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Abstract

Policy learning using historical observational
data is an important problem that has found
widespread applications. However, existing lit-
erature rests on the crucial assumption that the
future environment where the learned policy will
be deployed is the same as the past environment
that has generated the data—an assumption that is
often false or too coarse an approximation. In this
paper, we lift this assumption and aim to learn
a distributionally robust policy with bandit ob-
servational data. We propose a novel learning
algorithm that is able to learn a robust policy to
adversarial perturbations and unknown covariate
shifts. We first present a policy evaluation pro-
cedure in the ambiguous environment and also
give a heuristic algorithm to solve the distribution-
ally robust policy learning problems efficiently.
Additionally, we provide extensive simulations to
demonstrate the robustness of our policy.

1. Introduction

The past decade has witnessed an explosion of user-specific
data across a variety of application domains: electronic med-
ical data in health care, marketing data in product recom-
mendation and customer purchase/selection data in digital
advertising (Bertsimas & Mersereau, 2007; Li et al., 2010;
Chapelle, 2014; Bastani & Bayati, 2015; Schwartz et al.,
2017). Such growing availability of user-specific data has
ushered in an exciting era of personalized decision making,
one that allows the decision maker(s) to personalize the
service decisions based on each individual’s distinct fea-
tures. The key value added by personalized decision making
is that heterogeneity across individuals, a ubiquitous phe-
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nomenon in these applications, can be intelligently exploited
to achieve better outcomes - because best recommendation
decisions vary across different individuals.

Rising to this opportunity, contextual bandits have emerged
to be the predominant mathematical framework that is at
once elegant and powerful: its three components, the con-
texts (representing individual characteristics), the actions
(representing the recommended items), and the rewards
(representing the outcomes), capture the salient aspects of
the problem and provide fertile ground for developing al-
gorithms that contribute to making quality decisions. In
particular, within the broad landscape of contextual bandits,
the offline' contextual bandits literature has precisely aimed
to answer the following questions that lie at the heart of
data-driven decision making: given a historical collection
of past data that consists of the three components as men-
tioned above, how can a new policy (mapping from contexts
to actions) be evaluated accurately, and one step further,
how can an effective policy be learned efficiently?

Such questions—both policy evaluation and policy learn-
ing using historical data—have motivated a flourishing and
rapidly developing line of recent work (Dudik et al., 2011;
Zhang et al., 2012; Zhao et al., 2012; 2014; Swaminathan
& Joachims, 2015; Vitus et al., 2015; Rakhlin & Sridharan,
2016; Kallus, 2018; Dimakopoulou et al., 2018; Zhou et al.,
2017b; Jiang et al., 2018; Kitagawa & Tetenov, 2018; Kallus
& Zhou, 2018; Zhou et al., 2018; Joachims et al., 2018; Cher-
nozhukov et al., 2019) that contributed valuable insights:
novel policy evaluation and policy learning algorithms have
been developed; sharp minimax regret guarantees have been
characterized (through a series of efforts) in many different

!Correspondingly, there has also been an extensive literature
on online contextual bandits (Li et al., 2010; Rusmevichientong
& Tsitsiklis, 2010; Filippi et al., 2010; Rigollet & Zeevi, 2010;
Chu et al., 2011; Goldenshluger & Zeevi, 2013; Agrawal & Goyal,
2013a;b; Jun et al., 2017; Li et al., 2017; Abeille et al., 2017;
Li et al., 2017; Master et al., 2017; Dimakopoulou et al., 2019;
Bistritz et al., 2019; Zhou et al., 2019), whose focus is to develop
online adaptive algorithms that effectively balance exploration and
exploitation. This is not the focus of our paper and we simply
mention them in passing here. See (Bubeck et al., 2012; Lattimore
& Szepesvari, 2018; Slivkins et al., 2019) for a few articulate
expositions.



Distributionally Robust Offline Contextual Bandits

settings; extensive and illuminating experimental results
have been performed to offer practical advice for optimizing
empirical performance.

However, a key assumption underlying the existing offline
contextual bandits work mentioned above is that the future
environment in which the learned policy is deployed stays
the same as the past environment from which the historical
data is collected (and the to-be-deployed policy is trained).
In practice, such an assumption rarely holds and there are
two primary sources of such “environment change":

1. Covariate shift: The individuals—and hence their
characteristics—in a population can change, thereby
resulting in a different distribution of the contexts. For
instance, an original population with more young peo-
ple can shift to a population with more senior people.

