +BTPB)"" (BTP(Aay) + BT P'Aa) llo < [Pllap? I A llop + 1P~ llop | P llop | Act lop
< 2||Pllopeo + P72 lopll P’ llop I Pllep?
< 2||Pllopeo + 4I| Pl|7}2eo.

o

where the second to last line uses Lemma B.8, and the last line uses || P~1/2||,, < 1, as well as || P’||o, < 4/ P]|3,. Putting

the bounds together, we have || K’ ||, < 7HP||Z{,260.

0.
We also restate and prove an an analogous bound that pre-conditions K’(¢) by appropriate matrices.

LemmaB.2. |RY?K'||, vV |PY2BK'||s V |BK'||o < 7||P|5 €.

Proof. The bound is analogous to the bound on K’ from Lemma 3.2, but now uses right multiplication of R ! which
adresses left-multiplication by B, PY/2B, Ri/*. O

C.3.3. NORM BOUNDS FOR SECOND DERIVATIVES

Next, we turn to bounding P” and K. We shall need some intermediate lemmas. Let us bound the intermediate term A,

Lemma C.d. It holds that max{||Aa,,lo, | AL [0} < 9|P3 *€o, and | A4 |lo < €ocop|Pll5h -

Proof. Al; = A4, + BK’'. From Lemma C.3, [[Aa,llc < 2¢/||P|lop€c. Moreover, from Lemma B.2, | BK'|, <
7||P||Z{)260. Thus, ||AL |l < 9||PHZI/;260. The second bound uses Ay = ApK’, and the same bound on || K’||.. O

Next, we bound the norm of P”.

Lemma C.5. We have the bound || P"||s < poly (|| Ps|lop)€op€o-

Proof. Recall that P = dlyap(Aq, Q2), where

Qy=AJPAq+ALP A,
+ AL P(A4,) + AP Ay, + AJP(B'K') + (B'K')TPAq + A} P'Aa + A} PA,.

Hence, ||P"||op < || P]|op||@2]lop- We upper bound the norm of Q2 by
1Q2llo < 2 (1 AGllo 1P lopll Actllop + | AGIo 1A A lop | Pllop + 1Bl 1 K lop 1P Actllop + | Act[lop | P llop 1A aui o) -
Using Lemma B.8 and Lemma 3.2, one can show that

1P"]lo < poly (|| Psllop)€ap€o-
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Proof of Lemma B.3 . From Lemma B.1, we have that
K'=—(Ry+B'"PB)™' (ALPAq+ B"P(As,) + B'P'Ag). (C2)
Denote Q3 := ALPAy + BT P(Aa,) + BT P'Aq, and Ry := R, + B' PB. Then, we have
= Ry'Q3(t) + Ry ' (Ru+ BT PB) Ry Qs(t)
= Ry;'Q4(t) + Ry (Ru + B"PB)K'.
Lets first handle the term R, 'Q%(t). From Lemma C.3, we have that || Ry ' ||op < 1, || Ry " Blop. Thus,
1R85 Q5(D) 1o < 1B lop| A5 PAa) |0 + |1 R Bllop || (P Act)’[lo
< IAEPA) [l + (P Aa) |10
< [[Asllol1Pllop Al P'llop | Actllop + 1P”llo [ Actllop + [P [lo [l AGi llop
< poly([[ Ps|lop)€op€os
where we invoke the derivative computations above. Similarly, we can show that
IRy (Ru+ B PB)'K'l|lo < |Ry'ApPBE||o + || Rg ' B P'BK'||o + || Ry ' BPARK' |,
< (I1R5 lop | Pllop€op + 1R " B llop | P llop) 1B llo + | Rg ™ Bllop | Pllopeal | K [lop
< (IIPllop€op + 1P llop) I BE o + [ Pllop€o | K lop < pOly ([ Pllop)€ocop-

D. Self-Bounding ODE Method

We begin by stating Theorem 13, which provides a generic guarantee for self-bounding ODES (Definition 3.3).

Theorem 13. Let (F,U, g, || - ||, z(-)) be a self-bounding tuple. Suppose that for some 1 > 0, h(-) satisfies h(z) > g(z) +n
forall z > ||y(0)||, and that the scalar ODE

w(0) = [ly(O)]l +n, w'(t) = h(w(t)

has a continuously differentiable solution on [0, 1]. Then, there exists a unique continuously differentiable function y(t) € U
defined on [0, 1] which satisfies F(x(t),y(t)) = 0, and this solution satisfies ||y(t)|| < w(t) < w(1), |y’ (¢)]| < g(w(t)) <
g(w(1)) forall t € [0,1].

We shall prove the above theorem, and then derive Corollary 3 as a consequence. We begin the proof of this theorem with a
simple scalar comparison inequality.

Lemma D.1 (Scalar Comparison Inequalities for Curves). Suppose that x(t), w(t) are continuously differentiable curves
defined on [0,u). Suppose further that, for a function f(-,-), 2'(t) = f(x(t),t), and that w'(t) = g(x(t)). In addition,
suppose

1. w(0) > z(0)

2.9()=0

3. Fort € [0,u) such that x(t) > w(0), g(z(t)) > f(z(t),?).

Then, x(t) < w(t) fort € [0, w).

Proof. Define 6(t) = w(t) — x(
such s := sup{t: 6(¢') > 0, V¢’
) —

)
and therefore ¢'(s) = g w(s)
(-

). Since 6(0) > 0, there exists an s > 0 such that §(¢) for ¢ € [0, s). Choose the maximal
< t}, and suppose for the sake of contradiction that s < u. Then, by continuity, §(s) = 0,

f@(s),s) = g(a(s)) — f(2(s), ), since 2(s) = w(u) for §(s) =

(
Next, note that since g(-) > 0, w(t) is non-decreasing on [0, ), and thus w(s) > w(0) for all s € [0, u). Since z(s) = w(s)
at s, we have z(s) > w(0) as well. Thus, §'(s) = g(x(s)) — f(x(s), s) > 0, by the assumption of the lemma. Hence, for
an € > 0 sufficiently small, 6(s — €) < 6(s) = 0. This contradicts the fact that of §(¢') = 0 for all ¢’ < s. O
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Next, we extend the above scalar comparison inequality to a comparison inequality between scalar ODEs, and vector ODEs.

Lemma D.2 (Norm Comparison for Vector ODE). Let || - || denote an arbitrary norm. Suppose that v(t) € R is a
continuously differentiable curve defined on [0, u) such that ||[v'(t)|| < g(||v(t)]|) for a non-decreasing function g. Fixn > 0,
and let h(z) denote a function such that h(z) > max{0, g(z) + n} for all z > ||v(0)||. Then, if the ODE

w(0) = [v(0)[ +n, w'(t) = h(w(t))

has a continuously differentiable solution defined on [0, w), then |v(¢t)|| < w(t) forall t € [0,u)

Proof of Lemma D.2. The main challenge is that ||-|| may be non-smooth. We circumvent this with a Gaussian approximation.
Let ¢z == Ezno,nlllZ]], and for every n > 0, and define ¥, (v) := Ezno,nlllv + 3L Z]|]. Defining cz :=
Ez~n0,1)[/|Z]l]. Moreover, we can see that 0 < [jv|| < ¥, (v) < [jv|| + /2 < |Jv]| 4 7 by Jensen’s inequality and the
triangle inequality. Consider the curve z(t)

2(t) = ¥y (v(t)),t € [0,u),

Note then that the curve satisfies

d
S, (0(1)))

2(0) = Wy(v(0)), and a'(t)) = f(t,2(t)) =
where f(¢,z(t)) does not depend implicitly on z(t), but only on ¢ through the function ¢ — v(t).

Now, let g be a monotone function satisfying ||v’(¢)|| < g(]|lv(¢)]|), and let h be the assumed function satifying h(z) >
g(z) +nforall z > ||v(0)]| + 1. We define the associated ODE

w(0) = v()[ +n, w'(t) = h(w(t)),

which we assume is also defined on [0, u). We would like to show that w(¢) > x(t) for ¢ € [0, w). To this end, we would
like to verify the conditions of Lemma D.1. First, we have w(0) = [[v(0)|| +n > ¥, (v(0)) = 2(0), by above application
of the triangle inequality.

For the second condition, we have

Ft,00) = (0 00) = 5 Ezion |

n
—7
ot 2cy ‘H

< EZNN(O,l) [ )+ 2CZZH]

Uy (V' (1)) <[l ()] +n
< g(llv( )) +mn  (since g satisfies [|v'(£)[| < g([[o(£)]]))
< g(¥,(v(t)) +n (since g is monotone)

— glx(t) +n.

Now, if h(z) > g(z) + n for any z > w(0), then, we see that, for any ¢ € [0,u) such that z(t) > w(0), we have

w
f(t,z(t)) < h(x(t)). Lemma D.1 therefore implies that z(t) < w(t) fort € [0,u). But z(t) = ¥, (v(t)) > [|v(¢)||. O
Let us now prove the general guarantee for self-bounding functions.

Proof of Theorem 13. Observe that by the valid-function assumption and the assumption that F'(z(0), y(0)) has a solution,
there exists some interval [0, ) on which a solution y(t) to F(«(¢),y(t)) = 0 exists. Let u denote the maximal value of
u < 2 for which this holds.

First, let us bound ||y (¢)|| for ¢t € Z := [0, ) N[0, 1]. By assumption, there is a function h(z) > ¢(z) + 7, where g(z) is non-
negative and non-decreasing, such that the scalar ODE w’(t) = h(w(t)) has a solution on [0, 1] with w(0) = ||y(0)| + 7.
By Lemma D.2, we then that ||y(¢)|| < w(¢) on Z. Moreover, since w’(t) > 0 since h is non-negative, we have
ly(DI < w(t) < w(1)onT.
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We conclude by showing that Z = [0, 1]. Suppose for the sake of contradiction that Z # [0, 1]. Then u € (0, 1]. Moreover,
by Definition 3.2, F'(x(u),-) = 0 has no solution, since otherwise, y(¢) would be defined on [0, u + €) for some ¢ > 0,
contradicting the maximality of u. Therefore, to contradict our hypothesis Z # [0, 1], it suffices to show that F'(z(u),-) =0
has a solution. To this end, define

@@wzélﬁMu

which is well defined and continuous for s € [0, u), since y'(s) is continuously differentiable on this interval. Moreover,
Iy @) < g(y()) < gw(t)) < g(w(1)) on [0,u) since y(t) < w(t) < w(l). Therefore, ¥/ (¢) is uniformly bound on
[0, ), so that §(u) = lims_,, Y(s) is well-defined at u, and in fact continuous on [0, u).

Since y(s) is continuous on [0, ], and since F(-,-) and z(s) are continuous, lims_,, F(z(s),y(s)) = F(x(u),y(u)).
But by the fundamental theorem of Calculus, we see that y(s) = y(s) for s € [0,u), so that F'(x(

F(A(s),B(s),y(s)) = 0for s € [0,u). Thus, lims_,,, F(A(s), B(s),y(s)) = 0, and hence F(z(u),y(u)
shows that F'(x(u), -) = 0 has a solution, as needed. O

We now prove the corollary for the specific function form g(z) = czP.

Proof of Corollary 3. Fix nn > 0 to be selected later. By assumption, we have

ly' O < g(lly@I),  9(z) = 2P

Moreover, for an 77 > 0 to be selected, and for z > ||y(0)

, we have

T Np ().

=cy

Now, consider the ODE

w,(t) = h(wy (1)),  wy(0) = [ly(0)[lop + 7-
Let us show that, for 7 sufficiently small, this ODE exists on [0, 1]. Indeed, the solution to this the ODE is
1 1
1 - o1 = cyt.
(p— 1)wn (0) (p— 1)wn (t)
So that a continuously differentiable solution w,, (t) exists for ¢ € [0, 1] as long as
1 1

o (p — wh~1(0) = D(yO)[+n)r1 (D.1)

and the solution is given by

) /-1
“”)mem+m%1‘@‘”%0 |

In particular, if ¢ < W, then since lim,_,q ¢, = c, there exists an 19 > 0 sufficiently small so that the
condition in (D.1) the above display holds for all n € (0, 7). Therefore, by Theorem 13,

1 *(P*l) 1 *1/(17*1)
max Il < inf w,(t)=—— —ct <[ —— —¢(p=1 .
g lly@®l < ot wa(®) QW@Wl ) ‘(M@Pl ® 0

In particular, when o = ¢(p — 1)||y(0)|P~! < 1, then

max [[y(t)]] < (1—a)~/®D|y(0)].
tel0,1]

Hence, for all ¢ € [0, 1], we have that ||y(¢)| < c¢(1 — a)~P/@=1 ||y (0)]. O
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E. Concentration and Estimation Bounds
E.1. Ordinary Least Squares Tools
In what follows, we develop a general toolkit for analyzing the performance of ordinary least squares. First, let {z;};>1 €

(RYN and {y;};>1 € (R™)Y denote sequences of random vectors adapted to a filtration {F; };>0. We define the empirical

covariance matrix Ar := Zthl z;2z, . We begin with a standard self-normalized tail bound (cf. (Abbasi-Yadkori et al.,
2011)).

Lemma E.1 (Self-Normalized Tail Bound). Suppose that {e;};>1 € RY is a scalar F;-adapted sequence such that
e | Fi_1is o? sub-Gaussian. Fix a matrix Vo = 0. Then with probability 1 — §,

T
E Xi€¢
t=1

2

1 _ _
< 202 log {5 det(Vy 2 (Vo + Ar)V 1/2)} .
(Vo+Ar)—1

As a corollary, we have the following Frobenius norm bound for regression.
Lemma E.2 (Frobenius Norm Least Squares, Coarse Bound). Suppose that the sequence e; == y; — O,z; € R™ is

o?-sub-Gaussian conditioned on F,_,, and define the least squares estimator O := (23:1 ytzt) (Ez;l 72, ). Then,

~ —1/2 —1/2
P ({181~ 0.1 = smnin (Ar) ! log { 2920020 1 (= A0} <5,

and

—~ —1/2 —1/2
P H@T — 0,2, = 6Amin(Ar) " (dlog5 + log{dEt(SA(’ (Ar)A }} N{Ar = Ao}} <. (E.1)

Unfortunately, this tail bound will lead to a dimension dependence of 2(d), which may be suboptimal if A1 has eigenvalues
of varying magnitude. Instead, we opt for a related bound that pays for Rayleigh quotients between Ay and A .

