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Abstract
We present a new piecewise linear regression
methodology that utilizes fitting a difference of
convex functions (DC functions) to the data.
These are functions f that may be represented
as the difference φ1 − φ2 for a choice of con-
vex functions φ1, φ2. The method proceeds by
estimating piecewise-liner convex functions, in a
manner similar to max-affine regression, whose
difference approximates the data. The choice
of the function is regularised by a new semi-
norm over the class of DC functions that con-
trols the `∞ Lipschitz constant of the estimate.
The resulting methodology can be efficiently im-
plemented via Quadratic programming even in
high dimensions, and is shown to have close to
minimax statistical risk. We empirically validate
the method, showing it to be practically imple-
mentable, and to have comparable performance
to existing regression/classification methods on
real-world datasets.

1. Introduction
The multivariate nonparametric regression problem is a fun-
damental statistical primitive, with a vast history and many
approaches. We adopt the following setup: given a dataset,
{(xi, yi)}i∈[n], where xi ∈ Rd are predictors, assumed
drawn i.i.d. from a law PX , and yi are responses such that
yi = f(xi) + εi, for a bounded, centered, independent
random noise εi, and bounded f , the goal is to recover an
estimate f̂ of f such that on new data, the squared error
E[(y − f̂(x))2] is small.

The statistical challenge of the problem lies in the fact that
f is only weakly constrained - for instance, f may only be
known to be differentiable, or Lipschitz. In addition, the
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problem is algorithmically challenging in high-dimensions,
and many approaches to the univariate problem do not scale
well with the dimension d. For instance, piecewise linear
regression methods typically involve a prespecified grid,
and thus the number of grid points, or knots, grows expo-
nentially with dimension. Similarly, methods like splines
typically require both stronger smoothness guarantees and
exponentially more parameters to fit with dimension in order
to avoid singularities in the estimate.

This paper is concerned with regression over the class of
functions that are differences of convex functions, i.e., DC
functions. These are functions f that can be represented
as f = φ1 − φ2 for a choice of two convex functions. DC
functions constitute a very rich class - for instance, they
are known to contain all C2 functions. Such functions have
been applied in a variety of contexts including non-convex
optimization (Yuille & Rangarajan, 2002; Horst & Thoai,
1999), sparse signal recovery (Gasso et al., 2009), feature
selection (Le Thi et al., 2008), and reinforcement learning
(Piot et al., 2014).

The principal contribution of this paper is a method for
piecewise linear regression over the class of DC functions.
At the heart of the method is a representation of piecewise
linear DC functions via a set of linear constraints, in a
manner that generalises the representations used for max-
affine regression. The choice of the function is regularised
for smoothness by a new seminorm that controls the `∞-
Lipschitz constant of the resulting function. The resulting
estimate is thus a piecewise linear function, represented as
the difference of two piecewise linear convex functions, that
are smooth in the sense of having bounded gradients.

The method enjoys two main advantages:

1. It is agnostic to any knowledge about the function, and
requires minimal parameter tuning.

2. It can be implemented efficiently, via quadratic program-
ming, even in high dimensions. For n data points in Rd,
the problems has 2n(2d + 1) + 1 decision variables, and
n2 linear constraints, and can be solved in the worst case in
O(d2n5) time by interior-point methods. Furthermore the
algorithm does not need to specify partitions for piece-wise
linear parts and avoids ad-hoc generalizations of splines or
piece-wise linear methods to multi-dimensions.
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In addition, the method is shown to be statistically viable,
in that it is shown to attain vanishing risk as the sample
size grows at a non-trivial rate, under the condition that the
ground truth has bounded DC seminorm. The risk further
adapts to structure such as low dimensional supports.

Lastly, the solution obtained is a piecewise-linear fit, and
thus enjoys interpretability in that features contribution heav-
ily to the value can be readily identified. Further, the fitting
procedure naturally imposes `1 regularisation on the weights
of the piecewise linear parts, thus enforcing a sparsity of
local features, which further improves interpretability.

To establish practical viability, we implement the method
on a number of regression and classification tasks. The set-
tings explored are those of moderate data sizes - n ≤ 103,
and dimensions d ≤ 102. We note that essesntially all non-
parametric models are only viable in these settings - typical
computational costs grow with n and become infeasible for
large datasets, while for much higher dimensions, the sam-
ple complexity - which grows exponentially with d - cause
small datasets to be non-informative. More pragmatically,
all nonparametric methods we compare against have been
evaluated on such data. Within these constraints, the method
is shown to have better error performance and fluctuation
with respect to popular methodologies such as multivariate
adaptive regression splines, nearest neighbour methods, and
two-layer perceptrons, evaluated on both synthetic and real
world data-sets.

