Supplementary material to the paper ” Distributional Robust Policy

Evaluation and Learning in Offline Contextual Bandits”

Appendix A Proofs

Appendix A.1 Auxiliary Results

In this section, we give all of the auxiliary results used in the proofs.

Theorem A1l (Hoeffding’s inequality, Theorem 2.8 in [3]). Let X1,...,X,, be independent random

variables such that X; takes its values in [a;, b;] almost surely for all i < n. Let

S = Zn:(Xi —EX;).

i=1
Then for every t > 0,

2
P(|S] >t) <exp (—2@1(2;_%)2) .

Theorem A2 (Functional central limit theorem, Corollary 7.17 in [1]). Let S be a compact sub-
space of R and C(S) be the space of continuous bounded random functions on S equipped with the
sup-norm. Let {Xp,} 7 be a sequence of centered i.i.d. C(S)—valued random functions such that

EX2(s) < oo for some s € S. Suppose there exists a constant M such that
| X1(s) — Xa(t)| < M||s —t|| almost surely,
for all s,t € S. Then, .
\/15 ; X, =Y,
where Y is a Gaussian process on C(S5).

Definition 1 (Directional differentiability, Gateaux directional differentiability and Hadamard di-
rectional differentiability). Let By and By be Banach spaces and G : By — By be a mapping. It is



said that G is directionally differentiable at a considered point u € By if the limits

B £10 t

exists for all d € By.

Furthermore, it is said that G is Gateaux directionally differentiable at u if the directional deriva-
tive G, (d) exists for all d € By and G|,(d) is linear and continuous in d. For ease of notation, we
also denote Dy, (j10) be the operator G, (-).

Finally, it is said that G is Hadamard directionally differentiable at u if the directional derivative
G',(d) eists for all d € By and

G (d) = Tim G (p+td) — G(p)
! .

t10 t
d'—d

Theorem A3 (Danskin theorem, Theorem 4.13 in [2]). Let © € R? be a nonempty compact set and
B be a Banach space. Suppose the mapping G : B x © — R satisfies that G(u,0) and D,, (1, 0)
are continuous on O, x O, where O,y C B is a neighborhood around pg. Let ¢ : B — R be
the inf-functional ¢(u) = infoco G(i,0) and O(n) = arg maxgeo G(u,0). Then, the functional ¢ is
directionally differentiable at pg and

G (d)= inf D ,0)d.
fold) = it Dy (1100
Theorem A4 (Delta theorem, Theorem 7.59 in [6]). Let By and B be Banach spaces, equipped with
their Borel o-algrebras, Yy be a sequence of random elements of B1, G : B1 — By be a mapping,
and Ty be a sequence of positive numbers tending to infinity as N — oo. Suppose that the space
By is separable, the mapping G is Hadamard directionally differentiable at a point p € By, and the

sequence Xy = 7N (YN — p) converges in distribution to a random element Y of By. Then,
™ (G (Yn) = G (1) = G, (Y) in distribution,

and
™ (G (Yn) — G (1) = G}, (XN) + 0p(1).

Proposition A1l (Proposition 7.57 in [6]). Let By and B2 be Banach spaces, G : By — Ba, and
wu € By. Then the following hold: (i) If G () is Hadamard directionally differentiable at u, then the
directional derivative G, (-) is continuous. (i) If G(-) is Lipschitz continuous in a neighborhood of

wu and directionally differentiable at p, then G(-) is Hadamard directionally differentiable at p.



Appendix A.2 Proof of Lemma (3.3

Proof of Lemma([3.3 The closed form expression of %an(w,a) and %q@n(w, a) follows from ele-

mentary algebra. By the Cauchy Schwartz’s inequality, we have
n 2 N n
(Z Yi(A))Wi(r, a)) < Wi (m, ) Y Y2(A)Wilr, a)
i=1 i=1
Therefore, it follows that %d;n(w, a) < 0. Note that the Cauchy Schwartz’s inequality is actually

an equality if and only if

Y2(A)Wi(m,a) = cWi(m, o) if  Wi(m,a) #0

]

for some constant ¢ independent of i. Since the above condition is violated if {Y;(A4;)1{n(X;) =
A;}}Y, has at least two different non-zero values, we have in this case <ZA>n(7r, a) is strictly-concave
in a. ]
Appendix A.3 Proof of Theorem 3.4

We first give the upper and lower bound for o* and in Lemmas and

Lemma A1 (Upper bound of o). Suppose that Assumption is imposed, we have the optimal dual
solution o* <@ = M/é.

Proof. Proof First note that infpeys, (5 Ep [V (7(X))] = min;ep,)(¥;) = 0 and
—alogEp, [exp (Y (7(X)) /a] — ad < M — ad.

M — ad > 0 gives the upper bound o* <@ = M/S.

To prove the lower bound of a*, we need the following technical lemma.
Lemma A2. For ¢ > 0 and cexp(b) < 1/e, the smallest root of equation zlog(x) + bx +c =0 is

Cc

- Woi(—cexp(b)’

¥ =

where W_1(2) is the root of the equation for w in wexp(w) = z with z < —1. Furthermore, we have

c(—loge—b-1)
2 ((log () +b+1)2+ 1)

zt e ,C

Proof. Let f(x) = xlog(x) + bz + c and = —¢/w for w < 0. Then,

flz) =0



& (—c/w)log(—c/w)+b(—c/w)+c=0
< w=log(—c/w)+b

< wexp(w) = —cexp(b).

Since x = —c/w is one-to-one mapping, we have roots of f(z) = 0 have one-to-one correspondence
with roots of wexp(w) = —cexp(b). Note that when —cexp(b) € (—1/e,0), wexp(w) = —cexp(b)
has 2 roots, one is in (—1,0) and the other one is in (—1, +00). Therefore, the small root of f(z) =0

is of the form
c

- Woi(—cexp(b))’

¥ =

[4] shows that
—1—V2u—u<W_i(—exp(—u—1)) < -1, for u > 0.