Lemma E.3 (Frobenius Norm Least Squares, Refined Bound). Fix a matrix Ag > 0, and let vy, . . ., vq denote its eigenbasis
T .

ordered by decreasing eigenvalue. Define the Raleigh quotients k; := ?T//::'] . Then, in the setting of Lemma E.2, the least
j j

squares estimator O admits the following bound on its Frobenius error:

d
P {167~ 0.1 > 3mo* Y- As(Ag s log L b 11 {Ag = Ag}| <6
j=1

Lemma E.4 (Covariance Lower Bound). Suppose thatz; | Fi—1 ~ N(zZ, %), whereZz and ¥; € R¢ are Fy_1-measurable
and ¥y = X = 0. Let € be any event for which At := E[ArL(E)] satisfies tr(Ar) < TJ for some J > 0. Then, for

2000 J
T>""1(2dlog 12 4+ dlog — >
Z =5 ( og =~ +dlog (3 )

it holds that, for N := £2-%

9T

E.2. Basic Concentration Bounds

Here we state some useful concentration bounds for Gaussian distributions.

Lemma E.5 (Proposition 1.1 in (Hsu et al., 2012)). Let g ~ N(0, I4) be an isotropic Gaussian vector, and let A be a
symmetric matrix. Then,

P “gTAg —tr(A)] > 2672|| Al + 2t[| Allop| < 2¢7".
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By replacing the Frobenius and operator norms in the above inequality with the Hilbert-Schmidt norm, we obtain the
following corollary.

Corollary 5. Let A = 0, and let g ~ N(0,1;). Then, with probability 1 — § for any § < 1/e,

g Ag <tr(A)log % = E[gTAgt] log %

E.3. Proofs from Appendix E.1
E.3.1. PROOF OF LEMMA E.2

We assume without loss of generality that o?=1lete, =y, — O,z Let X € R”? denote the matrix whose rows are e,
and E® e RT denote the vector (e1,-..,er;), where e, ; is the i-th coordinate of e;. Let Ayin := Amin(Ao). Then,

A i 112
10r - 0.l = ||ar'x" B
i=1

< Amin(Ar) ! Z HA;1/2XTE(2‘ i
i=1

= huin(Ar) [ XTED
=1

<3S huatn x5

-1
Ar

(Ar+3iA0)~ v

where the last line holds for Ag < A7. Invoking Lemma E.1, we have that with probability at least 1 — 4, it holds for any
fixed i € [m] that

e

< 210g{6 det((A

2) 1/2(A0 —|—AT)(AO)_1/2)}~

(Ar+Ap)~? 2 2

Since Ag < A, we have % +Ar < %A, when the above can be bounded by

HXTE(z

1 _
(Ar+Ag)—1 — < 2log {6 det(3(Ag)~/?ArA, 1/2>} '

Union bounding over ¢ € [m] and summing the bound concludes.

E.3.2. PROOF OF LEMMA E.3

We assume without loss of generality that 02 =1.Lete; = y; — O,2;. Let X € RT? denote the matrix whose rows are e,

and E® e RT denote the vector (e1,--.,er,), where ey ; is the i-th coordinate of e;. Let Apin := Amin(Ao). Moreover,
let vy, ..., vy denote an eigenbasis for the matrix Ay, which we note is non-random. When Ap = XTX = Ay, we can then
render

~ 12
167 — 0. = Y [ (xTx) X TEY||

I

s
I
-

HAgleE@) i
2

.

ﬁ
Il
-

(U]TAEIXTE(Z')) 2

.
M=~

s
Il
-

.
Il
-

)\j(AO)—z (UJTXTE(i))2

o
M=

@
Il
-
.
I
-



Naive Exploration is Optimal for Online LQR

Define the vector X; = Xwv,. Then, (UJTXTE@))2 can be bounded as as

(vaXTE@)) X 13 (BDTX, (X]X,)" X] EO
————

—2
:HXJH2

w

< DI BOKT BO)T (LA (h) + X X)X EO,

[\

where we use the fact that Ay < Ap = XTX. Hence, by the self normalized tail inequality Lemma E.1, it holds with
probability 1 — § that

: Ao) + 11Xl 311X;13
T~ T (i) ( 0 2 Jl2

v, X' E <3|1X13 lg < 3|1X;|131 .
(v ) 2 ISV 2% N (Ao))
Hence, recalling that k; := ”TiTU’ we conclude that, with probability 1 — 4,

H ]”2
@ -0, < E E A X —_—
|| T HF 3)‘ 0 || ||2 (“0)5

7,1]1

_3mZ)\ (Ao) 'k, log 5‘

E.3.3. PROOF OF LEMMA E .4

By the the Paley-Zygmund inequality (specifically, the variant in Simchowitz et al. (2018, Equation 3.12)), one can easily
show that the sequence (z;) satisfies the (1, X, 10) -block martingale small ball property (Simchowitz et al., 2018, Definition
2.1). Then, for any matrix A, > 0, Simchowitz et al. (2018, Section D.2) (correcting the section for a lost normalization
factor of T) shows that

1610 10

o7 100 1A lop
< 2d1o dlog 2tllop v E2
= OXP ( Tooo T 24loe(=57) +dlog TAmin(Z)) (E.2)

H T 7 T( ’ )? }ﬂ {Ar = A+}] < eXp(—lT(f;J)2 + 2dlog(%) + log det A+(T2)—1)

Now, notice that if we select Ay = @I , the bound ||Al|op < tr(A) for A > 0 and an application of Markov’s inequality
show that, P[{Ar Z A4} N&] < 4. Hence, we have
) o

o or 00 r(Ar)
< inf 574 ———— +2dl lo .
<o eXp( 1000 T 2d1oe(=7) +dlog mm(z)é)> +o

3 9T 100
<j _
[ T 16(10)] jufe Xp( 100 + 24los(=57) Fdlog

Note that balancing ad—% = § selects § = a'/?*1, giving that the above is at most

1 (9T 100 tr(Ag)
2exp [ ———— [ = — 2dlog(~) — dlog —2T) ) )
xp ( d+ 1 <1000 og(—5~) —dlog T)\min(E)))>

We conclude by bounding tr(Ar) < JT by assumption and applying some elementary algebra.
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Part 11
Lower Bound

F. Proof of Lower Bound (Theorem 1)

We now prove the main lower bound, Theorem 1. The proof follows the plan outlined in Section 2: We construct a packing
of alternative instances, show that low regret on a given instance implies low estimation error, and then deduce from an
information-theoretic argument that this implies high regret an alternative instance. All omitted proofs for intermediate
lemmas are given in Appendix G. Recall throughout that we assume o2, = 1.

F.1. Alternative Instances and Packing Construction

We construct a packing of alternate instances (A, B.) which take the form (A, + K, A., B, + A.), for appropriately
chosen perturbations A, described shortly. As discussed in Section 2.1, this packing is chosen because the learner cannot
distinguish between alternatives if she commits to playing the optimal policy u; = K,X;, and must therefore deviate from
this policy in order to distinguish between alternatives. We further recall Lemma 2.1, which describes how the optimal
controllers from these instances varying with the perturbation A.

Lemma 2.1 (Derivative Computation (Abeille & Lazaric (2018), Proposition 2)). Let (A, By) be stabilizable, and recall
Al = A + By K,. Then,

d
ﬁKOO(A* —tAK,, B, + tA)]tZO

= —(Ru+B/P.B,) ' -ATP A,

In particular, if A is non-degenerate, then to first order, the Frobenius distance between between the optimal controllers for
Ay, By and the alternatives (4., Be) is Q(||Allr).

To obtain the correct dimension dependence, it is essential that the packing is sufficiently large; a single alternative instance
will not suffice. Our goal is to make the packing as large as possible while ensuring that if one can recover the optimal
controller for a given instance, they can also recover the perturbation A.

Letn = dy, and let m < d be the free parameter from the theorem statement. We construct a collection of instances indexed
by sign vectors e € {-1, 1}[”]X[m]. Let wy, ..., w, denote an eigenbasis basis of (R, + B] P,B,)™!, and vy, ..., v,
denote the first m right-singular vectors of Ag . P,. Then for each e € {-1, 1}[M*Im] the corresponding instances is

n m
(Ae, Be) == (Ay — A K., B, + A.), where A, = €pack Z Z ew-wiv;. (F.1)

i=1 j=1

It will be convenient to adopt the shorthand K, := K. (A¢, Be), P. = Poo(Ae, Be) and J. = Ji, p,»and V. =
max{1, [[Ae|lop, || Bellop}- The following lemma—proven in Appendix G.1—gathers a number of bounds on the error
between (A., B.) and (A,, By) and their corresponding system parameters. Perhaps most importantly, the lemma shows
that to first order, K. can be approximated using the derivative expression in Lemma 2.1.

Lemma F.1. There exist universal polynomial functions pi,pa such that, for any epack € (0,1), if egack <
p1(|Pcllop) ~* /nm, the following bounds hold:

1. Parameter errror: max{||A. — A,||r, || Be — Bullr} < /|| Prllop vVMn€pack-

2. Boundedness of value functions: ¥, < 2'/50, and ||P, — Py |op < 2'/°(| Py||op-

3. Controller error: || K. — K, || < 2||P.]|3 mne’, .

4. First-order error: | K, + %KOO(A* —tAK,,B, + tAe)‘t:O — K|} < p2(||P*||Op)2(mn)26éack.
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Notably, item 4 ensures that the first order approximation in Lemma 2.1 is accurate for €, sufficiently small.

Going forward, we we choose the polynomials in the above lemma p1, ps to satisfy p1(z), p2(z) > « (without loss of
generality). We use that || Py ||op > 1 repeatedly throughout the proof.

Lemma F.2 (Lower bound on || Py||op). If Rx = I, then P, = I, and in particular || Py||op > 1.
Proof. This is Part 4 of a more general statement, Lemma B.5, given in Appendix B. O

Henceforth, we take €,k sufficiently small so as to satisfy the conditions of Lemma F.1.

Assumption 2 (Small €j,,ck)- 6;2>ack < ﬁ(Pl(llP*Hop)_l A %pQ(HP*HOP)_l)-

F.2. Low Regret Implies Estimation for Controller

We now show that if one can achieve low regret on every instance, then one can estimate the infinite-horizon optimal
controller K. Suppressing dependence on 7', we introduce the shorthand ERegret, [r] := ERegret 4, p_r[7]. Going
forward, we restrict ourselves to algorithms whose regret is sufficiently small on every packing instance; the trivial case
where this is not satisfied is handled at the end of the proof.

Assumption 3 (Uniform Correctness). For all instances (Ae, B.), the algorithm m ensures that ERegret [r] <

m — Yerr, Where Yerr 1= 6||P*ng\113

We now define an intermediate term which captures which captures the extent to which the control inputs under instance e
deviate from those prescribed by the optimal infinite horizon controller K on the first 7'/2 rounds:

T/2
K-Erre[r] :=Ea, .« | Y [0 — Kexe||?

t=1
The following lemma, proven in Appendix G.2, shows that regret is lower bounded by K-Err,[r], and hence any algorithm

with low regret under this instance must play controls close to K x;.

Lemma F.3. There is a universal constant e,y > 0 such that if Assumptions 2 and 3 hold and T' > ey || Py ||§p\113, then
1
ERegret, [r] > iK—Erre [7] — Yerr-

In light of Lemma F.3, the remainder of the proof will focus on lower bounding the deviation K-Err.. As a first step, the
next lemma—proven in Appendix G.3—shows that the optimal controller can be estimated well through least squares
whenever K-Err, is small. More concretely, we consider a least squares estimator which fits a controller using the first half
of the algorithm’s trajectory. The estimator returns
T/2
Kig = argéninZHut — thH27 (F.2)

t=1

when Z;‘F:/f xtxtT > Ccmind - I, and returns K15 = 0 otherwise.

Lemma F4. If T > codx log(1 + dx|| Pxllop) and Assumptions 2 and 3 hold, and if cyiy is chosen to be an appropriate
numerical constant, then the least squares estimator Equation (F.2) guarantees

K-EI‘I‘E[’/T] Z CLsT . IEAQ,BE,W |:||I?LS — KQH%:| — 1,

where cy and c1,5 are universal constants.

Henceforth we take 7" large enough such that Lemma F.3 and Lemma F.4 apply.
Assumption 4. We have that T > codx 10g(1 + dx|| Pylop) V Cerr|| Pe||2, 5.

o
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F.3. Information-Theoretic Lower Bound for Estimation

We have established that low regret under the instance (A., B.) requires a small deviation from K. in the sense that
K-Err,[n] is small, and have shown in turn that any algorithm with low regret yields an estimator for the optimal controller
K. (Lemma F.4). We now provide necessary condition for estimating the optimal controller, which will lead to the final
tradeoff between regret on the nominal instance and the alternative instance. This condition is stated in terms of a quantity
related to K-Err,:

T/2
Ki-Erre[n] :==Ea, B, n Z lu, — K,xq )% -

t=1

Both K,-Err.[r] and K-Err.[7] concern the behavior of the algorithm under instance (A, B ), but former measures
deviation from K, (“exploration error”’) while the latter measures deviation from the optimal controller K.. Our proof
essentially argues the following. Let (e, €’) be a pair of random indices on the hypercube, where e is uniform on {—1, 1}"™,
and €’ is obtained by flipping a single, uniformly selected entry of e. Moroever, let P, P/ denote the respective laws for our
algorithm under these two instances. We show that—because our instances take the form (A, — AK,, B+ A)—K,-Err,[n]
captures the KL divergence between these two instances:

EeK,-Erre[r] & Ee o KL(P,, Per),

where the expectations are taken with respect to the distribution over (e, €’). In other words, the average error E.K,-Erre[7]
corresponds to the average one-flip KL-divergence between instances. This captures the fact that the instances can only be
distinguished by playing controls which deviate from u; = K,x;.

As a consequence, using a technique based on Assouad’s lemma (Assouad, 1983) due to (Arias-Castro et al., 2012), we
prove an information-theoretic lower bound that shows that any algorithm that can recover the index vector e in Hamming
distance on every instance must have K,-Err, [r] is large on some instances.

As described above, the following lemma concerns the case where the alternative instance index e is drawn uniformly from

the hypercube. Let E. denote expectation e unif {-1, 1}[”] x[m] and let dham (e, €') denote the Hamming distance.