1.1. Connections to Existing Methodologies

Piecewise Linear Regression is popular since such regres-
sors can can model the local features of the data without
affecting the global fit. In higher than 1 dimensions, piece-
wise linear functions are usually fit via choosing a partition
of the space and fitting linear functions on each part. The
principle difficulty thus lies in choosing these partitions.
The approach is usually a rectangular grid - for instance,
a variable rectangular partition of the space is studied in
(Toriello & Vielma, 2012) and solved optimally. However
the rectangulization becomes prohibitive in high dimension
as the number of parts grow exponentially with the dimen-
sion. Other approaches include Bayesian methods such as
(Holmes & Mallick, 2001), which rely on computing poste-
rior means for the parameters to be fit via MCMC methods.

Max-Affine Regression is a nonparametric approximation
to convex regression, originating in (Hildreth, 1954; Hol-
loway, 1979) that recovers the optimal piece-wise linear
approximant to a convex function with the form f =
maxi∈[K]〈ai,xi〉+ bi for some K. Smoothness of the esti-
mate can be controlled by constraining the convex function
to be Lipschitz. The problem is generic in that it is easily
argued that piecewise linear convex functions can uniformly
approximate any Lipschitz convex function on a bounded

domain. Parametric approaches, i.e., with a fixed K, are
popular, but can be computationally intensive due to the in-
duced combinatorics of which of theK planes is maximised
at which data point, and various heuristics and partition-
ing techniques have to be applied (Magnani & Boyd, 2009;
Hannah & Dunson, 2013; Ghosh et al., 2019). The nonpara-
metric case, where K grows with n, has been extensively
analysed in the works (Balázs et al., 2015; Balázs, 2016).

On the other hand, if K = n, i.e. if the number of affine
functions used is the same as the number of datapoints, then
the problem becomes amenable to convex programming
techniques - when estimating the parameters ai, bi, one can
remove the nonlinearity induced by the max, and instead
enforce the same via n linear constraints. This simple fact
allows efficient algorithmic approaches to max-affine func-
tions. The heart of our method for DC function regression
is an extension of this trick to DC functions.

Smoothing splines are an extremely popular regression
methodology in low dimensions. The most popular of these
are the L2 smoothing splines, which, in one dimension, in-
volve fixing a ‘knot’ at each data point, and estimating the
gradients of the function at each point, with regularisation of
the form

∫
|f̂ ′′|2. Unfortunately this L2 regularisation leads

to singularities in d ≥ 3 dimensions, and methods such as
thin plate splines generalising these to higher dimensions
resort of regularising up to the dth derivative of the estimate,
leading to an explosion in the number of parameters to be
estimated (Wahba, 1990).

Our method is closer in relation to L1 regularised splines,
which in the univariate case regularise

∫
|f̂ ′′| - it is shown

in Appx. A that in one dimension our method reduces to
these. As a consequence, one may view this method as a
new generalisation of the L1-spline regressor.

A number of alternative methods for multivariate splines
have been proposed, with several, such as general additive
models modelling the data via low dimensional projections
and assumptions. The most relevant multivariate spline
methods are the adaptive regression splines, originating in
(Friedman et al., 1991), which is a greedy procedure for
recursively refining a partition of the data, and fitting new
polynomials over the parts.

Previous DC Modeling Finally, let us mention that the
final chapter of the doctoral thesis of Balázs (2016) antici-
pates our study of DC function regression, but gives neither
algorithms nor analyses. Subsequently, Cui et al. (2018)
introduces the same DC modeling as us in a broader context,
where the loss function can also be a DC function. However
their problem ends up being non-convex. They focus on
developing a majorization-minimization algorithm to find
an approximate solution with desirable guarantees such as
convergence to a directional stationary solution.
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2. A brief introduction to DC functions
Difference of convex functions are functions which can be
represented as difference of two continuous convex function
over a domain Ω ⊂ Rd, i.e., the class

DC(Ω) , {f : Ω→ R |∃φ1, φ2 convex, continuous s.t.
f = φ1 − φ2}.

Throughout the text we will set Ω = {x : ‖x‖∞ ≤ R}.
We will assume that the noise and the ground truth func-
tion are bounded so that |ε|, supx∈Ω |f(x)| ≤ M. As a
consequence, |y| ≤ 2M .

One of the first characterizations of DC functions is due to
Hartman et al. (1959): a univariate function is a DC function
if and only if its directional derivatives each has bounded
total variation on all compact subsets of Ω. For higher
dimensions it is known that DC functions are a subclass
of locally-Lipschitz functions and include C2 functions.
Therefore, any continuous function can be uniformly ap-
proximated by DC functions. For a recent review see Bačák
& Borwein (2011).

In the following section we show that D.C functions can fit
any sample data. Thus, to allow a bias-variance tradeoff,
we regularise the selection of DC functions via the DC
seminorm

‖f‖ , inf
φ1,φ2

sup
x

sup
vi∈∂∗φi(x)

‖v1‖1 + ‖v2‖1

s.t. φ1, φ2 are convex, φ1 − φ2 = f,

where ∂∗φi denotes the set of subgradients of φi. The above
function is not a norm because every constant function sat-
isfies ‖c‖ = 0. Indeed, if we equate DC functions up to a
constant, then the above seminorm turns into a norm. We
leave a proof of the fact that the above is a seminorm to
Appx. B.1. Note that the DC seminorm offers strong control
on the `∞-Lipschitz constant of the convex parts of at least
one DC representation of the function (and in turn on the
Lipschitz constant of the function).