2. Concept drift: How the rewards depend on the un-
derlying contexts and actions can also change, thereby
resulting in different conditional distributions of the re-
wards given the contexts and the actions. For instance,
individuals’ preferences over products can shift over
time and sometimes exhibit seasonal patterns.

As a consequence, these offline contextual bandit algorithms
are fragile: should the future environment change, the de-
ployed policy—having not taken into account the possible
environment changes in the future—will perform poorly. This
naturally leads to the following fundamental question: Can
we learn a robust policy that performs well in the presence
of either (or both) of the above environment shifts? Our goal
in this paper is to provide a framework for thinking about
this question and providing an affirmative answer therein.

1.1. Our Contributions and Related Work

Our contributions are threefold. First, we propose a distribu-
tionally robust formulation of policy evaluation and learning
in offline contextual bandits, that accommodates both types
of environment shifts mentioned above. Our formulation
postulates that the future environment—characterized by a
joint distribution on the context and all the rewards when
taking different actions—is in a Kullback-Leibler neighbor-
hood around the training environment’s distribution, thereby
allowing for learning a robust policy from training data that
is not sensitive to the future environment being the same
as the past. Despite the fact that there has been a growing
literature (Bertsimas & Sim, 2004; Delage & Ye, 2010; Hu
& Hong, 2013; Shafieezadeh-Abadeh et al., 2015; Bayrak-
san & Love, 2015; Gao & Kleywegt, 2016; Duchi et al.,
2016; Staib & Jegelka, 2017; Shapiro, 2017; Lam & Zhou,
2017; Chen et al., 2018; Sinha et al., 2018; Lee & Raginsky,
2018; Nguyen et al., 2018; Yang, 2018; Mohajerin Esfahani
& Kuhn, 2018; Abadeh et al., 2018; Zhao & Guan, 2018;

Sinha et al., 2018; Gao et al., 2018; Chen et al., 2018; Ghosh
& Lam, 2019; Blanchet & Murthy, 2019) on distribution-
ally robust optimization (DRO)-one that shares the same
philosophical underpinning on distributionally robustness as
ours—the existing DRO literature has mostly focused on the
statistical learning aspects, including supervised learning
and feature selection type problems, rather than the decision
making aspects. The idea of using DRO to solve "environ-
ment change" problems is not new (Duchi & Namkoong,
2018; Duchi et al., 2019). However, Applying distribution-
ally robust formulation under bandit feedback is not trivial.
We notice that (Faury et al., 2019) considers a similar setting.
However, the policy value estimator proposed in their paper
is inconsistent in the situation that the future environment
is not the same as the past environment. To the best of
our knowledge, we provide the first distributionally robust
formulation for policy evaluation and learning under bandit
feedback in the "environment change" setting.

Second, we provide a novel scheme for distributionally
robust policy evaluation (Algorithm 1) that estimates the ro-
bust value of any given policy using historical data. We do so
by drawing from duality theory and transforming the primal
robust value estimation problem—an infinitely-dimensional
problem—into a dual problem that is 1-dimensional and con-
vex, hence admitting an efficiently computable solution.
Further, we study the efficiency of this distributionally ro-
bust estimator and establish, in the form of a central limit
theorem, that the proposed estimator converges to the true
value at an O,, (n~1/2) rate (n is the number of data points).

Third, we build upon this distributionally robust policy eval-
uation scheme and propose a distributionally robust learning
scheme, which we call Stable Distributionally Robust Policy
Learning (Algorithm 3). In our distributionally robust policy
learning setting, naively picking a policy that maximizes the
estimated distributionally robust value (Algorithm 2) can be
extremely unstable and yields poor performance. We thus
provide a stabilized version of the distributionally robust es-
timator that, despite having similar performance when eval-
uating a single, fixed policy as the non-stabilized version,
achieves much better performance in the learning phase. We
provide extensive experimental results to demonstrate the
efficiency and effectiveness of the proposed distributionally
robust policy evaluation and learning schemes.

2. A Distributionally Robust Formulation

Let A be the set of d actions: A = {a',a?,...,a%} and
let X be the set of contexts (typically a subset of R?). Fol-
lowing the standard contextual bandits model, we posit the
existence of a fixed underlying data-generating distribution
on (X, Y (a'),Y(a?),...,Y(a%)) € X x [[{_, V;, where
X € X denotes the context vector, and each Y (a?) € J; C
R denotes the random reward obtained when action a’ is
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selected under context X.