Lemma F.5. Let € be any estimator depending only on (X1, ...,Xr/2) and (uy, ..., uy/s). Then
. R nm
either E K, -Erre[r] > T or EcEa, B, Alg|dnam(e, €)] > E
€
pack

The above lemma is proven in Appendix G.4. To apply this result to the least squares estimator K Ls, we prove the following
lemma (Appendix G.5), which shows that any estimator K with low Frobenius error relative to K. can be used to recover e
in Hamming distance.

~

Lemma F.6. Let é})j(l?) = sign (w;' (K — K,)vj), and define vy = ||[Ry + B/ P.By|lop/0k(Ac+). Then under
Assumption 2,

2K — Kelle | 1

2 2
Vin€pack 20

dham(/e\i,j(f?)7 eij) < nm.

Combining Lemmas F4, E.5, and F.6, we arrive at a dichotomy: either the average exploration error K,-Err,[r] is large, or
the regret proxy K-Err.[n] is large.

unif

Corollary 6. Lete ~ {-1, 1}["] x[m] Then if Assumptions 2, 3,and 4 hold,

either E K,-Erre[r] > 46%, or EeK-Erre[r] > %Tnmufneiack — s - (F.3)
pack

(sufficient exploration) (large deviation from optimal)

Proof. Lete = Q(IA{ Ls), where € is the estimator from Lemma F.6, and K Ls 1s as defined in Lemma F.4. Since this estimator
only depends on X1, ..., X7/3 and uy, ..., uy/o, we see that if the first condition in Equation (F.3) (sufficient exploration)
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fails, then by Lemma E.5, we have EcEx, B, Ag [dham(€,€)] > % = = + 25, Thus, by Lemma E.6, we have

2E.Ea,, De :'g‘lf Kellr > | yielding EcE 4, 5, A|g||K K% > onmz/fnef)ack The bound now follows from
m “pac

Lemma F.4. O]

F.4. Completing the Proof
To conclude the proof, we show (Appendix G.6) that E.K-Erre =~ E.K,-Erre, so that the final bound follows by setting

p'1ck ~ oy 1/

Lemma F.7. Under Assumptions 2 and 3, we have EoK,-Erre[r] < 2B K-Erre([n] + 4nmT|| P[5 €2 Sack:

Combining Lemma F.7 with Corollary 6, we have

n 2 2
max K-Err.[n] > EK-Erre[n] > ( = — 2nmT || P, |5 € pack> A ﬁTnmu €pack-

pack

Setting €2
hold,

1 . . . _ . .
pack = 3Pl VT and substituting in n = d, we find that as long as 7" is large enough such that Assumptions 2-4

max K-Err.[7] 2 du\/mT/HP*Hi A d%mTVﬁI/HP*ng -1

(1 Av2)/md2T /||P||

Thus, by Lemma F.4, we have that for a sufﬁc1ently small numerical constant C’lb (which we choose to have value at most 1
without loss of generality),

LAV2)/d2mT 1 1A V2)A\/d2
> o0y, LA V)V dum > o0y, AV AT I3, w2,

max ERegret, [r] > — = = Yerr 2
e 1P 13, 2 1P 113,
It follows that once
2ot (1vuyt
T> e (P*ng(nm v % v dy log(1 + dx|P*||0p)> , (F4)

where ¢; and p sufficiently numerical constants, Assumptions 2 and 4 are indeed satisfied, so we have

1AV2)/d2mT
> C]b( Vm) le = R

max ERegret, [7| >
: 2 1212,

We now justify Assumption 3. Suppose the assumption fails, i.e. for some instance e the algorithm has ERegret [7] >
6\1/2d —Yerr- Then since Cyy, < 1 and || Py||op > 1, we see that if VT > 12W2d, /v/'mn?2, then ERegret, [7] > 2R —Yerr >

R. By taking ¢; sufficiently large, we see that whenever Equation (F.4) holds, we have ERegret [7] > 2R — Yeorr > R as
desired.

To conclude, we verify that the construction is consistent with the scale parameter e7 from the theorem statement:

(@) (@)
14e = A& V| Be = Bulli < nmepa[Pellop < n/m/T < er,

where (i) follows by Lemma F.1, and (i¢) follows by plugging in our choice for €pacx. 0

G. Additional Proof Details for Lower Bound (Appendix F)
G.1. Proof of Lemma F.1
Observe that
max{[[Ae — Aullops | Be = Bullop} < max{||A. — Alle. | B. — Balr}
< max{|| K. [lf*, 1HAllp

op

< VMNeEpack maX{HK*Héf, 1} < 4/ I1Pscllop vVmmepack,
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where the last inequality is by Lemma B.8. This prove the first point of the lemma. Next, if €

HP*lnc,p C2 (A4, B,)/nm, then,

2
pack S

ma‘X{”Ae - A*”op» ”Be - B*Hop} < < (1 — 21/5),

1
Csafe(A*a B*) o
which implies ¥, < 2/° max{1, | A, lop; | B«|lop }- Moreover Theorem 5 yields

IP. = Pullop < LOS5Pullop < 2/ Pe]op.

For the next point, Theorem 12 bounds the error of the Taylor approximation, and implies that for some polynomial p,
| = (Ru+ B]P.B,) ' -ATP Ay, + K, — K.|%

PP ]lop) max{[|Ae — Aullop, | Be = Bullop}? max{[|Ae — Asllr, [ Be — Bullr}?

Pl Pellop) max{]|Ac — Aullr, [|Be — Ballr}*

(nm)? || Pl op® ([l Pellop) €pack-

=p2(p([ Pxllop))
Finally, point 4 follows by bounding
1K, = Kelle < || = (Ru+ Bl P.B.) ™" - ATP A + Ky = Kellp + | (Ru + B/ P.B,) " - ATP Ay,

< mnepaab2(|Pellop) + [(Ru + Bl P.B) ™! - ATP Aa |l
< mnegaac2 (| Pellop) + I AT ] Pellop | Act e llop
< mnepaacP2 (| Pllop) + [1A[lpll Pl (Lemma B.8)
< mnepaacba (| Prllop) + €paciey/mn | Pul |3

< 1/mnpoly (|| P« |lop). the expression above can be made to be at most anepdeHP ||

IN

<
<

By taking €2

pack —

G.2. Proof of Lemma F.3
Our strategy is to relate Regret[m; A, Be| and K-Err.[n] to the benchmark inducted by following the true optimal policy
7y = Tx(A, B) which minimizes E4_ g, » Zthl c(x¢, ut)] over all possible policies 7.

To begin, consider an arbitrary stabilizable system (A, B). Let K, := K. (A, B) and P, = Py (A, B). For T fixed and
a control policy T, let

T/2
K-Err[r] :=Ea p.r Z u — Koo (A, B)x¢ |2

We define the @-functions and value functions associated with the LQR problem as follows.

T
Qt;T(CC,U) = EA,B,‘n'* ZC(XSa us) | Xt =T, U = U Vt;T(x) = igf Qt;T($7U)7

s=t

where E4 g r, (4,8)[- | Xt = 2, u; = u] denotes that the state at time ¢ is X; = =, inputs is u; = w, and all future inputs are
according to the policy 7, (A, B). Note then that 7, always perscribes the action u; := arg min Q.7 (x, u) at time t. We
can now characterize the form of the Q.7 and 7, using the following lemma.

Lemma G.1 (Optimal Finite-Horizon Controllers (Bertsekas, 2005)). Define the elements
Pi1:=Ry+A"PA— A"P,BY'B"P,A,
Y41 := Ry + B'P,B,
K11 = -%, BT PA,

with the convention that Py = Ry. Then, Vy.r(x) = &' Pr_yx, and Qur(x,u) — Vir(z) = |lu — Kp_yz|§,_, and
(T e (xe) = Kr—¢ xq.
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For completeness, we prove the lemma in Section G.2.1. Having defined the true optimal policy, we that the regret is lower
bounded as follows.

Lemma G.2. Fix a system A, B, and suppose that Regretp[m; A, B < T J} g. Then,

1
Regret[m; A, B] > iK-Err[ | =Tk | 2T (maic 77t> + Zﬂt ;
>0

where we define the errors n; := ||S] (Ko — Kt)R_1/2 113

Proof of Lemma G.2. We compare both the cost under 7 and the cost under a comparator to V.7(0), the value of the
optimal policy starting at x; = 0.

T
Regretp[m; A, Bl =Ea B [Z cr(xe, ut)] ~Vi7r(0) = (TJ% p Koo — V1,7(0))
t=1

T T
2 lz C¢ Xt7 U ] - Vl;T(O) TEA B, Ko [Z Ct Xta Uy ‘| - Vl;T(O))a
t=1 t=1

where we use the fact that the infinite horizon regret induced by K, on a finite time horizon 7" is upper bounded by 7'-times
the infinite horizon cost (this can be verified by direct computation).

Next, we use the performance difference lemma, which states that for any policy 7/,

T T
EA,B,Tr’ [Z Ct(Xtv ut)] - Vy, T Z A,B,n’ [Qt T(Xt7 ut) Vi, T(Xt)]
t=1

Il
M=~ I

Ea,Bx [||llt - KTftXtH%T_t] : (Lemma G.1)

o~
Il
—

Therefore,

T T
Regrety (i A, B] = Y Eam | — Kroxilly, | =Y Eamc, [lu - K-l
t=1 t=

(policy suboptimality) (comparator suboptimality)
Comparator Suboptimality. We begin with two claims.
Claim G.3. [[(Koo — Kr_1)x¢||3, , < nr—t - x| Ryx.
Proof. We have that

2
(Koo — Kr—o)xe|%, . = HZW’ KOO—KT_t)R_l/QRl/?XtH

2
HEUQ (Koo — Kr—) R WH HRl/Qxf = s x] R,

Claim G4. Ea p k. [Y/_, x{ Ruxi] < TT4 p.
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Proof. We have

T T
Eapro Y % Rext] SEap i [Y %] (Bx + KLRuKoo)xi]

t=1 t=1

M=
M“

= tr( (A4 BKoo)*) " (Rx + KL RuK o )((A+ BKL)*))
t=1 s=0
T oo
<tr() ) ((A+ BKwo)®) (Rx + KLRuK o) ((A+ BKoo)®))
t=1 s=0
=Ttr(Px(A,B)) =TJ] p,
where the last equalities are by Lemma B.6. [

Invoking these two claims, we have

T T T o0
ZEA,B,KOQ [Hut - KT—t;TXtH%t:T} < ZEA,B,KOQ"% [X:Rxxt] <Jip ZnT—t <Jip ZTlt~
t=1 t=1 t=0

t=1

Policy Suboptimality. We first make the following claim.

Claim G.5. Let (X, (-, ) x) denote an inner product space with induced norm || - || x. Then for any z,y € X, ||z + y||% >
sllzl% = llyl%-
Proof. We have |z + y|% = llzl% + llyl% + 2(z,y)x. Note that, for any o > 0, we have |2(x,y)x| =
202,072y x| < allel} + oyl Setting a = L, we have [2(r,y)x] < Lal% + 2yl Hence
lz+yll% = lel3 + Iyl + 20z, )x > )% + y1% — Gllellz +201%) = sll% - vl H
We can now lower bound
T
Eapx | Iw — Kroxi|f3,_,
t=1
(72
>Bapx |y lw—Erox3,
| t=1
(/2 1
>Eapx |, Sl = Kooxil2, = ||(Kr—t — Koo)xe||3,_, (Claim G.5)
t=1
(12
1 2 2
>Eapr | ) 5lu— Keoxeld — [(Kro — Koo)xilf3,, | - (Sr—t = Ry = T)
t=1
The expression above is equal to
) T/2
= SK-Enfn] =Y Eapa [Il(Kr—: — Ko)xill3, ]
t=1
1 T/2
> S K-Err[r] - > mEa B [X] Ruxi] (Claim G.3)
=1
1 T/2 N .
> §K-Err[7r] - 21¥1_alx nr-+Ji (Claim G.6)
1
> §K—Err[7r] — QJAB tgl%ﬁ N, (Claim G.6)
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where the last inequality uses the following claim.

Claim G.6. If Regret 4 p (7] < T'J} g (in particular, under Assumption 3), then for any T < T and Q =< Rx, we have
Y1 EBanx X[ Qx| <2TT} p.

The claim is stated for an arbitrary matrix () so that it can be specialized where necessary.

Proof. We have 37_ Eapx [x/Qx:] < Y, Eapx[x Ruxi] < S Eapx X Ruxe +u/ Ruu]
Regret 4 g pln] + TJTx p <2TT} p-

Ol

Combining the comparator suboptimality and policy suboptimality bounds completes the proof of Lemma G.2. O

The next lemma shows that the error sequence 7, has geometric decrease.
Lemma G.7 (Bound on 7;). Let (A, B) be statibilzable. Then, for 1 defined above, we have

m < (1+2)7" where v =2||Px(A, B)|op¥(4, B)>.

Proof of Lemma G.7. Since Ry = I,
L
= )\min(Rx)

Next, observe that from Lemma G.1 we have

2

‘2};/7?(1(00 ~Kry)

2
< S - Ko
op

op

2
|32 K = K| = swp (Ko = Kl = sup [Quer(w, Koot) = V()]
P lzll<1 lzll<1

Since Q.1 (z, Koox) is a finite horizon Q-function for a stationary process with non-negative rewards, we have Q.1 (z, u) <
Qoo (x, u). Therefore, the above is

< sup [Qoo(, Koo) — V()]
l]|<1

= sup [Veo(x) — Vr_t(x)]
lzll<1

= sup [osTPooz - QSTPt;TLL‘]
lzll<1

= [[Poc = Pr—||

op?
where we use that P, is the value function for the infinite horizon process (Lincoln & Rantzer (2006, Proposition 1)). By
reparametrizing, we have verified that

M < [ Poc — P

op’

To conclude, we apply Lemma G.8, which implies that || P, — Pyr|l, < (14 1) —(T—t+1)

statement:

, Where v is as in the lemma

Lemma G.8 ((Dean et al., 2018), Lemma E.6). Consider the Riccati recursion
Pii1 =Ry +A"PA— A"BP(R,+ B"P.B)"'B"P,A,

where Ry and R, are positive definite and Py = 0. When P, is the unique solution of the DARE, we have
N\t
[P — Poollop < IPwllop(l + V) : (G.1)

A 2 2
where UV = 2||P00H0p ' ( H Hop \Y ”BHOD ).10

Amin(Rx) >\xnin(Ru)

'9The bound stated in (Dean et al., 2018) is sightly incorrect in that it is missing a factor of || Ps||op. The reader can verify the
correctness of our statement by examining Lincoln & Rantzer (2006, Proposition 1).
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We can take v < 2|| P ||op max{||A[|2,, | B|IZ,} < 2¥(A, B)||Px||2,. as Rx, Ry = 1. O

We can now conclude the proof of Lemma F.3.