We will principally be interested in DC functions with
bounded DC seminorm, and thus define

DCL , {f ∈ DC : ‖f‖ ≤ L}.

The bulk of this paper concentrates on piecewise linear DC
functions. This is justified because piecewise linear func-
tions are known to uniformly approximate bounded varia-
tion functions, and structural results (Kripfganz & Schulze,
1987; Ovchinnikov, 2002) showing that every piecewise lin-
ear function may be represented as difference of two convex
piecewise linear functions - i.e., max-affine functions. Since
the term is used very often, we will abbreviate “piecewise

linear DC” as PLDC, and symbolically define

pl-DC , {f ∈ DC : f is piecewise linear},
pl-DCL , {f ∈ DCL : f is piecewise linear}.

The following bound on the seminorm of PLDC functions
is useful. The proof is obvious, and thus omitted.

Proposition 1. Every f ∈ pl-DC can be represented as a
difference of two max-affine functions

f(x) = max
k∈[K]

〈ak,x〉+ ck − max
k∈[K]

〈bk,x〉+ c′k

for some finite K. For such an f , ‖f‖ ≤ maxk ‖ak‖1 +
maxk ‖bk‖1.

2.1. Expressive Power of Piecewise linear DC functions

We begin by arguing that PLDC functions can interpolate
any finite data. The principle characterisation for DC func-
tions is as follows:

Proposition 2. For any finite data {(xi, yi)}i∈[n], there
exists a DC function h : Rd → R, that takes values h(xi) =
yi if and only if there exist ai, bi ∈ Rd, zi ∈ R, i ∈ [n] such
that:

yi − yj + zi − zj ≥ 〈aj ,xi − xj〉, i, j ∈ [n]

zi − zj ≥ 〈bj ,xi − xj〉, i, j ∈ [n]
(1)

Further, if there exists a DC function that interpolates a
given data, then there exists a PLDC function that also
interpolates the data.

Proof. Assuming h = φ1−φ2 for convex functions φ1 and
φ2, take aj and bj to be sub-gradients of respectively φ1

and φ2 then (1) holds by convexity. Conversely, assuming
(1) holds, define h as

h(x) = max
i∈[n]
〈ai,x− xi〉+ yi + zi −max

i∈[n]
〈bi,x− xi〉+ zi

h ∈ DC since it is expressed as the difference of two max-
affine functions. Further, it holds that h(xk) = yk for any
k ∈ [n]. Indeed, the first condition implies that for any
i 6= k,

〈ai,xk − xi〉+ yi + zi ≤ yk + zk,

with equality when i = k. Thus, the first maximum simply
takes the value yk + zk at the input xk. Similarly, the
second maximum takes the value zk at this input, and thus
h(xk) = (yk + zk)− zk = yk.

Notice that the interpolating function given in the above is
actually piecewise-linear. Thus, if a DC function fits the
given data, then extracting the vectos ai, bi and constants
zi as in the first part of the proof, and constructing the
interpolant in the second part yields a PLDC function that
fits the data.
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The principal utility of the conditions stated above is that we
can utilise these to enforce the shape restriction of getting a
DC estimate in an efficient way when performing empirical
risk minimisation. Indeed, suppose we wish to fit a DC
function to some data (xi, yi). We may then introduce
decision variables ŷi, zi,ai, bi, where the ŷi represent the
value of our fit at the various xi, and then enforce the linear
constraints of the above proposition (with yi replaced by ŷi)
while minimising a loss of the form

∑
(yi−ŷi)2. Since these

constraints are linear, the resulting program is thus convex,
and can be efficiently implemented. This observation forms
the core of our algorithmic proposal in §3

The above characterisation relies on existence of vectors
that may serve as subgradients for the two convex functions.
This condition can be removed, as in the following.

Proposition 3. Given any finite data {(xi, yi)}i∈[n], such
that yi 6= yj =⇒ xi 6= xj , there exists a PLDC function
which interpolates this data.

Proof. The interpolating function is constructed by adding
and subtracting a quadratic function to the data. Let

C , max
i,j

|yi − yj |
‖xi − xj‖22

.

Then the piecewise linear function

h(x) , max
i∈[n]
〈Cxi,x− xi〉+

1

2
C‖xi‖2 +

1

2
yi

−max
i∈[n]
〈Cxi,x− xi〉+

1

2
C‖xi‖2 −

1

2
yi (2)

satisfies the requirements. Indeed, the function is DC, since
it the difference of two max-affine funcitons. The argument
proceeds similarly to the previous case - at any xj , we have:

max
i∈[n]
〈Cxi,xj − xi〉+

1

2
C‖xi‖2 +

1

2
yi

= max
i∈[n]

1

2
C‖xj‖2 −

C

2
‖xi − xj‖2 +

1

2
yi

≤ max
i∈[n]

1

2
C‖xj‖2 −

|yi − yj |
2

+
1

2
yi

≤ 1

2
C‖xj‖2 +

1

2
yj .