Let {(X;, A;,Y:)}, be n independent and identically dis-
tributed (i.i.d.) observed triples that comprise of the training
data, where (X;,Y;(al),...,Y;(a?)) are drawn i.i.d. from
the fixed underlying distribution described above, and we
denote this underlying distribution by Pg. Further, for the
i-th data point (X;, 4;,Y;), A; denotes the action selected
and Y; = Y;(A;). In other words, Y; in the i-th data point is
the observed reward under the context X; and action A;.

We assume the actions in the training data are selected
by some fixed underlying policy 7 that is known to the
decision-maker, where my(a | ) gives the probability of
selecting action a when the context is x. In other words, for
each context X;, a random action A; is selected according to
the distribution 7o (- | X;), after which the reward Y;(A;) is
then observed. Finally, we use P * 7 to denote the product
distribution of (X, Y (a'),Y (a?),...,Y (a%), A) on space
X x H;l:1 Y; x A. We make the following assumptions on
the data-generating process.

Assumption 1. The joint distribution

(X,Y(a"),Y(a?),...,Y(a?), A) satisfies:

1. Unconfoundedness: ((Y(a'),Y (a?),...
independent with A conditional on X, i.e.,

,Y(a)) is

(Y(a'),Y(a?),...,Y(a%)) I A|X.
2. Overlapping: There exists some 7 > 0, mo(a | ) > 7,
V(z,a) € X x A

3. Bounded reward support: 0 < Y(a’) < M fori =
1,2,....d.

4. Positive density: Forany i = 1,2,...,d, Y (a*)| X has
conditional density f;(y;|x) and f;(y;|x) has a uniform
non-zero lower bound i.e., f;(y;|z) > b > 0 over the
interval [0, M] with 20M < 1.

The overlap assumption ensures that some minimum posi-
tive probability is guaranteed no matter what the context is.
This ensures sufficient exploration in collecting the training
data. The above assumptions are standard and commonly
adopted in both the estimation literature (Rosenbaum & Ru-
bin, 1983; Imbens, 2004; Imbens & Rubin, 2015) and the
policy learning literature (Zhang et al., 2012; Zhao et al.,
2012; Swaminathan & Joachims, 2015; Zhou et al., 2017a;
Kitagawa & Tetenov, 2018).

2.1. Standard Policy Learning

In the standard contextual bandits terminology, (i, (x) =
Ep,[Y (a) | X = z] is known as the mean reward function
(for action a). Depending on whether one assumes a para-
metric form of 1, () or not, one needs to employ different

statistical methodologies. In particular, when p, () is a lin-
ear function of z, this is known as linear contextual bandits,
an important and most extensively studied subclass of con-
textual bandits. In this paper, we do not make any structural
assumption on p,(x): we are in the non-parametric con-
textual bandits regime and work with a general underlying
data-generating distributions Py.

With the above setup, the goal is to learn a good policy
from a fixed deterministic policy class II using the training
data. This is often known as the batch contextual bandits
problem (in contrast to online contextual bandits), because
all the data has already been collected at once before the
decision maker aims to learn a policy. A policy 7 : X — A
is a function that maps a context vector x to an action and
the performance of 7 is measured by the expected reward
this policy generates, as characterized by the policy value
function:

Definition 2.1.  The policy value function @) : IT — R is
defined as: Q(m) = Ep,[Y (7(X))], where the expectation
is taken with respect to the randomness in the underlying
joint distribution P of (X,Y (a'),Y (a?),...,Y (a%)).

With this definition, the optimal policy is a policy that maxi-
mizes the policy value function. The objective in the stan-
dard policy learning context is to learn a policy 7 that has
the policy value as large as possible.

2.2. Distributionally Robust Policy Learning

Using the policy value function Q(+) (as defined in Defini-
tion 2.1) to measure the quality of a policy brings out an
implicit assumption that the decision maker is imposing: the
environment that generated the training data is the same as
the environment where the policy will be deployed. This
is manifested in that the expectation in Q(-) is taken with
respect to the same underlying distribution Py. However,
the underlying data-generating distribution may be different
for the training environment and the test environment. In
such cases, the policy learned with the goal to maximize
the value under Py may not work well under the new test
environment.

To address this issue, we propose a distributionally robust
formulation for policy learning, where we explicitly incor-
porate into the learning phase the consideration that the
test distribution may not be the same as the training dis-
tribution Py. To that end, we start by introducing some
terminology. First, the Kullback -Leibler (KL) divergence
between two probability measures P and P, denoted by
D(P|[Py), is defined as D(P|[Pg) = [log (%) dP.
With KL-divergence, we can define a class of neighborhood
distributions around a given distribution. Specifically, the

distributionally uncertainty set p, () of size ¢ is defined
as Up,(8) = {P <« Py | D(P||Py) < §}. When it is
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clear from the context what the uncertainty radius ¢ is, we
sometimes suppress ¢ for notational simplicity and write
Up, instead.