Proof of Lemma F.3. From Lemma G.2, we have the lower bound

1
RegretT[m 1457 Be] Z iK_ErrE[ﬂ-] - \75 2T (tgl%;{z nt) + ;T]t )

Recall v := 2|| P, ||op, V2 from Lemma G.7, and that n; < || Pe||op(1 + v 71)* < exp(—t/v). Therefore

Znt < 2||P€ng\1}§7
t>0

Hence, if T' > 2v log(2T'), we have that

t>T

o (s ) < 1Pl < 171
where we use Py (+,-) > I (Lemma B.5). Hence, for such T,

o

1
Regretp[m; A, B] > §K-E1Te[ﬂ — 3| P12, v2

Y

o

1
S K-Brre[n] — J3|[Pell3, w2

v

1

~K-Err[n] — dy 3| Pe |3, V2 .

2 N———
=Te

Since v > 1, the condition T’ > 2vlog(2T") holds as long as T' > ¢/v? = ¢/||P||2,Vic/. Reparametrizing in terms of

P,, ¥, in view of Lemma F.1 concludes the proof. O
G.2.1. PROOF OF LEMMA G.1
We first recall a standard expression for the value function Bertsekas (2005, Section 4.1):

T
2
Vil@) = llzlp,_, + Y tx(Pry).
s=t+1

To obtain the expression for the Q;, we have

Qi(z,u) = c(z,u) + Ew, [Vit1(Ax + Bu + wy)]

T
= c(z,u) + (Az + Bu) " Pr_(i11)(Az + Bu) + Elw, Pr_oywi] + Y tr(Pr_y)
s=t+2
T
= c(z,u) + (Az + Bu) " Pr_(;41)(Az + Bu) + Z tr(Pr_s).
s=t+1

Note that V¢(z) := min, Qq(z,u), and Q:(x, u) is a quadratic function. We can compute
argmin Q;(z,u) = argmin ¢(z, u) + (Az + Bu) " Pr_41)(Az + Bu) + B¢
—argminz' Ryx +u' Ryu+ (Az + Bu)TPT,(tH)(Aa: + Bu) + S

=argminu' (Ry + B PrpyrB)u+2u' BT Pr_(41)Ax

= —(Ru+ B"Pr_41)B) " 'B" PiyrAx

= Kt;Tl‘.
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Moreover, since Qq(x, u) is quadratic in u with quadratic form Xr_; = (Ry,+ B TPT_(H_l)B ) and the gradient V,,Qq(x, u)
vanishes at the minimizer u = K rx, we have

Qi(z,u) = Vi(2) = Qu(w,u) — Qul, Kyra) = [lu — Kyralls, .

G.3. Proof of Lemma F.4

Again, let us begin proving the lemma for an arbitrary stabilizable (A, B), and then specialize to the packing instances
(A, Be). For a fixed policy 7, and let all probabilities and expectations be under the law P 4 . Our strategy follows from

T
(Arias-Castro et al., 2012). Let Ko, = K (A, B) and let §; := u; — KX, and note that K-Err[r] = Ea p ~[>. 21 [16:]13]-
Define the covariance matrix

For some constant ¢ > 0 to be chosen at the end of the proof, consider a ‘thresholded” least squares estimator defined as
follows:

T
~ i T b T 2 B
E ||KLS—K<>0H12:‘] = | Keoll2P [Az # eI +E H{Agg tc2l} > ] A%1
) . F
o | T | T T T Ty—1(2
= [|[KllFP |Az zcgf +E|TIXX" = oo (AX)(xXX) M|

b
| blaxis]
| |

[ [ T 2
< | KulZP Ag%021'+EH{XXT>CZI WM@HXWJ

T

I
[ [ T
= | Kol#P |Az 7 o I| +E H{XXT =gl

- T _
< |EKwlBP [Ag # cs1

1 2
oz 1)
71|+ (1Al

[ T ] 2
_ 2
= | Ko ||pP _A% 7 051_ + C—TK-Err[W]
< Ju(A,B)P|Az ¥ CZI + iK Err[n)
- e T 2 cr o

T
where the second-to-last line follows since HA||?, = Y721 |18:/13, and the last line uses by Lemma B.8 which bounds
K Koo = Ps(A, B),sothat | Koo ||f < tr(Pso(A, B)) = T4 p-



Naive Exploration is Optimal for Online LQR

In order to conclude the proof, we need to select show that, for some constant ¢ sufficiently small and % sufficiently large,
P {A% b c%[ } is neglible. Let us now apply Lemma E.4. Let F; denote the filtration generated by (x,, us)s<¢ and ug41.

Observe that x; | Fr_1 ~ N (Xy, I), where X; is F;_1-measurable.

Let us now specialize to an instance (A, B) = (4., B.). We can then bound

T/2 T
E[tr(z x;x; )] <E Z x; RyX; + 1/ Ryu
t=1

t=1

<274 T,

by the Assumption 3 and Claim G.6. Hence, tr(E[A7/5]) < £ - (474, p,)- Therefore, if

2000
T>=- (2dy log 19 + dy log 4T} 5.)

we have that

9(T/2
P {AT/2 ba 56(40)] < 2exp (772000(?&—&-1)71) .

In particular, there exists a universal constants c, cr,g such that (recallingjgm B, = tr(Poo(Ae, Be) )
T > cdx log(1 + dx|| Poo(Ae, Be)llop) > cdx log(1 + JEC’BC).

then for a universal constant c1,g, we have

~ 1
E|[||Rs — KOOH%] < s+ 7 —K-Extfr].
CLS

Moreover, for (Ac, B), we can upper bound || P |lop S || Pxl|lop (and amend ¢ accordingly) using Lemma F.1, concluding
the proof.
G.4. Proof of Lemma F.5

Let 7 = T'/2. Recall that our packing consists of systems (A, B.) indexed by sign-vectors e € {-1,1}["x["l:

(Ae,B.) i= (A, — AK,, B, + A.), where A, =€> > e;jw) .

i=1j=1

To keep notation compact, let ¢ := (4, j) denote a stand-in for the double indices (¢, j), with ¢ = i and g2 = j. Given an
indexing vector e € {-1, 1}["*[™] ¢ denote the vector consisting of coordinates of e other than (g1, ¢2). Fora € {-1,1},
we set

— Z T
Aa,q,eg =€ aeqaqz + eqiﬂéwqivqg
a'#4q
and define A, g cc, Ba,g,cc analogously, let Py g .. denote the law of the first 7 = 7'/2 rounds under P4, , .. B, , .. Alg []-
R i g

We now consider an indexing vector e drawn uniformly from {-1, 1}"/*[™]_ We will then let P,, , denote the law Pe:c[Pag,ecls
maginalizing over the entries eg. Our proof now follows from the argument in (Arias-Castro et al., 2012). We note then that,
for any ¢ and any e that depends only on the first 7 = T'/2 time steps, we can bound

EeEAeyBe Heq - é\q” = ]Eeq“,‘\‘jf{_Ll}]Ee;EAEq,q‘efZ7Beq,q,e§1’ Heq - gq”
- 1
= Eeq\lg‘f{_171}]Eeq7q Heq - eq” 2 5 (1 -1V (P-l,qvﬂpl,q)) :
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Hence, by Cauchy Schwarz,

E

- 1
Z leq — 6q|‘| 2 Z 5(1 = TV(Po,q,P1,q))
q q

nm 1
hiad § ' _ = 2
> 5 1 \/nm Eq TV(IPOH,IP’M)

q

Moreover, by Jensen’s ineqality followed by a symmetrized Pinsker’s ienqualty,

'r\/v(]IDO,qalpjl,q)2 < Eeg {TV(P—l,q,egy}Pl,q,eg)Q}

KL(P—I,LLe;’Pl,q,e;) KL(Pl,q,e;>P-17q,eg)]

IN

1
2

2 2

We now require the following lemma to compute the relevant KL-divergences, which we prove below.

Lemma G.9. Let AO A € Réxxdu 7 ¢ N, and let A,, B, be the nominal systems defined above. Fori € {0,1}, let
IP; denote the law of the first T iterates under P4 _ ¢, g, + a0 agl]- Then,

T
KL(Py,P;) = %tr ((A(O) _ A(1)> AT(A(O)) (A(O) . A(l)) ) .

where we have defined the matrix

Ar(A) :==Ea,—ak, B+ Al [Z (ur — Kixt) (ug — K*Xt)T] -

t=1

We can now compute

KL(PI,q,e;aPLq,e;) = tr((ALq,e; - A-Lq,eg)TAT(A—Lq,eg)(ALq,eg - A-Lq@g))
= 262tr(uq1w;AT(A_Lq,eg)w%u;)

= 26211}; A (A-l,q,eg JWqy -

Hence, we have
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We simplify further as
tr(Ee[Ar(Ae]) = Eeftr(Ar(Ae)]

=[E [tr (EA,—AQK,,B*-i-Ae,AIg [Z (u — Koxy) (ug — K*Xt)T] >]
L =1

=E, ]EAe,Be,Alg [Z tr ((ut — K*Xt) (ut — K*Xt)T)]]
L =1

=E¢ |Ea.,B. Alg [Z la, — K*Xt|2‘|‘| .
L =1

Therefore, we conclude

. nm €2 u
E lz ‘eq - eq] > 5 Z 1- ZEe lEAe,Be,AIg [Z lu; — K*Xt|2‘|‘|

q q t=1

This concludes the proof of the proposition. O

G.4.1. PROOF OF LEMMA G.9

By convexity of KL and Jensen’s inequality, one can see that the KL under a randomized algorithm Alg,.,, 4 is upper
bounded by the largest KL divergence attained by one of the deterministic algorithms corresponding to a realization of its
random seeds. Hence, we may assume without loss of generality that Alg is deterministic.

By first conditioning the performance of Alg on its random seed, then integrating the KL combu Note that by we may
assume that Alg is deterministic. Let F;_; denote the filtration generated by (x1.4—1, U1:4—1).

KL(Po,P;) = ZEA(A(O))7B(A(U))7A|g[KL(]P)O(Xtaut | Feo1), Pa, (%, ue | Fio1)],

t=1

where Po(x;, u; | Fi—1) denotes the conditional probability law. Note that u; is deterministic given F;_;. Moreover,
x; | Fi_1 has the distribution of N'((A — AWK, )x; + (B + A®)uy, I) under P;(- | F;_1). Hence, using the standard
formula for Gaussian KL,

KL(]P)i(Xtaut \ -thl)a]Pi(Xtvut | -7:t71))

= (A= AQ K, + (B + AD) — (A= AV K, x, + (B + AV))3

= SIA© — A%, - K.x)B

= %tr((A(O) — AYT (0 — Kx) (0 — K,x) T (A© — AY)).
The lemma now follows from summing from ¢ = 1, ..., 7 and taking expectations.
G.5. Proof of Lemma F.6

We have I(e; ; # a’j(f()) = I(e; ;€5 (K) #1) = H(ei,jw;r(f( — K, )v; < 0). Define the Taylor approximation error
matrix Ay := K, — (Ry + B] P.B,) (A A« P.) — K.. We then have
TR T TR
eijw; (K = Kvj > eijw; (Ke = Ky )vj = |w; (K = K vj|
> eijwi (Ru+ B PyBy) " (AcAa Py — [w] g evj| — |'LUZT(IA( — K. )
— e s o—j(Acl,*P*)
" 0i(Ru+ B} P,B,)

wl Acv; = (Juwf Bo.cvy| + ] (K = K)uyl)

<vm
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where we use the definition of w; and v, as less as 0 (Ac1 + Px) > 0 (A ,) since P, = I. Since {w;} and {v; } form an
: T TN m T\, —
orthornomal basis, we have w;' Acv; = w;' Y .4 Zj,zl(epackei/,j/wi/vj,)vj = €pack€i,j. Hence,

€i jW; T(K — K )vj > Umeépack — (|w Ao ovj] + Jw) (K — K, )v \)
It follows that for any v € (0, 1),
I (essu] (R = Kuy <0) <1 (Juw] (R = K)oj] > vVavmepe) + (] 8.005] > (1= Vi)mepac)

|w (K K)UJP_’_ |szA2evJ|

m }2)ack (1 - \/E)QV%GIZ)ack .

ur e

Since w;, v; form an orthonormal basis, we have

dnam (€35, € ( = Z]I (emw — K,)v; < 0)
1=1 j=1
1K — K| Az,
uy%zegack (1 - \/E) V72n I2JaCk
Finally, since [|Ag.[f < (nm)?el,  p2(]|Pellop)® by Lemma F.1, we have that for u = 1/v/2 and for €2, <
sm=P2 (| Pellop) < =5 (1 — 1/v/2)v/20/p2 (|| Pe|op) that the above is at most
= 2K —K|p  nm
dham(€ij, € j(K)) < ——5——— — 5~
pane3:82 () < = = G
O
G.6. Proof of Lemma F.7
Introduce the shorthand K-Err, := K-Errp/;[m; A., B.]. We then have
T/2
EcK,-Erre[n] = EeEa, p.» | % — Koug|?
t=1
T/2
<2Ee |Ba,pom | D 1% — Keoottel” + | (e — Ku)xol?
T/2
= 2E K-Erre[n] + 2Eetr | (Ke,oo — K+) "Ea, pon thxt Keoo — K.)
T/2
< 9B K-Erre[r] + 2 (max 1K, — K*H%) Ee |Ea, por | > xix)
- o
T/2
< 2EK-Erre[r] + 4nm|| P €} - Be ||Eau b | D xex, : (G.2)

op

where the last inequality uses Lemma F.1.

Lemma G.10. Suppose e is sufficiently small. Given matrices A., B, and optimal controller K.,
T/2

Ea, x| D %% ||| < B/2)T|Pellop + 2Je]| Bel|2y K-Erre 7]

t=1
op

< 2T||Pyop + 3T V2. K-Err,[n],
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where the last inequality uses Lemma F.1.