However the upper bound is reached by choosing i = j
in the max operator. Similarly the value of the second
convex function at xj is equal to 1

2C‖xj‖
2 − 1

2yj which
together results in h(xj) = yj . Note that h(x) has the
`∞-Lipschitz constant 2C maxi,j ‖xi − xj‖1, and ‖h‖ ≤
2C maxi ‖xi‖1.

Next, in order to contextualise the expressiveness of DC
functions, we argue that the popular parametric class of

ReLU neural networks can be represented by PLDC func-
tions, and vice versa. This is also argued in (Cui et al., 2018)
for a 2 layer network.

Proposition 4. A fully connected neural network f , with
ReLU activations, and D layers with weight matrices
W 1, . . . ,WD, i.e,

f(x) =
∑
j

wD+1
j aDj

al+1
i = max(

∑
j

wl+1
i,j a

l
j , 0), D > l ≥ 1

a1
i = max(

∑
j

w1
i,jxj , 0),

is a PLDC function with the DC seminorm bounded as

‖f‖ ≤ |wD+1|T
( D∏
l=1

|W l|
)
~1,

where | · | is the entry-wise absolute value. The above is
proved in Appx. B.2 via an induction over the layers using
the relations

max(max(a, 0)−max(b, 0), 0) = max(a, b, 0)−max(b, 0)

max(a, b) + max(c, d) = max(a+ b, a+ d, b+ c, b+ d).

Proposition 5. Every PLDC function with K hyper-planes
can be represented by a ReLU net with 2dlog2Ke layers
and maximum width of 8K.

The proof is constructed in Appx. B.2 using the relations

max(a, b, c, d) = max (max(a, b),max(c, d))

max(a, b) = max(a−b, 0) + max(b, 0)−max(−b, 0).

3. Algorithms
We begin by motivating the algorithmic approach we take.
This is followed by separate section developing key portions
of the algorithm.

Suppose we observe a data-set Sn = {(xi, yi)}i∈[n] gener-
ated iid from some distribution X × Y and a convex loss
function ` : R × R → R+ bounded by c. The goal is to
minimize the expected risk

min
f∈DC

E[(f(x)− y)2] (3)

by choosing an appropriate function f from the class of DC
functions. Note instead of the squared error, the above could
be generalised to any bounded, Lipschitz losses `(f(x), y).
Note also that the squared loss is bounded in our setting
because of our assumption that both the ground truth and
noise are bounded.
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There are two basic problems with the above - the distribu-
tion is unknown, so the objective above cannot be evaluated,
and that the class of DC functions is far too rich, and so the
problem is strongly underdetermined. In addition, directly
optimising over all DC functions is an intractable problem.

To begin with, we reduce the problem by instead finding
the values that a best fit DC function must take at the dat-
apoint xi, and then fitting a PLDC functions with convex
parts that are max-affine over precisely n linear functionals
on this. This has the significant advantage of reducing the
optimisation problem to a set of convex constraints. Quan-
titatively, this step is justified in §4, which argues that the
error induced by this approximation via PLDC functions is
dominated by the intrinsic risk of the problem.

To handle the lack of knowledge of the distribution, we
resort to uniform generalisations bounds in the literature.
Our approach to relies on the following result, which mildly
generalises the bounds of Bartlett & Mendelson (2002), and
uniformly controls the generalisation error of an empirical
estimate of the expectation (specialised to our context):

Theorem 1. Let {(xi, yi)}i∈[n], be i.i.d. data, with n as-
sumed to be even. Let the empirical maximum discrepancy
of the class DCL, be defined as,

D̂n(DCL) , sup
f∈DCL

2

n

n/2∑
i=1

f(xi)−
n∑

i=n/2+1

f(xi)

 .

With probability ≥ 1− δ over the data, it holds holds uni-
formly over all f ∈ DC ∩ {|f | ≤M} that∣∣∣∣∣E[(f(x)− y)2]− 1

n

n∑
i=1

(f(xi)− yi)2

∣∣∣∣∣
≤ 12MD̂n(DC2‖f‖+2)

+ 45M2

√
C max(2, log2 ‖f‖) + ln(1/δ)

)
n

, (4)

where C is a constant independent of f,M,R.

The above statement essentially arises from a doubling
trick over a Rademacher complexity based bound for a
fixed ‖f‖. The broad idea is that since DCL ⊂ DCL′ for
L ≤ L′, we can separately develop Rademacher complex-
ity based bounds over L of the form 2j , each having the
more stringent high-probability requirement δj = δ2−j . A
union bound over these then extends these bounds to all of
DC =

⋃
j≥1DC2j , and for a particular f , the bound for

j = dlog2 ‖f‖e can be used. See §C for details.