Definition 2.2. For a given § > 0, the distribution-
ally robust value function Qpro : II — R is defined as:
@pro(7) = infpeyyp, ;) Ep[Y (7(X))].

In other words, Qpro () measures the performance of a
policy 7 by evaluating how it performs in the worst possible
environment among the set of all environments that are -
close to Py. To be robust to the changes between the test
environment and the training environment, our goal is to
learn a policy such that its distributionally robust policy
value is as large as possible.

3. Distributionally Robust Policy Evaluation

In order to learn a distributionally robust policy—one that
maximizes Qpro (7)—a key step lies in accurately estimat-
ing the given policy 7’s distributionally robust value. We
devote this section to tackling this problem.

3.1. Algorithm

In this subsection, we provide an algorithm for evaluating
infpevp, 5 Ep [Y(m(X))], the distributionally robust pol-
icy value for a given policy 7 € II. Our algorithm hinges on
the strong duality associated with the distributional robust
policy value, as formally characterized next.

Lemma 3.1 (Strong Duality).
have

For any policy m € 11, we

inf  Ep [Y (r(X))

Pelp (s
=sup {~alogBp, [exp(~Y (x(X))/a)] - ad}
B exp(~Y (4)/a)1{r(X) = A}
o {‘O‘log Epouy { mo(A| X)

—ad}. 3.1)

Proof. The first equality follows from Theorem 1 of (Hu &
Hong, 2013). The second equality holds, because for any
(Borel measurable) function f : R — R and any policy
7 € II, we have

FY (r(X))]
- oo [0
= e [T )

Plugging in f(x) = exp(—2) yields the result. O

Remark 3.1. When o = 0, by Proposition 2 of (Hu & Hong,
2013), we can define
—alogEp, [exp(—Y (7n(X))/a)]|—ad|q=o = essinf{Y},
where ess inf denotes the essential infimum. Furthermore,
—alog Ep, [exp(—Y (m(X))/a)] — &d is right continuous
at zero. In fact, in Lemma A3 in Appendix A.3, we show
that the optimal value is not attained at o = 0.

The above strong duality allows us to transform the original
problem of evaluating infpey, ;) Ep [Y/(7(X))], where
the (primal) variable is a distribution P into a simpler prob-
lem, where the (dual) variable is a positive scalar a. Note
that in the dual problem, the expectation is taken with re-
spect to the same underlying distribution Py. This then
allows us to use an easily-computable plug-in estimator of
the distributionally robust policy value, QDRO (7) to approx-

imate Qpro (7).

Finally, for ease of reference in the subsequent analysis of
Algorithm 1, we capture the important terms in the following
definition.

Definition 3.2. Let {(X;, A;,Y;)}", be a given dataset.

Define W;(m,a) = %GXP( Yi(Ai)/a) and

Wy (m,a) = 237 W;(r,a). We also define the dual
objective function and the empirical dual objective function
as

p(m, @) =

—alog Ep, [exp(—Y(n(X))/a)] — ad,

and

qgn(ﬂ—v a) = —alog Wn (7, @) — ad,

respectively.

Then, we define the distributionally robust value estimators
and the optimal dual variable using the notation above.

1. 'I:he distributionally  robust valuq estimator
Qpro : II — R is defined by Qpro(m) =

SUP4 >0 {q{)n(ﬂ', a)}.
2. The optimal dual variable o* is defined by a* =

argmaxq>o {¢(m, ) }.

The upper and lower bound of o* in Appendix A.3 establish
the validity of the definitions a*, namely, o* is attainable.

In the last step of Algorithm 1, one needs to solve an op-
timization problem to obtain the distributionally robust es-
timate of the policy m. As the following indicates, this
optimization problem is easy to solve.

Lemma 3.3. The empirical dual objective function
On (T, @) is concave in o and its partial derivative admits
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the expression

9 4 i Yi(A)Wi(r, )
£¢n(7ﬂ @« = - anW, (7, )

—log Wn(T(, @) — 0,
(i, Yi(Ay)Wi(m, @)
043712(Wn(77, a))?
S VA W)
ad3nW, (m, a)

0% -
W(bn(ﬂ-?a) =

Further, if the array {Y;(A;)1{n(X;) = A;}}*, has at
least two different non-zero entries, then ¢, (7, o) is strictly-
concave in .