In particular, note that by Assumption 3 and Lemma F.3, we have the bound

e [K-Brre[r]] < 2EeERegrete 1] + Yerr < 27eneT < 57

Then, noting J, < dx||Ps||op, We can bound E.

Ea, Bon [ZtT:/ 2 xix) } H < 37| P, ||op. Combining with Eq. (G.2),
op
we have

EcKy-Erre[n] < 2E K-Erre[n] + élan||P*||4 €

op “pack*

G.6.1. PROOF OF LEMMA G.10

Let x; denote the sequence induced by playing the algorithm 7. Recalling the notation §; = u; — B, K x;, we then have

Xp = AeXi—1 +u + Wy = (Ae + BeKe)x—1 + Bedy + wy. (G.3)
We further define the comparison sequence
it = (Ae + BeKe)it—l + Wy (G4)
in which we play the optimal infinite-horizon inputs for (A., B.). As shorthand, let E.[-] := E 4, p, [, and recall that
K-Err, := K-Errp/s[m; Ae, B.]. We can bound the desired operator norm of the algorithms
T/2 T/2 T/2
Ee Z XtX;r S Ee Z iti: -+ ]Ee Z iti;r — XtX;r
=1 t=1 t=1
op op op
It therefore suffices to establish the bounds
[1/2
E. | > %%/ < T||Pe|op (G.5)
t=1
L op
(72 1
Ee | Y %% —xx/ < 5T Pellop + 2J. || Be||2,K-Erre. (G.6)
| t=1 op
Let us first prove Equation (G.5). We can compute
T/2 T/2 —1
Ee | Y %% ||| <D0 (Ae + BeKo)* (Ae + BoKe)®)'
t=1 t=1 s=0

op
T T T

< EHdlyaP((Ae + BeKe)Ta Dllop = 5Hd|yap((Ae + BeKe)I)lop < §||P€||0P7

where the last two steps are by Lemma B.5.

Next, we prove Equation (G.6). By Jensen’s inequality, the triangle inequality, and Cauchy-Schwarz, we can bound

T/2 r T
Ee Ziti: — th;r S Ee Z ||iti;r - th;rHOP
t=1 t=1
op
[T/2
<Ee | Y 20% — xel[%e]| + (%0 — x|
_t:l
T/2 T/2 T/2

<2 |Ee DR N Ee | DO IR =%l | +Ee | D IR — %)
t=1 t=1 t=1
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From Equations (G.3) and (G.4), we have that

Xt — Xy = (Ae + BeKe)itfl + w — ((Ae + BeKe)thl + Bedt + Wt)
= (Ae + BGKG)(it—l - Xt—l) - Be5t
t
—> (Ac + B.K.)""*B.4..

s=1

Therefore, we have that

T/2 T/2 ¢

Z ||it - Xt”% < Z Z HAe + BEKE)t_SBEJSH%
t=1

t=1 s=1

T/2 o
<> s (Bj D (Ac+ B.K.) T (A + B6K6)5> B.d,
t=1 s=0
T/2
=6/ (B/dlyap(A. + B.K,I)B.d,
t=1
T/2

< |1 Bellzp | Pellop D 1162113,
t=1

where we use Lemma B.5 in the last inequality. Taking expectations, we have

T/2
Z % — xt”% < ||Be||c2>pHPe||0pK'Erre~
t=1

This yields
T/2 T/2
Ee Zitiz— - XX/ <2 |E Z [1%el?| | Bell3p | PellopK-Erre + ||BE||gp||P6||0pK'Erre
t=1 t=1
op

< 2\/T/2 “ el Bell3p 1 PellopK-Erre + HBengHPeHOPK'Erre

= \/2T - Jel| Bell3p | PellopK-Erre + ||BE||gp||P6||0pK'Erre7

where use the bound that ZZ:/ f E[||%¢||?] < (T'/2)J. using similar arguments to Lemma G.6. The above can be bounded by

IN

1
§T||P6H0p + JeHBEHZpK‘Erre + +||BE||§p||Pe||opK'Erre

IN

1
§T||P6H0p + 2J€HBengK-Erre,
since J, = tr(P.).

G.7. Additional Corollaries of Theorem 1

For scaled identity systems, we can remove the requirement that d,, < (1 — Q(1))d,,.

Corollary 7 (Scaled Idenity System). Suppose that A, = (1 —~)I for~ € (0,1), that B, = U " where U has orthonormal
—4
columns, and Ry, Ry = I. Then, for T > ¢y~ P (dudx \Y %) V crdy log(1 + dyy™ 1),

R (VBDJT) 2771 =) VBT
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Proof of Corollary 7. By the same arguments as in Corollary 1, we have ¥, < 1 and ||P,||op, < 7~ '. To conclude, let
us lower bound oin (Aci+) 2 1 — 7, which yields vq, 2 1_7“’ Reparameterize a = (1 — ). Then for A, = al and

B, = U". Then, we can see that the DARE decouples into scalar along the columns of U and their orthogonal complement.
That is, if p, k is the solution to

(1-a®)p=—p®a®(1+p)~' +1, k=—(1+p) 'pa, (G.7)
then A, = (Ax —kUUT) = (a — k)UU " +a(I —UUT), so that

- a
S 14p

Umin(Acl,*) > min{a7 a — k} = min{a,

}

To conclude, we solve (G.7) and show that p is bounded above by a universal consant. For scalar (a, b), the solution to the
DARE is

_a
1+p

(1-a®)p+p*(1 —a®) = —p?a*+ (1 +p) andthus —a’p+p*—1=0.

The solution p is then given by

@ £Vat+4 _1+V5
2 - 2
as needed. O

Part 111
Upper Bound

H. Algorithm and Proof of Upper Bound (Theorem 2)

We now formally describe our main algorithm, Algorithm 1, and prove that it attains the upper bound in Theorem 2. The
algorithm is a variant of certainty equivalent control with continual e-greedy exploration. In line with previous work (Dean
et al.; 2018; Cohen et al., 2019; Mania et al., 2019), the algorithm takes as input a controller K that is guaranteed to
stabilize the system but otherwise may be arbitrarily suboptimal relative to K. The algorithm proceeds in epochs of
doubling length. At the beginning of epoch k, the algorithm uses an ordinary least squares subroutine (Algorithm 2) to
form an estimate (A, By;) for the system dynamics using data collected in the previous epoch. The algorithm then checks
whether the estimate is sufficiently close to (A, By) for the perturbation bounds developed in Theorem 3 take effect; such
closeness guarantees that the optimal controller for (gk, ]§k) stabilizes the system and has low regret. If the test fails, the
algorithm falls back on the stabilizing controller K for the remainder of the epoch, adding exploratory noise with constant
scale. Otherwise, if the test succeeds, the algorithm forms the certainty equivalent controller Ky, := K, (A, By) and plays
this for the remainder of the epoch, adding exploratory noise whose scale is carefully chosen to balance exploration and
exploitation.

Preliminaries Before beginning the proof, let us first give some additional definitions and notation. We adopt the
shorthand d := dx + dy and define kg, = [log, T]. For every controllers K for which (A + BK) is stable, we define
P, (K; A, B) :=dlyap(A + BK, Ry + KT R K. Itis a standard fact (see e.g. Lemma B.6) that such controllers have
Ja,B[K] = tr(Px(K; A, B)).

We make will make heavy use of the following system parameters for the controllers used within Algorithm 1:

= Jc
Pk = Poo(Kk;A*aB*)7 P() = dio S HPOO(K(];A*vB*)”Op?

Ji = Ja, B, (K], Jo = Ja, B, Ko,
Acl,k = A* + B*[?ky Acl,O = A* + B*K0~



Naive Exploration is Optimal for Online LQR

Algorithm 1: Certainty Equivalent Control with Continual Exploration

1 Input: Stabilizing controller K, confidence parameter 4.
2 Initialize: safe « False.
3 Play u; ~ N(0,1).
4 fork=23,... do
5 Let 75, « 2%.
6 /* OLS estimator and covariance matrix using samples 7j,_71,...,7, — 1. See Algorithm 2. x/
7 | Set (Ay, By, Ag) < OLS(k).
8 if safe = False then
9 Confy, ¢ 6Amin(Ar) " (dlog b + log(4k? det(3(Ax)/0)) (infinite if Ay # 0).
10 if A, = Iand1/Conf; > 9Csas(Ax, By)? then
11 safe < True, keate < k.
12 Baate, 02, < SafeRoundInit(ﬁk,Ek, Confy,d). // confidence ball (Algorithm 3).
13 else for t = 14,...,27 — 1, play uy = Kox; + g, where g; ~ N(0, I).
14 else
15 Let (Zk, Ek) denote the euclidean projection of (ﬁk, Ek) onto Bgafe.
16 Ky + Koo(Ar, By).
17 fort=r1y,... 2Tk—1d0
18 ‘ Play u; = Kix; + oxgt, where g ~ N(0, 1), and o7 := min{1, 02, 1/2}.
H.1. Proof

We begin the proof by showing that the initial estimation phase (in which the algorithm uses the stabilizing controller K)
ensures that various regularity conditions hold for the epochs k > kg.t (in which the algorithm uses the certainty-equivalent
controller). One such regularity condition bounds the #.,-norm, which describes the worst-case response of a system to
perturbations. We recall the following definition from Appendix B:

Definition H.1 (%, norm). For any stable A € R% (e.g. A+ BK (A, B)), we define A2, = SUP, ez |=1 (21 —
A)"Hlop-

The following result is proved in Appendix I.1.

Lemma H.1 (Correctness of Perturbations). On the event

2

Esafe = {H [Akhdfe | Bkadfe B*}

the following bounds hold for all k > kgafe:

< Confy_.,. }

op

~

Te = J. < Ces(Aws B) (1A= AL + 1B = B.IR) S IPIS, (IA— Az + 1B = Buli2)-
2. Tk S T and || Pillop < (| Psllop-
3. 12 < B 1P

3/2
4 [ Aarll. S l14a, A

5 A;kdlyap[Acl,*]Acl,k < (1- 5||d|yap[AC17*]||,§p1), where I < dlyap[Ac ] = P, where we recall the shorthand
d|yap[ACl$*] = dlyap(Acl,*a I)

6 o \/7HP ”9/2\1,3* /lo HP*(;Hop_

We will verify at the end of the proof that E,¢. indeed holds with high probability. We remark that Part 5 of the above
lemma plays a role similar to that of “sequential strong stability” in Cohen et al. (2019, Definition 2). By using dlyap[Ac «]
as a common Lyapunov function, we remove the complications involved in applying sequential strong stability.
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Algorithm 2: OLS(k)
1 Input: Examples X, —1,..., X, Ury 1505 Ur—1.
2 Return (Ay,, By, Ay), where

Tr—1 T Te—1
~ = X
|:Ak Bk:| — Z Xt41 |:UZ:| A%, and Ay +— Z (Xtaut)(xt,ut)T

t=TK—1 t=Tk—1

Building on this result, we provide (Appendix 1.2) a decomposition of the algorithm’s regret which holds conditioned on
5safe-

Lemma H.2 (Regret Decomposition on Safe Rounds). There is an event E,o; which holds with probability at least 1 — g
such that, on Ereg N Esate, following bound holds

T kﬁn
> ) Rexe+u/Roue = ) S > (e — J) +log T max [|x, |13 (H.1)
t=Ty k=ksafe h<logr

safe

VT (4o 03, | Pullop) + v/dTog(1/0) | P21, )

1
+log? S(1+ Vo3 )Pl

Let us unpack the terms that arise in Equation (H.1). The term Zif:ksafe Ti(Jrw — Jx) captures the suboptimality of the

controlers K « selected at each epoch. We bound this term by using that, in light of Lemma H.2, we have J; — J,
| Ax — Al|f + || Br — B.||#- The next term, log T - maxy<iog,. [|[X-, ||%, is of lower order, and roughly captures the penalty

for switching controllers at each epoch. The term proportional to v/T captures both the penalty for injecting exploratory
noise into the system (which incurs a dependence on d,,), as well as random fluctuations in the cost coming from the
underlying noise process. Finally, the term on the last line of the display is also of lower order (poly(log T')). To proceed,
we show that the norms ||x,, || appearing in the second term are well-behaved.

Lemma H.3. There is an event Eoung Which holds with probability at least 1 — % such that, conditioned on Egate N Ebound,
%7 I S V¥B, Jo IOg(l/é)”P*ng/)Qv Vk 2> ksafe-

This bound is quite crude, but is sufficient for our purposes. We give a concise proof (Appendix 1.3) using that in light of
Lemma H.1, dlyap[A. ,] acts as a Lyapunov function for all the systems A ;, conditioned on Egage.

To bound the error terms 7y, — 7, appearing in Equation (H.1) we prove (Appendix 1.4) the following bound, which ensures
the correctness of the estimators (A, By) once k > Kgafo.

Lemma H.4. Define 75 := d (|| P.]|3,Po + || P[50 %%, ) log %. There is an event Es, which holds with probability

at least 1 — §/8, such that conditioned on Eis N Egate N Ebounds

dudy
T Th

[Pellop

1Ak = Al + 1By = Bullf S 5

d? 1
1P, 12, log +ﬁmﬁm§5anzmm

where ¢ > 0 is a universal constant.