Optimising the empirical upper bound on E[(f(X)− Y )2]
implied by the above directly leads to a structural risk
minimization over the choice of L. The crucial ingre-
dient in the practicality of this is that for DC functions,

D̂n(DCL) = LD̂n(DC1), and further, D̂n(DC1) can be
computed via linear programming. Thus, the term D̂n above
serves as a natural, efficiently computable penalty function,
and acts exactly as a regularisation on the DC seminorm.

3.1. Computing empirical maximum discrepancy.

Throughout this and the following sections, we use ŷi to
denote f̂(xi), where f̂ is the estimated function.

The principle construction relies on the characterisation of
Proposition 2.

Theorem 2. Given data {(xi, yi)}, the following convex
program computes D̂n(DCL)

max
ŷi,zi,ai,bi

2

n

n/2∑
i=1

ŷi −
n∑

i=n/2+1

ŷi

 (5)

s.t.


ŷi − ŷj + zi − zj ≥ 〈aj ,xi − xj〉 i, j ∈ [n] (i)

zi − zj ≥ 〈bj ,xi − xj〉 i, j ∈ [n] (ii)

‖ai‖1 + ‖bi‖1 ≤ L i ∈ [n] (iii)

Further, D̂n(DCL) = LD̂n(DC1).

Proof. By Proposition 2, conditions (i) and (ii) are neces-
sary and sufficient for the existence of a DC function that
takes the values ŷi at xi. Thus, these first two conditions
allow exploration over all values a DC function can take.
Further, by the second part of Proposition 2 if a DC function
interpolates this data, then so does a PLDC function, with
ai and bi serving as the gradients of the max-affine parts
of the function. Thus, by Proposition 1, the condition (iii)
is necessary and sufficient for the DC function implied by
the first to conditions to have seminorm bounded by L. It
follows that the conditions allow exploration of all values
a DCL function may take at the given {xi}, at which point
the claim follows.

Now, notice that if we multiply each of the decision vari-
ables in the above program by L, the value of the program
is multiplied by a factor of L, while the constraints (i), (ii)
remain unchanged. On the other hand, the constraint (iii)
is modified to ‖ai‖ + ‖bi‖ ≤ 1. Thus, the resulting pro-
gram is L times the program computing D̂n(DC1), ergo
D̂n(DCL) = LD̂n(DC1).

3.2. Structural Risk Minimisation

To perform the SRM, we again utilize the structural result of
Proposition 1 to determine the values that the optimal esti-
mate takes at each of the xi. The choice of the values is pe-
nalised by the seminorm as λL, where λ = 24MD̂n(DC1),
which may be computed using the program (5). Note that
the logarithmic term in the generalisation bound (4) is typi-
cally small, and is thus omitted in the following. This also
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has the benefit of rendering the objective function convex,
as it avoids the logL term that would instead enter. If de-
sired, an convex upper bound may be obtained for the same,
for instance by noting that

√
max(1, log2 ‖f‖) ≤ 1 + ‖f‖.

This has the effect of bumping up the value of λ required by
O(M2/

√
n). However, theoretically this term is strongly

dominated by the D̂n (see §4), while practically even the
value λ = D̂n(DC1) tends to produce overly smoothened
solutions (see §5).

With the appropriate choice of λ, this yields the following
convex optimisation problem,

min
ŷi,zi,ai,bi,L

n∑
i=1

(ŷi − yi)2 + λL (6)

s.t.


ŷi − ŷj + zi − zj ≥ 〈aj ,xi − xj〉 i, j ∈ [n]

zi − zj ≥ 〈bj ,xi − xj〉 i, j ∈ [n]

‖ai‖1 + ‖bi‖1 ≤ L i ∈ [n]

Once again, in the above constraints, the first two are nec-
essary and sufficient to ensure that a DC function taking
the values ŷi at xi exists, with the vectors ai, bi serving as
witnesses for the subgradients of the convex parts of such a
function at the xi, and the third constraint enforces that the
function has seminorm at most L. Notice that the third con-
dition effectively imposes `1-regularisation on the weight
vectors ai, bi. This causes these weights to be sparse.

Finally, we may use the witnessing values ŷi, zi and ai, bi,
to construct, in the manner of Proposition 2, the following
PLDC function, which interpolates the values ŷi to the en-
tirety of the domain. Notice that since this function has the
same loss as any DC function that satisfies f(xi) = yi, this
construction enjoys risk bounds constructed above.

f̂(x) ,max
i∈[n]
〈ai,x− xi〉+ ŷi + zi

−max
i∈[n]
〈bi,x− xi〉+ zi

(7)

3.3. Computational Complexity

Training First, we note that we may replace the constraints
on the 1-norms of the vectors ai, bi in the above by linear
constraints via the standard trick of writing the positive and
negative parts of each of their components separately. Over-
all, this renders the program (5) as a linear programming
problem over 2n(2d+ 1) variables, and with n2 non-trivial
constraints. Note that in our setting, one typically requires
that n ≥ d - that one has more samples than dimensions.
Via interior point methods, this problem may be solved in
O(n5) time.