The proof of Lemma 3.3 is in Appendix A.2.

Since the optimization problem maxq> {q@n(w, a)} is
maximizing a concave function, it can be computed by the
Newton—Raphson method. We make it precise in Algo-
rithm 1.

Algorithm 1 Distributionally Robust Policy Evaluation

1: Input: Dataset {(X;, A;,Y;)}™ ,, data-collecting pol-
icy m, policy 7 € II, and initial value of dual variable
.

2: Output: Estimator of the distributionally robust policy

value QDRO (71')

repeat

1{nr Xi :A

Let W;(m, ix) — % exp(—Y;(A
Compute W, (7, @) eﬁ% S IfV i (m, ).
Update o +— o — (3%¢n)/(aa2 bn)-

until a converge.

Return Qpro () « én (7, ).

i)/ ).

RN AW

3.2. Theoretical Guarantees of Distributionally Robust
Policy Evaluation

In the next theorem, we will demonstrate that the approx-
imation error for policy evaluation function Qpro(7) is
O, (n~'/2) for a fixed policy .

2 — o2 Var[W,(m,o)]
Theorem 3.4. Let 0?(a) = « EWi(ma))?

sumption 1 is enforced, for any policy m € 11, we have

Suppose As-

Vi (Qoro(r) = Qoro(m)) = N (0,0%(a")), (32)

where o* is defined in Definition 3.2 and = denotes conver-
gence in distribution.

Sketch of Proof. The proof is based on the functional cen-
tral limit theorem and the Delta theorem.

We first show for every « € (0, 00),
v (Wn(w, a) — E[Wi(w,a)]) = Z(a),

where Z(«) = N (0, Var [W;(r, a)]). Let C([a/2, 2a]) be
the space of continuous functions supported on [a/2, 2@],
equipped with the supremum norm, where 0 < a < a* <
@ < oo. Then, by the functional central limit theorem (see,
for example, Corollary 7.17 in (Araujo & Giné, 1980)), we
have

Jn (Wn(w, ) — E[Wi(r

in the Banach space C([a/2, 2a]).

) =20,

We next apply the Delta theorem (Theorem 7.59 in (Shapiro
et al., 2009)), which generalizes the Delta method to the
infinity-dimensional space, and obtain that

Vi (VWa(m, ) = VEWi(7 ) ) = Vi, (2).
where V is a functional defined by

V()= inf alog(y(a))+ ad,

a€la/2,2a]
and V; (v) is the directional derivative of V' (-) at y1 in the
direction of v, which is computable by the Danskin theorem
(Theorem 4.13 in (Bonnans & Shapiro, 2000)). Finally,
we show P(Qpro () # —V (W, (7, a))) = 0as n — oo,
and complete the proof by Slutsky’s lemma (Theorem 1.8.10
in (Lehmann & Casella, 2006)). ]

The detailed proof of Theorem 3.4 is in Appendix A.3. Fur-
thermore, Lemma 3.5 gives an approximation of the value
of the optimal dual variable a*, when § is small.

Lemma 3.5. When § is closed to zero, we have

(w(X))/8) + o(1/V5).

o =/Var(Y

The proof of Lemma 3.5 is in Appendix A.4. (Faury et al.,
2019) also considers a similar problem. Their scheme
amounts to perturbing the data-collecting policy 7y as well.
The estimator they proposed, which is equivalent to (in our

notation)
Ai)>>

however, is not a consistent estimator in our setting.

| 1{m(X;) = A; }Yi(
oo (1 S oo (PO

- a5}7

4. Distributionally Robust Policy Learning

We now harness the distributionally robust policy evaluation
scheme to design policy learning algorithms.
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4.1. Algorithm

In this section, we provide an algorithm for computing the
distributionally robust optimal policy within a given pol-
icy class II. We denote by 7ipro the optimal policy that
maximizes the value of Qpro, i.e.,

4.1

TpRO = argmeaﬁiQDRO(W)
s

= argmax sup {—alog Wn(ﬂ, ) — aé} .
mell >0

In Algorithm 2, we provide a numerical scheme for learning
Tpro by alternatively updating 7 and a.

Algorithm 2 Distributionally Robust Policy Learning

1: Input: Dataset {(X;, A;,Y;)}?_,, data-collecting pol-
icy 7o, and initial value of dual variable a.

Output: Distributionally robust optimal policy 7pro-
repeat
1{n(X;)=A;
Let W; (7, o) {ﬂo((Ai)lX)} exp(—Y;(A;) /).