We now put all of these pieces together to prove the final regret bound. Henceforth, we condition on the event Egafe N
Ebound N Ereg N Ei. To begin, consider the sum of errors J;, — J, in Equation (H.1). We apply Lemma 1.2 followed by the
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Algorithm 3: SafeRoundlnit(A, B, Conf, )

1 Input: Stabilizable pair (A, B, Conf ,0).
2 Return Bau. := Bop(Conf; A, B) and 02, := \/dy || Poo (A, B)||55> max{1, || B||op } 1/ log 1 P2 Bler

bound on J; < J, from Lemma H.1, which yields
kfin

Z T(Jk — Ji) +log T max ||x,, [|?
k<logp

k=ksate
< Z (T — Ti) + Tx Z 7o + /OB, Jolog(1/8)||P.[|3/? log T
k>Tig kit <cmis
N { > (T - j*)} + s Te + /U, Tolog(1/8) || P.||2/* log T
k>7is

1
5 { Z Tk(Jk - j*)} +dx||P*||op7—ls 10g 57

k>Tis

where the last line uses that 6 < 1/T" to combine the lower-order terms in the line preceding it. Next, using the bound
Tr — T SIPS, (||A* - A\H% + || Bs — EH%) from Lemma H.1 followed by the error bound in Lemma H.4, we have

dudx IPllop  dx 2 1
S = T < IPISy 32 3O IR log L5 2 o
k>1s k>T11s ln

< QudxVT e 1
P 10 *||op d2 P 101

o2 o I1Puloplog 5= + d[|Pllop og® =

—

deHP* HOpT]S log%

where again we use log 7' < log(1/6). Combining the computations so far shows that

kfin
dude T P 1
S nk— ) +logT max [xn? < DV p 10 10g 1illov g yp o mtog L
N k<logp o2, 1) é
c=Rsafe

Hence, on Eate N Ebound N Ereg N Eism the regret in the episodes k& > kgare decomposes into a component scaling with VT
and a component scaling with log 7"

T
Z (X:Rxxt + u;rRuut - J*)

=Thgate

<VT (d o203, 1P op + v/A1og(1/8) | P4,

\/T-cnmponent)

1 1
+ (1 + Vdo? U3 )|| P12, log” 5+ dyx s log 5

19 10g IP2loo
ll'l 6

((poly(log T')-component)

Using that 02, = /dx || Ps Hg/ >y B,1/1o ”P* 1P lop (Lemma H.1) and recalling that d = dx + dy, we upper bound these terms
as

Pl
(v/'T-component) < \/Td%dx‘l’%JP*II})Il) log | BH P

1
(poly(log T')-component) < dx7s log 5
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We conclude that conditioned on Esafe N Ebound N Ereg N Elss

T
P 1
> (%) Rexi +uf Ryuy = J,) S \/ Td2dx % ||P||LL log % + dy7s log . (H.2)
t=T1g

safe

To finish the proof, we (a) verify that qafe indeed holds with high probability, and (b) bound the regret contribution of the
initial rounds (proof given in Appendix L.5).

Lemma H.5. The event Eg,ze holds with probability 1 — g, and the following event E.cg iniy holds with probability 1 — g:

1

Tksafe7 2

d¥vy Py
> X{oRaxeo +uloRutteo £ Pod® U P51+ [|Koll3,) log —5— log 3.
t=1

Thus, Esate N Ebound N Ereg N ElsEreg,init holds with total probability at least 1 — §, and conditioned on this event Lemma H.5
and Equation (H.2) imply

Regret[Alg; Ay, By] (x;rRxxt + u;rRuut —J%)

Il
N

o~
Il

1

[[Pellop
)

S\ Tdid< V% || P& log

d¥?% Py 1
4 Poc W, P11+ Kol o 222 0g 4 dnelog .

Recalling that i, := d (|| P43, Po + || Pl|LL W% ) log Wellee | thac Py, || Py ]|op W, > 1, and that d|| Py |lop < dJ. <
dJo = d*Py, we move to a simplified upper bound:

[1Pslop

Regrety[Alg; A,, B, < \/Tdﬁdx‘l’%*llp*%é log 5

d202, P, 1
+ APl ||P|AL (1 + || Kol12,) log % log? 5

Since the square of d¥ 5, inside the logarithm contributes only a constant factor, we may remove it in the final bound. This
concludes the proof.

O

I. Additional Proof Details for Upper Bound (Appendix H)
I.1. Proof of Lemma H.1 (Correctness of Perturbations)

On the event E,g of Lemma H.5, the condition defining kg, yields

H [A\ksafe - A* | Ek - B*}

safe
o

2 —~ ~
< Confksafc < 1/305afe(Aksafc7 Bksafc)'
P
By the continuity of Cs,s given by Theorem 11, we then have that, for any (ﬁ, E) € Bgate »

|[A-4.1B-B)]

2
< Osafe (A*, B*) .
1%

(&)

In particular, the projection step ensures that the above holds for any (ﬁk, Ek) Let us now go point by point. Theorem 5
then implies that

1. Py < ZP,, and thus J;, < J..
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2. Jo = T = Ja. 5. | Koo( A, Br)] = T4 5. < Cost(As, BL)éR.
3. By Lemma B.8,

21

P, |lop-
=LA

| Koo (Ak, Br) (12, < lldlyap(A, + B Ky, Rx + K RuKy)|lop = || Pellop <

::I?)C

The next two points of the lemma follow from Theorem 8.

For the last point, recall that

HPOO(Aksafc7 Bksafc) HOP

Ui2n =V dx||POC(Aksafc7 Bksafc)llgl/)2 max{la ||Bksafc||0p} log 5

Since Confy_,. < 1, we have max{1, ||§;Csafe llop} =~ Up,. Letus show || Py||op ~ ||POO(/Tksafe, Eksafe)ﬂop. By Lemma B.6,
Poo(Akenser Briasse) = Phiooro» Which is = P, by point 1 of this lemma. On the other hand, || Pslop < || Poo (Akere s Bhicase) llop

by Theorem 11.

safe

L.2. Proof of Main Regret Decomposition (Lemma H.2)

We establish Lemma H.2 by establishing a more general regret decomposition for arbitrary feedback controllers K, noise-
input variances o,,, and control costs R;, R,. This will allow us to reuse the same computations for similar calculations in
the initial estimation phase (Lemma H.5), and for covariance matrix upper bounds as well.

Definition I.1 (Control Evolution Distribution). We define the law D(K, 0, 21) to denote the law of the following
dynamical system evolutation: x; = x1, and for ¢t > 2, the system evolves according to the following distribution:

Xt = Auxp1 + Wy, W = KXy + 0481, (L1)
where w; ~ N(0,1;,) and gy ~ N(0, I4,).

We begin with the following characterization, proven in Appendix 1.6, of the quadratic forms that will arise in our regret
bounds. Note that we use arbitrary cost matrices R, Ry > 0.

Lemma L.1. Let K be a stabilizing controller, and let (X4, U;)>1 denote the linear dynamical system described by the
evolution of the law D(K, 0, x1). For cost matrices Ry, Ro = 0, define the random variable

t
Cost(Ry1, Ro;1,t,04) := ZX:Rlxt + u;ngut = gTAgng mIAxl Z1 4 28 " AcrossZ1-

s=1

Further, define Ry = R1 + K" RoK, A = A, + B, K, Py = dlyap(Ag, Rx), and Ji := tr(Py).

1. In expectation, we have

E[Cost(R1, Ro;21,t,04)] < tJk + QUztdu (||R2||op + HB*”(Q)pHPK”op) +$1TPK331

2. Set degr := min{dy, rank(R;) 4 rank(Rs2)}. With a probability 1 — 0, we have

Cost(Ry, Roja1,t,04) < tJk + 200desst (|| Rallop + | Bell 2| Pr llop)

L0 (\/dﬂog; +log;) (11 02| Bl | Rec ol Axc B, + 02 Ra2)

+ 2£CIPKCE1.
3. More crudely, we can also bound, with probability 1 — §,

1
Cost(Ry, Ro;w1,t,04,) S tlog 3 (Jk + 20%deir (I|R2llop + | Bull2, | Picllop) ) + 22 Prcas. (1.2)
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Let us now apply the above lemma to our present setting. For k > kg,t., define the terms

Costuoise,k = du (|| Rullop + | B«l5p [ Pillop)

Costeonck i= ((1+ 02 Bull2) 1B + KT RuRillopll A3, ) + 0| Rulop-
By Lemma I.1 and the fact 7, < Jj,

T kfin
Z (x{ Rxxi + 1) Ryuy — J,) S Z (e — Tx) + Tkor CoStuoise i
1 =Thgate k=ksate
Efin Kfin
+ Y (V7rdlog(1/6) +log(1/6)Costeonc + Y X} Pixs,.
k=ksase k=ksase

Let us first bound the Costypise,k-terms. Since 1 < || Pillop < || Psllop on event Egare (Lemma H.1) and || Ry |lop = 1, we
have

Costnoise,k < du(|| Rullop + HB*||c2>pHPk||0p) S dyu V7 . | Pellop-

1

Since 07 < 02, >and || Py/lop < ||Px]lop> we then obtain

kfin
Z 740 COStaoise,k S \/Tduafn\l}2 N Pellop-
k=ksate

Next, let us bound
Costeoncy i= ((1+ 0F I Bull2) 1B + K RuRillopl Acil3. ) + 0| Rullop.

Observe that Ry + IA(TR IA(k =< dlyap[Aa k, Rx + IA(,;FRUIA(k] = P. On the good event Egare, We have || Pillop S || Prllops
[AcLillHe Sl Acxllra, < || Px ||3/2 (Lemma H.1), and by definition. || B, |2, < ¥% . Thus, the above is at most (again
taking R, = I)

Costeanck S | Prllop + 0% (1 Rullop + O [1P15,) < PG, (1 + ¥, 0%) -

Therefore,
kfin
Z (v/Trd1og(1/0) +log(1/6))Costeonc.k S v/ T'dlog(1/6)] P H + log( )10g(1/5)||P*||ﬁp
k=ksate

+ ot log (1) log (1/0)VA¥E, || P.3,-

< \/Tdlog(1/5)||P.||2, + log® 7(1+\f0m\112 )Pl

where we use log(T") < log(1/6). Finally, we have the bound

kfiu

E kaTk SlogT max x PrXo,
ars k<logT

—FRsafe

< 2
< log T ma [ 31 o
< longg}ggTIIerHillP*Hop

Hence, putting things together, we have

T Kfin
Z (x;rRxXt + u:Ruut - j*) S, Z Tk»(Jk — j*) —|— long1’<nlaX ||)(7_’c H%
>logr
=Tkt k=ksato

+ VT (a2, || Pullop) + v/ ATog(1/3) |13,

1
+log? (14 VoZ 3 )P,
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Reparameterizing ¢ <— g7 and taking a union bound preserves the above inequality up to constants (since log T < log 5)
and reduces the failure probablhty across all episodes to §/6.

L.3. Bounding the States: Lemma H.3

Lemma L2. Let x; denote the t-th iterate form the law D(K, x1, 0,,). Then, with probability at least 1 — 6,

1
I — Algtar || < O W Jic(1+ 02| B.3) log 5) .

Let ap = 4 /JO\IIQB* log %, We conclude by arguing an upper bound on 75_, . We rely on the following guaranteeand
= /Tmax¥% log 5. For k > kg, define the vector e;, := X, — AZﬁ;ileFl. Since § < 1/T, 02 < 1, and

jk < Jx» a union bound and reparametrization of § implies that, e, < a1 and [|x5, _[|2 < ag with probability 1 — /8.
Now, we can write

Xr, = €k + Acl E—1X7e_1
—ek+Ac1k 1 (ek 1 +Aclk 2Xry 2)
k k—1 k—1
_ E T4 . Ti
- H ACI i e] + H ACI i Tksafe '
j=ksate+1 \ i=J i=Ksafe

Since dlyap[Ac ] = I, we have

T
k—1

dlyap[Aq,,]'/? H Aail] < H Al | dlyap[Ac ] H Al

op v=J

Moreover, by Lemma H.1, we have that for all i > kgafe, Ac1;dlyap[Aei «] e < (1 — )dlyap[Aci . This

1
2|[dlyap[Act,«][lop

yields that
k—1 k-1 1 =\
ayopldo ) TL o <\ TT (1~ gpaarigrs) ) Tebeet
) 1 PR
= (1 - 2|d|yap[14cl,*]||op) [dlyap[Aci+]llop

1 Th—1
L= SidyapiAg Tl dlyap[Aci ] [lop-
( 2|d|yap[Acly*]||Op) [[dlyap[Act,«][lop

Hence, we have that, with probability 1 — O (),

[dlyap[Aei ] %%, |2 <

1 Tk—1
dl A 1+%((1-————— dl A .
Jevarldallop (145 (1= gt ) ) + oo/ ldvepla
Since maxy, k(1 — p)* < % and since I < dlyap[A ] < P (see Lemma H.1), this implies the crude bound

S y/ lldlyap[Actllop(@o + ar |l lldlyap[Actellopllop) < 121357 (o + 1)
S Vs (Jo + T.) log(1/8)|| P13
<

V¥, Jolog(1/0)| Py \\3/2-

[P
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L4. Proof of Estimation Bound (Lemma H.4)

Definition 1.2 (Round-wise projections). Given v € R%, let v = (v®,v") denote its decomposition along the x and u
directions. For a given round k > kgafe, let Vi, := {v € RY: v+ Kjpo¥ = 0}, and let V,i- denotes it orthogonal complement.
Finally, let Py, denote the orthogonal projection onto Vy, and let P,f := (I — Py) denote the projection on V,f.

The first step in our bound will be to lower bound the relevant, centered covariances.

Lemma L3 (Round-wise covariance lower bound). Let k > kgato + 1, at lett € {7y, ..., Tx11 — 1}. Then, on Esato. If J,%
satisfies 0’% < ﬁ, we have that
T U/% 1oy
E [(zt — Elz; | Fio1])(ze — Elz¢ | Fiz1]) ] =Ty = m-Pk + §Pk .

See Section 1.4.1 for the proof. We now convert the above bound into a Lowner lower bound, then conclude by giving an
upper bound on 7y_,,.. We rely on the following guarantee Aj. To state the bound, we introduce some additional notation.

Definition 1.3. We say that f(x) 2, g(z) if f > Cg for a sufficiently large contstant C.

Further, let vy, 1, ..., vk ,q denote an eigenbasis of I'j,. Let us prove the following.
Lemma L.4. . The following bounds hold simultaneously with probability 1 — /2, if Ebound N Esate holds:

1. i€ {dx+1,...,d}, we have v,;r’iAkvk.yi < TkO',% if T 24 \/log(d/d).
2. Suppose that 7y, > || P,||2,Jo V Uy ofh. Then,

ki Akvki S il Pallop log (/).

307k 2w s = d ([P, Po + [P AL, ) log dHP*”°p then the above two conditionds hold, o} sastisfies the
conditions of Lemma 1.3, and Ay, = c1p'y for some umversal constant ¢ > 0.