For the least squares loss `(y, ŷ) = (y − ŷ)2, the second
program (6) is a convex quadratic program when the 1-norm
constraints are rewritten as above. The decision variables are

the same as the first problem, with the addition of the single
L variable, and the constraints remain identical. Again,
via interior point methods, these programs can be solved in
O(d2n5) time (see Ch. 11 of Boyd & Vandenberghe (2004)).
The latter term dominates this complexity analysis. We note
that in practice, these problems can be solved significantly
faster than the above bounds suggest.

Speeding up training via a GPU implementation a Par-
allel solver for the SRM in program (6) is given in Algo-
rithm (1) in the Appx E via the ADMM method (Boyd et al.,
2011). This algorithm can be implemented with GPU’s
where each iteation can be distributed to n2 parallel cores
to further increase the training speed. A python implemen-
tation is given in our GitHub repository 2. We note that a
similar algorithm for that of Lipschitz convex regression is
provided in (Balázs, 2016; Mazumder et al., 2019) however
not all the ADMM blocks are solved in closed form and
require additional optimization in each iteration.

Prediction By appending a 1 to the input, and the constants
yi + zi − 〈ai,xi〉 and zi − 〈bi,xi〉 to ai and bi, we can
reduce the inference time problem to solving two maximum
inner product search problems over n vectors in Rd+1. This
is a well developed and fast primitive, e.g. Shrivastava &
Li (2014) provide a locality sensitive hashing based scheme
that solves the problem in time that is sublinear in n.

4. Analysis
We note that this analysis makes extensive use of the work
of Balázs et al. (2015); Balázs (2016) on convex and max-
affine regression, with emphasis on the latter thesis, which
contains certain refinements of the former paper.

In this section, we assume that the true model y = f(x)+εi
holds for a f that is a DC function, and that we have explicit
knowledge that ‖f‖ ≤ L. Also recall our assumption that
the distribution is supported on a set that is contained in the
`∞ ball of radius R. We begin with a few preliminaries

A lower bound on risk The minimax risk of estimation
under the squared loss is Ω(n−2/d+2). This follows by set-
ting p = 1 (i.e., Lipschitzness) in Theorem 3.2 of (Györfi
et al., 2006), which can be done since the standard construc-
tions of obstructions to estimators used in showing such
lower bounds all have regularly varying derivatives, and
thus finite DC seminorms.

PLDC solutions are not lossy Lemma 5.2 of (Balázs,
2016) argues that for every convex L-Lipschitz functions φ
with Lipschitz constant1, supx ‖∇∗φ‖1 bounded by L, there

1Balázs (2016) presents an argument with the 2-norm of sub-
gradients bounded, but this can be easily modified to the case of
bounded 1-norm under bounds on ‖x‖∞.
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exists a Lipschitz max-affine function φPL with maximum
over n pieces such that ‖φ− φPL‖ ≤ 36LRn−2/d. Recall
that PLDC functions can be represented as differences of
max-affine functions, and DC functions as differences of
convex functions. Since the DC seminorm controls the
1-norm of the subgradients, which dominates the 2-norm,
it follows that for every DCL function f , there exists a
pl-DC2L function fPL with ‖f−fPL‖∞=O(n−2/d). Note
that the resulting excess risk in the squared error due to
using PLDC functions can thus be bounded as O(n−4/d),
which is o(n−2/d+2), i.e., it is dominated by minimax risk.

4.1. Statistical risk

The bound (4) provides a instance specific control on the
generalisation error of an estimate via the empirical max-
imum discrepancy D̂n. This section is devoted to provid-
ing generic bounds on the same under the assumption of
i.i.d. sampled data. We adapt the analysis of (Balázs, 2016)
for convex regression in order to do so. The principal result
is as follows.

Theorem 3. For distributions supported on a compact do-
main Ω ⊂ {‖x‖∞ ≤ R}, with n ≥ d, it holds that

D̂n(DCL) ≤ 60LR

(
d

n

)2/d+4(
1 + 2

log(n/d)

d+ 4

)
.

Further, if the ground truth f ∈ DCL, then with probability
at least 1− δ over the data, the estimator f̂ of (7) satisfies

E[|Y − f̂(x)|2] ≤ E[|Y − f(x)|2]

+O((n/d)−2/d+4 log(n/d)) +O(
√

log(1/δ)/n).

Proof. Assume f ∈ DCL. Note that for any convex repre-
sentation f = ψ1−ψ2, we may instead construct a represen-
tation f = φ1 − φ2 + c for a constant c so that the resulting
convex function φ1 and φ2 are uniformly bounded on the
domain - indeed, this may be done by setting c = f(0),
and φk = ψk − ψk(0). The φs retain the bound on their
Lipschitz constants, and thus are uniformly bounded by
LR over the domain. Thus, we may represent the class of
DCL functions as the sum of a constant, and a DCL func-
tion whose convex parts are bounded. Call the latter class
DCL,0. Importantly, since the constants are cancelled in the
computation of empirical maximum discrepancy, we can
observe that D̂n(DCL) = D̂n(DCL,0).