Form W, (m,a) + X S Wi(r, a).
Update 7 < arg ming e Wy (m, a).

Update o + a — (%é)n)/(dog Pn).
until « converge.
Return 7pro < 7.

WX R

In Section 5, we show the empirical performance of the
policy Tpro on the synthetic data.

4.2. Stable Policy Learning

In the numerical experiment, we found that the policy
learned from (4.1) is unstable and has huge bias. The reason
is that the algorithm attempts to learn a policy that matches
m(X;) = A; as little as possible. Therefore, we propose the
following stable evaluation formula with normalization,

where ST = % S UmX)=Ai} Accordingly, we define

o (A X3)
éifable(w, a) = —alog Wztable(m a) — ad,
and A
iR () = sup { G, )}
a>0

In order to implement the Newton—Raphson method to
update «, we compute the closed form expression of

%(ﬁffable(ﬂ, a) and %éj}able(ﬂ, ) as follows

- Z?:l Yi(Ay)Wi(m, a)
anSr Wgtable(w, a)

O ~
S, a)

~log W*e(m, ) — 4,
o? ¢stable(ﬂ_ a) _ (Z?:1 K(Az)Wz(']Taa))2
o ’ a3 (nST)2(Wstable (7 ¢))2
i Y2 (A)Wi(m, )
B O[3”/5'7711'[/i/"rsltable(7-[-,Oé) ’

This evaluation scheme then allows us for designing a better
distributionally robust policy learning algorithm, which is
formally given in Algorithm 3.

Algorithm 3 Stable Distributionally Robust Policy Learning

1: Input: Dataset {(X;, A;,Y;)}, data-collecting pol-

icy 7o, and initial value of dual variable .
stable

Output: Distributionally robust optimal policy 7f)
repeat
1{m A,
Let Wl(’/T,Oé) — {71'0((A )|X ) ;i eXp( ( )/O{)
Hn(X)=Ai}

Compute ST ¢ 5 377, =5 5555

Compute Wrsltable(ﬂ-7 Q) ﬁ Yo Wi, ).
Update 7 < arg min,cy Wtable ().

Update v + o — (%éﬁable)/(%éf‘mble)-

until « converge.

~stable
Return 7555° < 7.

oo d YU e

_
e

This normalization trick, although only present in the con-
text of distributionally robust bandit learning problems in
this paper, we believe, is applicable to many other bandit
learning settings.

In fact, Proposition 4.1 shows that for a fix policy m, the
difference between Q52 () and Qpro () is still at a
canonical statistical O(n~1/?) rate. This means in terms of
policy evaluation (in contrast to policy learning), SDtﬁ%c(ﬁ)
and Qpro () give the similar performance.

Proposition 4.1. Suppose Assumption 1 is enforced, when

1 log(2/¢€) 2 ith babili
n > 3 ((lfmax{1/4,exp(75/2)})n) , with probability at

least 1 — €, we have

2v/2M log(2/¢)
o Vno

Qstable
DRO

— Qpro(T )) <

The proof of Proposition 4.1 is in Appendix A.5. From
Proposition 4.1, we observe that Q31aPl° and Qpro () are
relatively closed if ¢ is relatively large. In fact, we can also
derive the central limit theorem for Q%ﬁ%e using the same

techniques as the proof of Theorem 3.4:
vn ( Ao’ () — QDRO(T")) = N (0, 0ape(@”)) ,
where

2
Ostable (a)
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Region0 Region1 Region2 Region3

Action 0 04 0.2 0.2 0.2
Action 1 0.2 0.3 0.3 0.2
Action 2 0.2 0.3 0.3 0.2
Action 3 0.2 0.2 0.2 0.4

Table 1: The probabilities of selecting an action based on 7.

a? 1
_ B { (exp (=Y (n(X))/a)

E [W;(m,a)]> L7 (7(X)]X)
~ Efexp (<Y (n(X))/a)])?]

When § is small, we have o?(a*) is O(1/6), since
Var [W;(m,«)] = O(1); while, on the other hand,
02 .p1e(@*) is O(1). Furthermore, direct calculation gives
us if the propensity score is sufficiently uniform, namely

>14+E [ ] almost surely,

1
mo(m(X)]X) mo(m(X)]X)

2 2 :
we have o2, (a*) > o°(a*). Therefore, in general,
Astable

save(m) is expected to have a smaller variance than

@pro (7).