The proof is defered to Appendix 1.4.2. From lemma E.3 with covariate dimension d and output dimension dy, we have that
with probability 1 — §/2 on the events of Lemma E.4 that

d
~ ~ 3K,
2 2 -1 J
1A = Al + 1B = Bullf S dw Y Aj(mT'h) "'k log 5
j=1
.
where k; < % Let us decompose the above sum intro the sum over the first k£ indices, and the second. For

i € [dx), we have \;(I'x) > 1, and on the events of Lemma E.4, we can bound Vg, b A vk S Tl Pellop log(1/6), yielding
Ki < |[Pellop log(1/6).

dse o
P,|lop log(1 P.||op log(1
S Ay log 252 < BlPellon 08/0) 1 1Pl o8(1/6),

Tk

21
< d>2c||P*||op IOg% log ||P¢((5H0p < d12c||P*H(2)p log 5.

Tk Tk

Fori > dyx, \i(Tx) 2 HPU% , on the events of Lemma E.4, we can bound vk Agvg,; S 1, yielding k; < || Pillop, and thus

d

_ 3K, 1
ST dudi (D) g log T < dudul| P12, og || Pullop ~—5—
) 0 doiT
j=dx+1
IPllop 1

< dudx || P12, 1 5 o

Combining the two summations gives the desired bound:
d dx

1A= Al + 1B = B2 < =P 55 log

) 5
Finally, reparametrizing 6 < §/8 gives the desired probablllty. O

Pillop | d 1
” H P 4 HP*”?)plng*
Tk

11]
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1.4.1. PROOF OF LEMMA 1.3

Define

I . 0 0 I Ky,
S = | 1 [I K} =
I KA e

We see that for k > ko + 1 and ¢ > 73, we have that z; | F;_1 ~ N (Z;, Xk ), where Z; and 3; are F;_;-measurable. Our
goal will now be to lower bound ¥, = 71 Py, + 2P To this end, let v € S9!, and write v = Pyv + Prv := v + v..
Observe then that

+

vl Zky] <

1 = 0 0 0 0
T [ Lax - . ,
vl [f(ﬂ o Ba]oy|+ o] [o agz} oy| = o] {0 0,31] o] < oo lllvyl,

~ L
where we use that {Idx Kk} v)| = 0. On the other hand, since v € null ([Idx KkD , we have

I ~
v SpvL >0l L“?fr} [Idx Kk] vl
k

= | [1a, ] vul?
> foclPow, ([T Ba]) = loslPhmn(li, + BT R > o, |
We can therefore bound, for any o > 0,
UTEkU = UIZkUl + ZUIZWH + U‘—lrzkﬂ}“
> [loLl? = 20 lloL log ]l + Amin (Zk) o[

1
> [lop]® = oi(allvyl® + Ll 1) + Amin (Sa) oL 1.
Taking o = Amin(Xk) /207, we have

- ) 9 203 1 2
v YEv > ||UL|| (1 — 0 7) + */\min(zk) ||UL|| .
)\min(zk) 2
—

=7 =2

Hence, we have show that, for v1, v» defined in the above display, X > 711 Pﬁ + 72Pg. Let us now lower bound each of
these quantities. From Dean et al. (2018, Lemma F.6), since || K ||*> < || Ps|lop (Lemma H.1), and || P|[op > 1 > 07,

1 1 1 1
Amin (Br) 2 of min § 2, ————— zm{}
2 2|| Ky |2, + o} 2" 2.1||Pylop + 07

> g2 min{1 ! } = 0]%
="k 2’3~1HP*||op 6'2||P*||0P.

2
1 Tk
, we have y; > 2,and Yo > ERIVEA

lop *

2 < 1
Hence, for oj; < 527 o

1.4.2. PROOF OF LEMMA 1.8

Proof. All union bounds will be absorbed into ¢ factors, as 6 < 1/7 and T' > d. We decompose vy, ; = ), ; T v ; along
its  and u coordinate. It suffices to show that each bound holds individually with probability 1 — ¢ for a fixed ¢, and £,
since the union bound over & can be absorbed into the § factor (as § < 1/T), and dimension addressed by reparametrizing
§+d/d.
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Point 1: Fori € {dx +1,...,k}, vy lies in the vector space V. Therefore

27 —1 T
T Z T | Xt| | Xt
Uk’iAkvm - Vst [U—j LJ i

t=Tk

275 —1 T
i | Kxy + 08| | KrXe + 018t ot

t=Tp

27 —1 T

T Xt

v; Vk.i
Z ! |:0'kgt:| |:Xt+0'kgt:| h

t=T7g

27 —1
=oi Y (v g ~ i3k - x* ().
t=Tg
By standard y-concentration, the above is < S ellog, 302 < mpo? for 7, > /log(1/0).

Point 2:  For arbitrary 4, set Ry := v} ;(vi ; ) Tand Ry = vy (v gu)T

27 —1 T 27 —1
T T [Xt| [Xe T T
Uk,iAkUk,i = E (U [uJ LJ Vg <2 E x, Rix1 +u, Rouy.
t=71 t=7p

Thus, Lemma I.1 ensures that, with probability 1 — §, we have that for the matrix P := dlyap(A, + B*IA( ky R1+ K ];r Ry K k)
1
o iAok S T log 5 (tr(P) + 207 dest (| R2llop + | Bsll2p[1Pllop)) + [P llop % II7,

where deg < rank(Ry) + rank(Ry) = 2. Since Ry < I < Ry and Ry < I = Ry, we have Ry + K Ry Ky, <
Ry + K R Kk, and thus (by Lemma B.5), P = dlyap(4, + B Kk,Rl + KTRQKk) = dlyap(4, + B, Kk,R +
K & RuK},) = Py, Moerover Lemma H.1, we get | Pk llop S || Pellop- Moreover, since P can be shown to have rank at most

2, tr(P) < || Py |lop. Finally, ||z, |l2 < +/To log(1/8)|| P.||54? from Lemma 1.3,

viAron S i log < (IIP Hop + 0 (L+ 1BellZp | Pellop)) + Tolog(1/6) | Pellgp
S 7 log < (IIP*Ilop+Uk||P lop¥%, ) + Jolog(1/6)[| Pellgp

In particular, if 7, > Jo|| Ps Hop, and o, < 1/\1/2 (for which it suffices 71, < o \I’B ), we have

m

vl;r,z‘Ak”k,i S Tk”P*Hop log(1/6).

Point 3:  Suppose now that 7, > || P||2 Jolog(1/8) V ¥ of,. Then, by using the expectation bound statement of
Lemma I.1, and summing over inidices ¢, we have

E[tr(Ak) N 5bound M Ssafe] 5 diHP*Hop-

Hence, by Lemma E.4, if

d|| Pello
Th Zx dlog{a| (!p)}
min\1 k&

then with probability 1 — e~ ™/% on Eyound N Esates We have that Ay, - 73, T'. Note that since 7, > || Py|| f’)pjo log(1/8) >
dlog(1/6) (since Jy > d and || P, lop > 1), we have also 1 — e~ /4 > 1 — 4.
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2
Now, if in addition 7, 2. of,[|P[|2,, Lemma L4.1 entails that Tx 2= 7t

2
J— Uitl
2 T = 71P0m (note that for such k,

J?n /T < 1). With a few simplifications, we see then that if

d|| P,
e 2 diog .+ dtog { T2 L P 1E, otox(1/0) v o (max(,. | P2 ).

> = dlogd, we need simply 7, 2.
dlog{%} V|PI3,Tolog(1/8) V o, (max{¥% ,[|P[|2,}) to ensure Ay = 74T with probability 1 — O (4).

then with probability 1 — O (), Ay = 7xI'x. Since 7, 2, dlogTy for 7, 2

~

Shrlnklng § by a constant reduces the failure probability to 1 — §. Lastly, using o2 > 1 by definition, and

i < Vdx|| Ps ||9/2\IIB*\/ “P*(SH"P by Lemma H.1, we can bound

d|| P[0
atog { e v 213, T 08(1/6) v a0, v 12 12,)

m

1P|l
< dlog d||Puflop + || P13, 70 10g(1/8) + du| P |0, U, log =2 (U, V || Pll3,)
d|| Pyllo
A (1P Po + 1P 15, ) tog A llow
where in the last line we use ¥, || Py|lop > 1, dx < d, and Py = Jo/dx. O

L5. Proof of Lemma H.5 (k < kgafe)

We analyze the rounds k < ksafe, Which correspond to the rounds before the least-squares procedure produces a sufficiently
close approximation to (A,, B,) that we can safely implement certainty equivalent control.

In order to avoid directly conditioning on events {ksaze < (...)}, let us define the sequence z; o := (x¢,0,u;,0) on the same
probability space as (x¢, u;) to denote the system driven by the same noise w;, and with the same random perturbations g;,
but where the evolution is with respect to the dynamics

xp0 = Ae + Bauro  ugo = Koxeo + 8,

that is, the dynamics defined by the distribution D(Ky,02 = 1,21 = 0). Observe that, for any ¢ < 73___, it holds that

X¢,0 = X¢ and ug o = uy, so it will suffice to reason about this sequence.

safe?

Proof that £,¢. holds As above, to reason rigorously about probabilities, we introduce Ay, 9, By o as the OLS estimators
on the zy o := (X1,0, Ux,0) sequence, and define the covariance matrix

27 —1
. § : T
Ak70 = zk70zk,0.

t=Tg

We also define the induced confidence term:
COI"If}C’O = GAmin(Ak’O)_l (d log 5+ log {M}) .

Lemma L5. The following event holds with probability 1 — §:

Econt = {wc < hato with A= 1, ||[A — AL | By - B.]

E < Confk}.

Proof. Applying (E.1) in Lemma E.2 with Ag = I, we see that for any fixed k for which Ay ¢ > I, Conf ¢ is a valid
§/4k?-confidence interval; that is ||[4, — Ek,o | B, — §k70] llop < Confy . By a union bound, the confidence intervals are
valid with probability 1 — ¢/2, simultaneously. Since the the sequence x; ¢ coincides with x; for ¢ < 75__, , and u; o with
u, fort < 73, — 1, we see that Confy, o = Confy, for all & < kgase. O

safe
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Proof of Regret Bound We begin with the following regret bound.
Lemma L.6. For § < 1/T, the following hold with probability 1 — 6,

Thsage — 1

1
> %o Ruaxio +u/gRatty o S dr,,, U5 Po log(g).
t=1

Proof. 1t suffices to show that the (x; 0, uy,0) sequences satisfies the following bound:

Tko—1

1
> Xioxeo +uloRuttro S iy (Jo(1+ |[Bil3y) + tr(Ru)) log(5),
t=1

where the inequality suffices since Py > 1 (indeed, Jy > J; > d by Lemma B.6), and thus Jy(1 + || B*||C2)p) +tr(Ry) =
dxPo(L + [[BillZ,) + du < dPo V..

For the second, we have from Lemma 1.9 and the fact that x; = 0 that there is a Gaussian quadratic form g " Ag g which is
equal to Z?‘:”Ofl X o RxXy,0, and where tr(Ag) < 75, (Jo(1 + || B.|2,) + tr(Ry)). The second bound now follows from
the crude statement of Hanson Wright in Corollary 5. The last statement follows by a union bound, noting that we need to
bound over kyax = log, T < T < 1/6, rounds, and absorbing constants. O

We conclude by arguing an upper bound on 7 We rely on the following guarantee.

safe *
Lemma L7. Suppose Esate holds. Then for all k < kgase for which Ay, = I, we must have that Confy, 2 €gate, Where
€safe = HP*Hc?plo’

Proof. Forall k < kgage for which A = I, we must have that Conf, > l/Csafe(/Alk, Ek)} If Confy, < ¢/Chate( Ay, By )?
for a sufficiently small ¢, then the same perturbation argument as in Theorem 11 entails that we have Conf, <
1/9Csage (Ak, Bi)?, yielding a contradiction. Finally, we subsitute in Csage (A, B.)? < || Py |25 by Equation (3.1). O

Recall that we say f =, fif “f > Cg” for a sufficiently large constant C' (Definition I.3). In light of the above lemma, Part
2 will follow as soon as we can show that, for any € € (0, 1),,

vE Jo
5 b)

(1 + || Koll3,)
€

if 7 2 log then Confr g <e¢, and Ao = I wp. 1 —0O(J). (1.3)

We begin with a lower bound the matrices Ay, o:

Lemma L8. for a sufficiently large constant C. Finally, set Tmin = dlog(l + Vg Jo). Then, for any k such that
Tk 2w Tmin V dlog (%), , it holds that

Tk
—| <4
1+ [ Koll3

Eltr(Ako)] S V% Jomk, P |Amin(Ako) 2«
The bound above is proven in Section 1.5.1. We can now verify Eq. (I.3), concluding the proof of Part 2.

Proof of Eq. (1.3). Suppose that k is such that 7, 2, Tiin V dlog(}). Then, by the above lemma, and using det(cX) =
c?det(X) for X € R¥*?, we have, with probability 1 — O (§),

14 || Koll? k2
Confro < IOl (5 4 1o = +logdet((Ax0))
Tk
< 1+ [|Koll3 k?

(d +log — + dlog tr((Ax0)),
Tk 4
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where we use that X > 0, we have logdet(X) = Z?Zl log A\i(X) < dlogtr(X). By Markov’s inequality, we have with
probability 1 — 6 that tr((Ak,0) < E[tr((Aro)]/0 S ¥E Jomw < ¥% Jo/6, since 7, < T < 1/6. Hence, with some
elementary operators, we can bound

d. 9% T
Confr o < —log —B.0
’ Tk )
2
Hence, for 7, =, % log w, we have with probability 1 — § that we have Confj, < e. O

1.5.1. PROOF OF LEMMA 1.8

1. We first need to argue a lower bound on matrices ¥; such that that z; o | Fr—1 ~ N (Z¢ 0, Xt ,0), where Z; o, Y0 are
Fi—1 measurable. It is straightforward to show that

e |1 Ko
TR K)Ko+1|°

which by Dean et al. (2018, Lemma F.6), has least singular value bounded below as

1 1 1
Amin % 0) = min 5 > .
(Br0) {2 1+2K0||2} 27 2Kl

2. Next, we need an upper bound on

Tr—1

Eftr(Ako)] = E[ ) [l + [l

Tr—1

SE[Y Il + |z )
t=1

< (1 + || Ba|®)tr(dlyap(Ag,, I + K, Ko)) + trri, (1)
< 27 (1 + || Bul*)tr(dlyap(Axc,, I + K¢ Ko))

< 27 (L4 | Bl Tro = 4(mk — Th—1) (1 + || Bul|*) K,
<A — o) (14 U5 )Tk, S Y%, Txo,s

where we use that I < dlyap(Axk,, I + K, Ko)) =< dlyap(Ag,, Rx + K, RuKo)) = Jx, for Ry, Rx > I. This
proves the trace upper bound.