The principle advantage of the above exercise is that the em-
pirical discrepancy for DC functions with bounded convex
parts can be controlled via the metric entropy of bounded
Lipschitz convex functions, which have been extensively
analysed by Balázs (2016). This is summarised in the fol-
lowing pair of lemmata. The first argues that the discrepancy
of DCL,0 functions is controlled by that of bounded Lips-
chitz convex functions.

Lemma 1. Let CL,LR be the set of convex functions that
are L-Lipschitz and bounded by LR. Then D̂n(DCL,0) ≤
2D̂n(CL,LR).

The proof of the above is left to Appx C. The second lemma,
due to Dudley, is a generic method to allow control on the
discrepancy. We state this for CL,LR
Lemma 2. LetH∞(CL,LR, ε) be the metric entropy of the
class CL,LR under the sup-metric d(f, g) = ‖f − g‖∞.
Then the empirical maximum discrepancy is bounded as

D̂n(CL,LR) ≤ inf
ε>0

(
ε+ LR

√
2
H∞(CL,LR, ε)

n

)
.

Finally, we invoke the control on metric entropy of bounded
Lipschitz convex functions provided by (Balázs et al., 2015;
Balázs, 2016)

Theorem (Balázs et al., 2015; Balázs, 2016). For ε ∈
(0, 60LR],

H∞(CL,LR, ε) ≤ 3d

(
40LR

ε

)d/2
log

(
60LR

ε

)
.

Using the above in the bound of Lemma 2, and choosing
ε = (60LR)(d/n)2/d+4 yields the claim.

Control on the excess risk of the estimator follows read-
ily. For any λ ≥ 24MD̂n(DC1), we have have, with high
probability,

E[(f̂ − Y )2]

≤ Ê[(f̂ − Y )2] + λ‖f̂‖+ 2λ+O(1/
√
n)

≤ Ê[(f − Y )2] + λ‖f‖+ 2λ+O(1/
√
n)

≤ E[(f − Y )2] + 2λ‖f‖+ 2λ+O(1/
√
n),

≤ E[(f − Y )2] + 2λ(L+ 1) +O(1/
√
n)

where the first and last inequalities utilise (4), while the
second inequality is because f̂ is the SRM solution. The
claim follows on incorporating the bound on D̂n developed
above, and since we choose λ proportional to the same.

On adaptivity Notice that the argument for showing the
excess risk bound proceeds by controlling D̂n. This allows
the argument to adapt to the dimensionality of the data. In-
deed, if the true law is supported on some low dimensional
manifold, then the empirical discrepancy, which only de-
pends on the observed data, grows only with this lower
dimension. More formally, due to the empirical discrepancy
being an empirical object, we can replace the metric entropy
control over DC functions in Rd by metric entropy of DC
functions supported on the manifold in which the data lies,
which in turn grows only with the (doubling) dimension of
this manifold.
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On suboptimality Comparing to the lower bound, we
find that the above rate is close to being minimax, although
the (multiplicative) gap is about n4/d2 and diverges polyno-
mially with n. In analogy with the observations of Balázs
(2016) for max-affine regression, we suspect that this sta-
tistical suboptimality can be ameliorated by restricting the
PLDC estimate to have some (precisely chosen) Kn < n
hyperplanes instead of the full n. However, as discussed in
§1.1, such restrictions lead to increase in the computational
costs of training, and thus, we do not pursue them here.

5. Experiments
In this section we apply our method to both synthetic
and real datasets for regression and multi-class classifi-
cation. The datasets were chosen to fit in the regime of
n ≤ 103, d ≤ 102 as described in the introduction. All
results are averaged over 100 runs and are reported with the
95% confidence interval.

For the DC function fitting procedure, we note that that the
theoretical value for the regularization weight tends to over-
smooth the estimators. This behaviour is expected since
the bound (4) is designed for the worst case. For all the
subsequent experiments we make two modifications - since
none of the values in the datasets observed are very large,
we simply set 12M = 1, and further, we choose the weight,
i.e. λ in (6), by cross validation over the set 2−jD̂n(DC1)
for j ∈ [−8 : 1]. Fig. 1 presents both these estimates in a
simple setting where one can visually observe the improved
fit. Note that this tuning is still minimal - the empirical
discrepancy of DC1 fixes a rough upper bound on the λ
necessary, and we explore only a few different scales.

For the regression task we use the L1 empirical loss in our
algorithm, instead of L2. That is, the objective in (6) is
replaced by

∑
|yi − ŷi|. This change allows us to imple-

ment the fitting program as a linear programming problem
and significantly speeds up computation. However, in the
following we will only report the L2 error of the solutions
obtained thi way. We compare our method to a multi-layer
perceptron (neural network) with variable number of hidden
layers chosen from 1 : 10 by 5-fold cross validation, Multi-
variate Adaptive Regression Splines (MARS) andK-nearest
neighbour(K-NN) where Best value of K was chosen by
5-fold cross validation from 1 : 10.

