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Proof of Proposition 2
The transform matrix G+ can be written as

G+ = T1 ⊕T2 = T1 ⊗ IH + IW ⊗T2,

where ⊕ denotes the Kronecker sum and ⊗ the Kronecker
product, T1 is aW×W tridiagonal Toeplitz matrix, denoted
T1 = (W ; a2, a1/2, a4), meaning that

T1 =
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and similarly T2 = (H; a3, a1/2, a5). For the eigenvalues
of a Kronecker sum, it holds that if λ1 is an eigenvalue of T1

and λ2 is an eigenvalue of T2, then λ1 +λ2 is an eigenvalue
of T1 ⊕T2 (Graham, 1981). Moreover, the eigenvalues of
a tridiagonal Toeplitz matrix T = (n; b, a, c) have a simple
formula

λi (T) = a+ 2
√
bc cos

(
π

i

n+ 1

)
, for i = 1, . . . , n,

which holds for real and complex a, b and c (Smith, 1985).
Substituting this formula into the expression

det (G+) =

H∏
i=1

W∏
j=1

(λi (T2) + λj (T1))

gives the result in Proposition 2.

+-Filter Reparameterization
The following reparameterization is used to ensure that G+

has real positive eigenvalues

a1 = softplus (ρ1) + softplus (ρ2)

a2a4 = (softplus (ρ1) tanh (ρ3) /2)
2
, a4/a2 = exp (ρ4)

a3a5 = (softplus (ρ2) tanh (ρ5) /2)
2
, a5/a3 = exp (ρ6) ,

where ρ1, . . . , ρ6 are real numbers.

Implementation Details
The model parameters θ and variational parameters φ are
trained with respect to the negative ELBO (Eq. (10)) divided
by N as loss function, using Adam optimization (Kingma
& Ba, 2014) with default settings, learning rate 0.01 and

100k iterations. The parameters with the lowest loss value
are then saved and conditioned on by our implementation
of the CG algorithm, for computing the posterior mean and
standard deviation of x. We use Nq = 10 samples from
variational approximation to compute the expectation in
each iteration. We can train the measurement error σ to-
gether with the other parameters θ, but we have used a fixed
σ = 0.001, which seems to give very similar results, but
with somewhat faster convergence. For the DGMRFs with
seq-filters, we randomly select among the eight possible
orientations of the filters in each layer. As the toy data is
centered around 0, the bias in each layer was fixed to 0 for
this experiment. The satellite data was normalized to have
maximum pixel value 1.

Competing Methods
We here briefly describe the methods that are compared
against in Table 1, except DIP that is mentioned in Sec-
tion 5.3. For more details we refer to Heaton et al. (2018).
FRK (Fixed rank kriging) (Zammit-Mangion & Cressie,
2017) approximates a spatial process using a linear combi-
nation of K spatial basis functions with K � N .
Gapfill (Gerber et al., 2018) is an algorithmic, distribution
free method that makes predictions using sorting and quan-
tile regression based on closeby pixels.
LatticeKrig (Nychka et al., 2015) approximates a GP with
a linear combination of multi-resolution basis function with
weights that follow a certain GMRF.
LAGP (Local approximate Gaussian process) (Gramacy &
Apley, 2015) fits a GP, but only uses the subset of points in
the training data that are closest to the points in the test data.
MetaKriging (Guhaniyogi et al., 2017) is an approximate
Bayesian method that splits the training data into subsets,
fits one model to each subset, and combines them all into a
meta-posterior, here using GPs.
MRA (Multi-resolution approximation) (Katzfuss, 2017)
uses a multi-resolution approximation of a GP, similar to
LatticeKrig, but uses compactly supported basis functions.
NNGP (Nearest-neighbor Gaussian process) (Datta et al.,
2016) approximates a GP by rewriting the joint density of
the data points as a product of conditional densities, and
truncating the conditioning sets to only contain the nearest
neighbors.
Partition makes a spatial partitioning (splits the domain
into disjoint subsets) and fits spatial basis functions to each
partition, similar to FRK, but with some parameters shared
between partitions.
Pred. Proc. (Predictive processes) (Finley et al., 2009)
approximates a GP using a set of K knot locations, also
known as inducing points, with K � N which reduces the
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size of the covariance matrix that needs to be inverted.
SPDE (Stochastic partial differential equation) (Lindgren
et al., 2011) represents a GP with a GMRF (see Section 2.3).
Tapering (Furrer et al., 2006) obtains an approximation of
a GP with sparse covariance matrix by truncating small co-
variances in a way that preserves positive definiteness.
Peri. Embe. (Periodic embedding) (Guinness & Fuentes,
2017) approximates a GP using the fast Fourier transform
on a regular grid.

Linear Trend Model
For inference with the linear trend model in Eq. (11), we
extend the vector of latents x to include also the regression
coefficients β, and use (for linear DGMRFs) the prior[
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⇔ z̄ = Ḡx̄, z̄ ∼ N (0, I),

where v can be interpreted as the prior inverse standard
deviation of the elements of β, which we fix at v = 0.0001.
The posterior for x̄ is a GMRF, similar to Eq. (5), with
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and thus we can proceed with inference as before, with x̄
instead of x, with slight modifications to the ELBO and to
the CG method. We use an independent variational approx-
imation qφβ

(β) = N (β|νβ,Sβ) for β. Integrating out β
is important for the predictive performance. For reference,
if linear trends are instead removed using the ordinary least
squares estimates of β in a preprocessing step, the row in Ta-
ble 1 corresponding to seq5×5,L=5 instead reads (1.25, 1.74,
0.90, 8.45, 0.89). When the linear trend model is used, we
compute posterior standard deviations using standard Monte
Carlo estimates, instead of simple RBMC, using Ns = 100
samples.
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Figure 4. Satellite data inpainting by a linear DGMRF with 5 layers of 5×5 seq-filters.

Table 2. Standard deviations across seeds for the results in Table 1.
Method MAE RMSE CRPS INT CVG

seq5×5,L=1 0.029 0.040 0.011 0.216 0.000
seq5×5,L=3 0.022 0.042 0.019 0.462 0.001
seq5×5,L=5 0.037 0.051 0.012 0.461 0.001
seq3×3,L=5 0.066 0.097 0.039 0.171 0.003

+L=5 0.039 0.056 0.018 0.221 0.001
seq5×5,L=5,NL 0.066 0.092 - - -
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