5. Numerical Experiments
5.1. Experiment Setup

We first describe the simulation environment. The fea-
ture vectors X; € R!° are independently and uniformly
drawn from [0,1]'°. We denote the 10 dimensions by
Zo,...,T9. The action set A consists of four actions, i.e.,
A = {0,1,2,3}. Given X;, each reward vector ¥; =
(Y3(0),Y;(1),Y:(2),Y:(3)) is are drawn i.i.d. from multi-
variate normal distribution such that the entries are mutually
independent with variance o; and E[Y;(a)|X;] = uo(X;)
fora = 0,1, 2,3, where

,LLO<$) =0, oo = 0.1,
p1(z) = 1 — max { ‘107.(;5”, |§_56| } , o1 =0.3,
pa(z) =1 - O“f§2 0@,?52, 09 =0.2,
pa(r) =1 - Dt @) o,

The feature space [0, 1]*° is partitioned into four mutually
disjoint regions such that the optimal action in each region
coincides with the region number, of which a graphical
illustration is provided in Figure 1.

Given X, the action A; is drawn according to the underly-
ing data collection policy my, which is described in Table 1.
5.2. Decision Trees and Greedy Tree Search

In this section, we introduce a celebrated policy class called
decision trees (Breiman et al., 1984). A depth-L tree has L

Action 0
Action 1
Action 2
Action 3

Figure 1: A pictorial illustration of the setup of the data-generating
distribution. The figure provides a two-dimensional slice of the
entire 10-dimensional feature space.

layers in total: the first L — 1 layers consist of branch nodes,
while the L-th layer consists of leaf nodes. By traversing a
particular path determined by features  from the root node
to a leaf node, an action a is uniquely determined. Each
branch node is specified by two quantities: the dimension
to be split on and the threshold b. If for a particular branch-
ing node, the splitting dimension is the i-th dimension and
x; < b, then the left child of the node is followed; oth-
erwise the right child is followed. Every path terminates
at a leaf node, each of which is assigned a unique label
corresponding to one of the possible actions in \A.

The algorithm for decision tree learning need to be computa-
tionally efficient, since algorithm will be iteratively executed
in Line 6 of Algorithm 2. As finding an optimal classifica-
tion tree is generally intractable (Bertsimas & Dunn, 2017),
here we introduce an heuristic algorithm called Greedy Tree
Search (GTS). The procedure of GTS can be inductively
defined. First, to learn a depth-2 tree, GTS will brute force
search all the possible spliting choices of the branch node,
as well as all the possible actions of the leaf nodes. Suppose
that the learning procedure for depth-(L — 1) tree has been
defined. To learn a depth-L tree, we first learn a depth-2
tree with the optimal branching node, which partitions all
the training data into two disjoint groups associated with
two leaf nodes. Then each leaf node is replaced by the
depth-(L — 1) tree trained using the data in the associated

group.

5.3. Policy Evaluation

In this section, we test the efficacy of QDRO(w) and
Jstable()  The goal is to validate that for each § > 0,
both estimators converge to Qpro (7) when size of training
set is increasing to infinity. Due to the fact that the true value
of Qpro(m) is unknown, we define the following bench-

mark estimator Q11 () which utilizes all the entries of
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Y;:
JBRo(7)
= zt;g{—alog( Zexp ))/a))—aé}.

It follows from the first equality of Lemma 3.1 that
Afull

DRo () is a consistent estimator of Qpro (7). However,

due to the fact that Y;(a) is in practice not observable when
a # Aj;, the estimator Q%&O(ﬂ) is designed only for the
sake of comparison in the simulation environment, where
all the entries of Y; are simulated.

We first test the convergence of different estimators for § =
0.2 and three different sizes of dataset: n = 103, 104, 10°.
The data {X;,Y;, A;}7, is generated using the procedure
described in Section 5.1. We also choose a fixed depth-3
decision tree as shown in Figure 2. We report in Table 2 the
mean and standard error of the estimators computed using
100 i.i.d. experiments. The numerical result demonstrates
that all the estimators are converging to the same value and
the scaling rate of standard errors is consistent with the
O(n~/?) rate suggested by Theorem 3.4.

10
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Figure 2: Visualization of decision tree used in policy evaluation.

Estimator n =102 n = 10* n = 10°
Qbro(w)  0.02944.0312  0.0258 +.0101  0.0247 + .0030
bl o(m)  0.0267 4 .0099  0.0254 £ .0034  0.0247 + .0010
Qtable(ry  0.0256 +.0207  0.0255 +.0066  0.0245 + .0021

Table 2: Policy evaluation for different size of dataset.