3. Using the second to last inequality in the above display, we see that for

1 2000
n;wki:§m246—@dmf$+dbg&1+wKﬂfﬂ+W§)k9%

=T

Lemma E.4 implies (taking £ = {2 to be the probability space and T' = 7, /2) that, if 75, =+ Tinin, we have

977€
P {Ako a 320020} < 2exp (—mm) .

Routine manipulations of give dlyap, 1 + || Ko||? < dlyap(Ax,, I + || Ko||?) < dlyap(Ag,, Rx + KJ RuKo) = Jx,
for Ry, Rx = I. Hence, with a bit of algebra, we can bound

T S Tiin = dlog(1+ ¥p, Jk,).

Using the lower bound on X concludes the proof.



Naive Exploration is Optimal for Online LQR

1.6. Proof of Lemma I.1

In order to prove Lemma 1.1, we first show that we can represent the Cost functional as a quadratic form in Gaussian
variables.

Lemma L9. Ler (x1,X2,0,) denote the linear dynamical system described by the evolution of D(K, x1). Then for any
t > 1, there exists a standard Gaussian? vector g € ROCD sych that for any cost matrices R1, Ry = 0, we have

COSt(Rh RQ; L1, 0u, t) = ETAEE + xIAxl z + 2gTACrOSSx17

where, letting Ry = Ri + K'RoK, Ax = A, + B,K, Py = dlyap(Ak,Rg) Jx = tr(Pg), and deg =
min{dy, dim(R;) + dim(R2)},

tr(Ag) < tJi + 200 tdess (|| R2llop + || Bellop | Prellop) »

[Agllop S (14 aal Bl IR llopl A5, + ol RallZ,,

Ax1 j PK7

”AcrossleQ < HAg‘lop : J?lTPKx.

Let us continue to prove Lemma I.1. The expectation result follow since E[Cost(R1, R2; z1, 04, t)] = tr(Ag) + o1 Ax, 21
for a Gaussian quadratic form.

For the high probability result, observe that by Gaussian concentration and Lemma 1.9, we have with probability 1 — §

28 Acrosst'1, S V10g(1/8) || Acrosst1 |2 S \/log(1/5)||/\§llop caf Py

Hence, by AM-GM, 28 " Acyossz1 < O (log(1/8)||Agllop) + 21 Prca1. On the other hand, by Hanson-Wright

& Ag8 < tr(tr(Ag)) + O (IAgle vIog(1/8) + [[Aglop los(1/9)) (14)
< tr(Ag) + O (v/1d1og(1/8) + | Agllop log(1/9))

where we use the dimension of Ag in the last line. Combining with the previous result, and adding in at:lTAx1 T < a:lTPle,
we have that with probability 1 — 4,

Cost(Ry, Ry 21,00, t) < tr(Ag) + O ((\/td 1og(1/3) + log(1/8)) | Agllop + xlTPle) .

The first high-probability statement follows by substituing in tr(Ag) and ||Ag||op- Then second statement follows from
returning to Eq. 1.4 and using || X ||op, | X ||r < tr(X) for X > 0. O

We shall now prove Lemma 1.9, but first, we establish some useful preliminaries.

1.6.1. LINEAR ALGEBRA PRELIMINARIES

Definition 1.4 (Toeplitz Operator). For £ € N, and j, ¢ > i, define the matrices

Aiﬂizo AiJrl]IiZ,l Ce AZ‘+€H¢Z,[ Ai—1
i—17. i, i+0—17. j—2
Toep, . (4) = | 1 Tz e AT Toepcol ()= |
Aiij]lizj A .. AiJreinH_g_jZO ]IiZIAi_l

We shall use the following lemma.

Lemma L.10. For any i < j,{, we have |[ToepCol, ;|lop < [[Toep, ; o(A)llop < [|Alln.., and, for Y € R%, and
diag;_;(Y') denoting a j — i-block block matrix with blocks Y on the diagonal, we have the bound

tr(ToepCoIivj(A)Tdiagj_i(Y)ToepCoIM(A)) = (j —1) - tr(dlyap(Y, A4))
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Proof. The first bound is a consequence of the fact that Toep, ; ,(A) is a submatrix of the infinite-dimensional linear

operator mapping inputs sequences in £2(R%) to outputs £5(R%<); thus, the operator norm of Toep;, j.¢(A) is bounded by
the operator norm of this infinite dimensional linear operator, which is equal to || A||4__( see e.g. Tilli (1998, Corollary 4.2)).
The second bound follows from direct computation, as

tr(ToepCol, ;(A) " diag; ,(Y)ToepCol, ;(A)) < tr(} ATV A) = tr(dlyap(4,Y)).

s=0
O
1.6.2. PROOF OF LEMMA 1.9
Lemma L.11 (Form of the Covariates). Introduce the vector Xp = (X¢,...,X1) and Uy := (g, ..., 1), set Wi_y) =
(Wi_1,...,w1) and gy = (8¢, - - -, 81). Then, we can write
XU = My, [V 4 [ K } ToepCol, ,(0) x
L‘[t]] o [ 8[1) } ding, ()| T°PCOM1(0) %1,
:=Mpy,¢
where we have defined the matrix
My, = { Toep(),t,tfl(AK) UuToepfl,t,t(AK)diagt(B*)
KToepg ;44 (Ak) oydiag, (I) + auKToep_Lm(AK)diagt(B*)

Further, let
.71 5]
B diag 0 B
In light of the the above lemma, we have for g := [Wg[tl]] , we have that
t

t
2 : T T
X Rlxs + u, Rgus

s=1
T .
_ |:X[t]:| |: dlag(Rl) :| |:X[t]:|
upy diag(R2) ding LU11]
_ diag(Ry) } _
= (M + My,x1)" [ M + My x
( K,t8¢ 0,t 1) dlag(Rg) diag( K,t8¢ 0,t 1)
_ diag(Ry) _ diag(R1) _
_ =T asT gl TasT glity
=B M { diag(R2) :|diag Mice B+ 2 Mo [ diag(Rz) diag Mra®s
=Ag :=Across
diag(R1) ]
+x; M, { My ¢ X1.
' ot dlag(Rg) diag o
::Axl
We can evaluate each term separately.
Bounding tr(Ag). Let us recall
ToePo,t,t—l(AK) UuToep—l,t,t(AK)dia‘gt(B*)

Mg, = . .
Kot KToepU,t,tfl(AK) oydiag, (1) + UuKToeprt,t(AK)dlagt(B*)
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Recall Ri := R; + K T Ry K. We find that the diagonal terms of Ag coincinde with the diagonals of the matrix Ag giag
defined as

[ Toep, t,tfl(AK)Tdiagtfl(RK)Toep(),t t—1(Ak) }
odiag,(B,) Toep_, , ,(Ak) " diag,(Rx)Toep_, , ,(Ax)diag,(B,) + o.diag,(R2) + (cross term) ding

{ Toep, t,tfl(AK)Tdiagtfl(RK)ToepO,t t—1(Ak) }
o QUzdiagt(B*)TToepfl,t,t(AK)Tdiagt(RK)Toepfl,t,t(AK)diagt(B*) + QJgdiagt(R2) diag

where (cross term) denotes the cross term between the term o2 diag, (B.) ' Toep_; , ;(Ax) " diag,(Rx)Toep_, ; ,(Ax )diag,(B,)+
o2diag,(Rsz), which we bound in the second inequality by Young’s inequality.

By Lemma 1.10, we have
tr(Toep07t7t_1(AK)Tdiagt_l(RK)Toep07t7t_1(AK)) <t-tr(dlyap(Ag, Rk)) = Jk-
Similarly, since dlyap(Ak, Rk ) = Pk, and thus rank(Pg) < rank(Rg) < rank(R;) + rank(Rs),

tr(diagt(B*)TToep_Ltyt(AK))Tdiagt(RK)Toep_l’t_’t(AK))diagt(B*))

< t-tr(B/dlyap(Ak, Rk)B,)

=t -tr(B] Pk B,)

< | Bullp 1P llop min{rank(B.), rank(Px)} < tdeg|| B3| Pellop-
Finally, we can bound tr(202diag,(R2)) < 2to2rank(Rz)||Rz|lop < 2defrto? || Raop, yielding

tr(Ag) = tr(Agiag) < tJi + 205 tdesr (|| Rellop + [1B4]12, 1 Pxcllop) -

Bounding ||Ag||op. Observe that, for any PSD matrix M = [ A X} , we have that

X" B

M <2 [A] .
B |,
iag
Since Ag > 0 (it is a non-negative form), in particular, we hae Ag =< 2Ag diag. Thus

[Agllop < [[Ag,diagllop
< on (1IR3, + 1 Ricllop | B3, 1 Toep_y ¢ ¢ (AK)112,) + [ R llop I Toepg 1 1 (A 12,

Since we can bound || Toep_; ; ,(Ax )12, < | Ak|#.. by Lemma L.10, we obtain

IAgllop S IR MIAK e, +on (1R2llop + | Ricllop | BlI311Ax |13, )

where we use that o, < 1.

Bounding Ay,. Let us recall that

. I
Moy = {diagt(K)] ToepColy ,(Ak).
Thus,

Ay, = My, dFL(Rl) My = ToepCol, ,(Ax) "diag,(R; + K" RyK)ToepCol, ,(Ax)
T diag(R2) diag ’ ’
= ToepCoILt(AK)Tdiagt(RK)ToepColl,t(AK)

= dlyap(Ax,Rk) = Pk
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Bounding A.,... We can directly verify that there exists a matrix A with AA"T = Ag and a matrix B with BB T =A,
such that Aoss = 2ABT. Hence,

crossL1|lop > gllop " 1 Ax; T1 > gllop " 1 'KX1-
A llop < \/IAgllop - @1 Axyz1 < /[ Aglop - 21 P,

1.7. Proof of Lemma 1.2

Setg = {W[t_l]} . Then we have
g[t—1]

Xy — Atglxl = ToepCoILtfl(AK)w[t_l] + auToepColl’tfl(AK)diag(B*)g{t]g[t].

‘We now observe that

E[fjx; — A?Xﬂl% | x1] = tr(ToePC°|17t71(AK)TOGPC‘)lLt*l(AK)T)
+ aitr(diagt_l(B*T)ToepColl,t_l(AK)ToepColLt_l(AK)Tdiagt_l(B*))
1+ 03| B.[|3)tr(ToepColy ;1 (A ) ToepColy ;1 (Ax)")
1+ o || B.|3)|[ ToepCol ;1 (Ax) %
1+ 05| B.[3)tr(dlyap(Ar, 1))
L+ o || Bul[3) Txe,

<
<

IN

~ o~ o~ o~

<

where the last inequality uses Lemma B.5. Since x; — Atlglxl is a Gaussian quadratic form, the simplified Hanson Wright
inequality (Corollary 5) gives

_ 1
Ix¢ — Al x5 < (1+ o0 ||Bill3) K log 5

1.8. Extension to General Noise Models

Our upper bounds hold for general noise distributions with the following properties:

1. The noise satisfies a Hanson-Wright style inequality, so that an analogue of Lemma I.1 holds. Recall that Lemma I.1
establishes that the true costs concentrate around their expectations.

2. The noise process is a o -sub-Gaussian martingale difference sequence, in the sense that E[w; | wy,...,w;_1] =0
and for any v € R%, Elexp((v,w¢) | wi,...,w;_1] < exp(3|v||?02). This is necessary for the self-normalized tail
bound (Lemma E.1 of Abbasi-Yadkori et al. (2011)).

3. The noise satisfies the block-martingale small ball condition from Simchowitz et al. (2018), which ensures the covariates
are well-conditioned during the estimation phase (in particular, that an analogue of Lemma E.4 holds)

In more detail, suppose that the noise is o -sub-Gaussian, and that E[wtw: | wi,...,wi_1] = X_ > 0. Then by
applying the Paley-Zygmund inequality (analogously to Eq. 3.12 in (Simchowitz et al., 2018)), one can show that the
(1, 33—, p)—block-martingale small-ball property holds with

1 E[(wy, 2)? | wig—q)?
p — - 1min 4
4 w0 ]E[(Wt7 Z> | Wl:tfl}
. 2
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where in the last inequality, we upper bound E[(wy, 2)*] using the standard moment bound for sub-Gaussian variables.

Hence, a sub-Gaussian upper bound and covariance lower bound are enough to guarantee point 3 above holds.



Naive Exploration is Optimal for Online LQR

Point 1 is more delicate, because Hanson-Wright inequalities are known under only restrictive assumptions: namely,
for vectors which have independent sub-Gaussian coordinates (Rudelson & Vershynin, 2013), or for those satisfying a

Lipschitz-concentration property (Adamczak, 2015). For the first condition to be satisfied, we need to assume that there
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exists a matrix ¥ > 0 such that the vectors w; := 3, */“wy are (a) jointly independent, and (b) have jointly independent,

sub-Gaussian coordinates. For the second condition to hold, we must assume that the concatenated vectors (W1, ..., W;)
satisfy the Lipschitz-concentration property (Adamczak, 2015, Definition 2.1). If either condition holds, then we can obtain
the same regret as in our main theorem by modifying Lemma 1.9 to use a quadratic form for the sequence (W1, ..., W;),

and then applying one of the Hanson-Wright variants above to attain Lemma I.1.

In general, it is not known if sub-Gaussian martingale noise satisfies a Hanson-Wright inequality. In this case, we can
demonstrate the concentration of costs around their expectation via a combination of the Azuma-Hoeffding/Azuma-Bernstein
inequality with truncation and mixing arguments. This type of argument bounds the fluctuations of the costs around their
mean as roughly (dy + dy)v/T, which is worse than the square root scaling v/dy + dy, - v/T enjoyed by the Hanson-Wright
inequality. Up to logarithmic factors, this would yield regret of (dy + du)VT + \/dxd%T = +/dx max{dy, d2}T, which
is sub-optimal for dy > d2. It is not clear if any algorithm can do better in this regime (without a sharper inequality
for the concentration of costs around their means), since it is not clear how to ameliorate these random fluctuations.
Nevertheless, the final regret bound of \/ dyx max{dy, d2}T still improves upon the dimension dependence in the upper

bound of +/(dx + dy)3T attained by (Mania et al., 2019).