For the multi-class classification task we adopt the multi-
class hinge loss to train our model, i.e. the loss∑

i

m∑
j 6=yi

max(fj(xi)− fyi(xi) + 1, 0),

where m is the number of classes and fj’s are DC functions.
We compare with the same MLP as above but trained with
the cross entropy Loss, KNN and a one versus all SVM.

Figure 1. Top A two dimensional function along with the sampled
points used for estimating the function; Bottom learned DC func-
tion via L1 regression using only λ = 2D̂n (left); using cross
validation over λ (right).

In both cases, we have used MATLAB Statistics and Ma-
chine learning Library for their implementation of MLP,
KNN and SVM. For MARS we used the open source imple-
mentation in ARESLab toolbox implemented in MATLAB.
Our code along with the other algorithms is available in our
GitHub repository2.

In each of the following tasks, we observe that our method
performs competitively to all considered alternatives in al-
most every dataset, and often outperforms them, across the
variation in dimensionality and dataset sizes.

Regression on Synthetic Data We generated data from
the function,

y = f(x) + ε

f(x) = sin
( π√

d

d∑
j=1

xj
)

+
( 1√

d

d∑
j=1

xj
)2
,

where the x is sampled from a standard Gaussian, while ε
is a centred Gaussian noise with standard deviation of 0.25.

We generate 50 points for training. For testing we estimate
the Mean Squared Error based on a test set of 5000 points
without the added noise. We normalize the MSE by variance
of the values of test data and multiply by 100. Results are
presented in Fig. 2. Observe that our algorithm consistently
outperforms the competing methods, especially as we in-
crease the dimension of the data. Furthermore our algorithm
has lower error variance across the runs.

2https://github.com/Siahkamari/Piecewise-linear-regression-
via-a-difference-of-convex-functions

https://github.com/Siahkamari/Piecewise-linear-regression-via-a-difference-of-convex-functions
https://github.com/Siahkamari/Piecewise-linear-regression-via-a-difference-of-convex-functions
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Figure 2. Mean Squared Error in a regression task vs dimension of
the data in the synthetic experiements. Note that both the value and
the size of the error bars are consistently better than the competing
methods

Regression on Real Data We apply the stated methods to
various moderately sized regression datasets that are avail-
able in the MATLAB statistical machine learning library.
The results are presented in Fig. 3.

In the plot, the datasets are arranged so that the dimension
increases from left to right. We observe that we do compara-
bly to the other methods for some datasets and outperform
in others. See Appx. D for a description of each of the
datasets studied.
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Figure 3. Normalized Mean Squared Error in regression tasks.

Multi-class classification We used popular UCI classifi-
cation datasets for testing our classification algorithm. We
repeated the experiments 100 times We present the mean
and 95% C.I.s on a 2-fold random cross validation set, in
Fig. 4. We observe to perform comparably to other algo-
rithms on some datasets and outperform in others.
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Figure 4. Miss-Classification on UCI data sets.

6. Discussion
The paper proposes an algorithm to learn piecewise linear
functions using difference of max-affine functions. Our
model results in linear or convex programs which can be
solved efficiently even in high dimensions. We have shown
several theoretical results on expressivity of our model, as
well as its statistical properties, including good risk de-
cay and adaptivity to low dimensional structure, and have
demonstrated practicality of our resulting model under re-
gression and classification tasks.

Wider context Non-parametric methods are most often
utilised in settings with limited data in moderate dimen-
sions. Within this context, along with strong accuracy, it is
often desired that the method is fast, and is interpretable,
especially in relatively large dimensions.

In settings with large datasets, accuracy is relatively easy to
achieve, and speed at inference is more important. In low
dimensional settings, this makes methods such as MARS
attractive, due to their fast inference time, while in high-
dimensions MLPs are practically preferred. In settings with
low dimensionality and small datasets, interpretability and
speed take a backseat due to the small number of features,
while accuracy become the critical requirement, promoting
use of kernelised or nearest neighbour methods.

On the other hand, for small datasets in moderate to high
dimensions, interpretability gains an increased emphasis.
Within this context, our method results in a piecewise linear
fit for which it is easy to characterise the locally important
features, and further does so with relatively sparse weights
via the `1 regularisation on ai, bi. Further, since the sub-
optimality of our statistical risk is controlled as nO(1/d2),
as the dimension increases, our method gets closer to the
optimal accuracy. This thus represents the natural niche
where application of DC function regression is appropriate.
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Bačák, M. and Borwein, J. M. On difference convexity of

locally lipschitz functions. Optimization, 60(8-9):961–
978, 2011.

Balázs, G. Convex Regression: Theory, Practice, and Appli-
cations. PhD thesis, University of Alberta, 2016.

Balázs, G., György, A., and Szepesvári, C. Near-optimal
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