We also test the performance of different estimators with
different levels of robustness. Since Table 2 suggests that
n = 10° is large enough to provide stable estimation, here
we pick n = 105 and only conduct the experiment once. The
numerical result given in table 3 suggests that our estimator
achieves uniformly satisfactory performance for different 4,
which is consistent with Proposition 4.1.

Estimator 6 =0.0 5 =0.2 5=0.4 6=0.6 5 =0.8
Qpro(7) 0.2489 0.0243 -0.0587  -0.1207  -0.1723
Qf;“é{o(w) 0.2492 0.0253 -0.0588  -0.1215 -0.1741

Quable () 0.2470 0.0259 -0.0576 -0.1198 -0.1716

Table 3: Policy evaluation for different 4.

5.4. Policy Learning

In this section we report the performance of distributionally
robust policy learning. We consider three different distri-

butionally robust policies: Af}o, Tpro, THfe° that maxi-

Afull Astable :
mize QPRo» QDRO, DRO > Tespectively. As a comparison,

we also report the performance of two non-robust policies.
We define two non-robust policy evaluation estimators:

) 1 Y(A) (X)) = A
Qemp(r) = n; (A | X))
hm) = L3 wiax,

=1

We apply GTS 0 Qemp(m) and QL (7), and denote the

output policy by femp and #LLL | respectively.

We fix 6 = 0.1 and the size of training set is n = 3000,
and the policy class is depth-3 trees. Algorithms 2 and 3

(also an analog for wgﬁl{o) are applied to the training set,

producing policies, Apro, Than® and #41 J. To evaluate
the performance of our policy, we do the following three
sets of experiments and repeat each sets of experiments
100 times to obtain the mean and standard error of all the
evaluation metrics. The results are reported in Table 4. We
also present an instance of optimal distributionally robust

decision tree in Figure 3.

1. We generate a test set with n = 3000 i.i.d. data points
sampled from P and evaluate the performance of each
policy using Q4 Notice that in this experiment, the
training and test environments are the same. There is
no distribution shifts between the training and test data.

The results are reported in the first column in Table 4.

2. We generate a test set with n = 3000 i.i.d. data points
sampled from P and evaluate the worst case perfor-
mance of each policy using Q& . The results are

reported in the second column in Table 4.

3. We first generate M = 100 independent test sets,
where each test set consists of n = 3000 i.i.d.
data points sampled from Py. We denote them by

{{(Xi(j),Yi(j)(al),...,Yi(j)(ad))}j 1}]%1. Then,
Yy

we randomly sample a new dataset around each dataset,
ie., (f(i(]), )71.(])(@1), . (])( )) is sampled in the
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KL-ball centered at (Xi(j), v (), ... ,Yi(j)(ad)).

Then, we evaluate each policy using Q™! | defined by

min?

Afull (ﬂ) = 1<r1;i<nM {711 iffi(j) (7r <XZ(J)>)} .
<j< i=1

min

The results are reported in the third column in Table 4.

The third set of experiment mimic the distribution shifts in
the real world, since the worst case performance is usually
too extreme.

Policy

Afull

Afull

Afull

emp DRO min
Femp  0.2434.023  0.059 +£.029  0.191 +.024
Fl0.246£.013  0.067 4+.018  0.195 +.019
#pro  0.240 £.012  0.067 +.018 0.195 +.018
Al 0.246+.011 0.078+.015 0.203 £ .016
akle 0.243+.013  0.075+.016  0.203 £ .017

Table 4: Comparison of different policies.

Action 0
Action 1
o Action 2

00 e Action 3

0.0 0.2 04 0.6 08 1.0
Z5

Figure 3: An instance of optimal distributionally robust decision

tree fiyable,

From Table 4, we find that #3aPe performs consistently
better than #pro. Further, the performance of #5takle and
Temp are comparable in the non-robust experiment (the first
column in Table 4) and #3%aPe is indeed more robust in
terms of the worst performance and the minimum perfor-
mance of 100 test sets sampled from the uncertainty ball.
Despite our distributionally robust policies are trained from
metric QDRO, they also exhibit robustness under the other

robustness measure ()11

min*

6. Conclusion and Future Work

We have provided a distributionally robust formulation for
policy evaluation and policy learning in offline contextual

bandits. Our work only provides a preliminary result and
there are many interesting subsequent directions worthy pur-
suing. For example, how to develop a robust policy when
confounding factors are presented. we believe it is possible
to incorporate the instrument variables in our framework.
Another interesting direction would be to extend the algo-
rithm and results to the Wasserstein distance case for batch
contextual bandits, which has a fundamental difference with
our KL-divergence framework. We leave them for future
work.
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