Notice that u +1 — +2u > %u, we have

cu

ST < —c/W_i(—exp(—u—1)) <ec.

Let u = —logc — b — 1, we have that

. c(—logec—b—1)
S
2 ((log () +b+1)2+ 1)

,C

Lemma A3 (Lower bound of a*). Suppose that Assumption |l is imposed, we have

0> o b~!exp(—d — 1) (log (b) — log(b)) . (A1)

2 ((log(b) — log (5))2 + 1)

Proof. Denote the density of Y (7(X)) by fr. It is easy to see that b > fr(y) > b for any 7 € I and
any y € [0, M]. First notice that

o = arg glgg{—alog Ep, [exp (=Y (7(X))/a)] — ad} = arg min {alogEp, [exp (=Y (7(X))/a)] 4+ ad}.

Then, we have

M
alogEp, [exp (—Y (n(X)/a)] + a6 = alog [ | e (=ufe) fetuidy]| + a5

IN

alog [b(a — exp (—M/a) )] + ad
< alog (@) + a (8 +log(b)) .



Therefore, we have
m>il(}a {log Ep, [exp (=Y (m(X)/a)] + ad} < m>18 {alog (a) + a (6 +1log(b)) } = —b ' exp(—6 — 1).
On the other hand, We have

alog Ep, [exp (<Y (w(X)) /)] + ad

M
= alog [/0 exp (—y/a) (fr(y) —b+b)dy| + ad
alog [exp(~M/a) (1 — BM) + b (a — exp (~M/a) a)] + ad
= aloglexp(—M/a) (1 — bM — ba) + ab] + ad

Y

Since 2bM < 1, we have when a < 2%, 1—bM — ba > 0 and thus

alogEp, [exp (-Y (m(X)/a)] + ad > alog (a) + a (§ + log(b)) .

Consider the function f(a) = alog (a)+a (6 4 log(b)) . f(e) is decreasing when « € [0, (b) " exp(—d—
1)). Notice that

b=l exp(—0 — 1) exp (0 + log(h)) < 1/e.

By applying Lemma we have the smallest root of f(a) = —b~'exp(—§ — 1), ag is in

a b~' exp(—6 — 1) (log (b) —log(b)) 1 oxn( 6 1
" ( 2((10g(b)—10g (l_)))2+1) ’ p( ) |-

Notice that _ _
b~!exp(—d — 1) (log (b) — log(b)) - 1

2 ((1og()) ~log (1)* +1) 2’
and thus
alogBe, [exp (=Y (n(X)) /)] + a8 > mina {log B, [exp (Y (v(X)/a)] + ad}
for a ¢ [, TL RO 1) (o5 () —1ox®) |
2 ((10g(b) ~ log (1)) +1)
which concludes (A.1]).

Now we are ready to show the proof of Theorem



Proof of Theorem[3.]. Notice that

A

N (Wn(w, «) — E[Wi(r, a)]) = Z(a),

where

Z (a) ~ N (0, Var [W;(m, a)]) .

Since Wj(m, «) is Lipschitz continuous if « € [o/2, 2a]. We have W;(7, ) is a P-Donsker class (see,
for example, Corollary 7.17 in [I] and Chapter 19 in [7]). Therefore,

Jn (Wn(m ) — E[Wi(r, -)]) = Z (),

in a Banach space C([a/2,2a]) of continuous functions ¢ : [a/2,2a]—R equipped with the the
sup-norm [[¥|| = supyea /2,241 ¥(@). Z is a random element in C([a/2, 2a]).

Define the functionals

Gl,0) = alog (¥(a)) + ab, and V() = _inf G(w,a),
a€la/2,2a
for ¢ > 0. By the Danskin theorem (Theorem 4.13 in [2]), V () is directionally differentiable at any
w € C([a/2,2a]) with g > 0 and

Vi) = inf a(l/u@)v(e), YveC(la/2,2a]),

aeX(p)
where X (1) = arg mingeja2,2a)) @ log (u(a)) 4+ ad and Vi, (v) is the directional derivative of V' (-) at
w in the direction of v. On the other hand, V(1) is Lipschitz continuous if 9 (-) is bounded away

from zero. Notice that
E[W;(r,a)] = Elexp (=Y (7(x))/a)] > exp (—2M/a) . (A.2)

Therefore, V' (-) is Hadamard directionally differentiable at p = E[W;(7, )] (see, for example, Propo-
sition 7.57 in [6]). By the Delta theorem (Theorem 7.59 in [6]), we have

~

Vi (VWa(m, ) = VEIWi(r, )])) = Vg, (2) -

Furthermore, we know that log (E (exp (—fY'))) is strictly convex w.r.t 5 given Var(Y) > 0 and
xf(1/x) is strictly convex if f(x) is strictly convex. Therefore, alog (E[W;(m, «)]) + ad is strictly

convex for o > 0 and thus

4

Vinry) (2) = @ (1/EWi(r, ) Z (o*) £ N (0, (a*)? (E [Wi(r, a*)] > Var [Wi(r,a")]) ) .



By Lemma [3.T] we have that

Qbro(7) = — ir;% (a log (Wn(ﬂ, a)) + 0«5) ,

a_

and
Qpro(m) = — inf (alog (E[Wi(m, a)]) + ad) = —V(E[W;(r, @)]).

az

We remain to show P(Qpro(n) # —V (Wy(m, a))) — 0, as n — oo. Since Donsker classes are

Glivenko—Cantelli classes, we have the uniform convergence

sup  |W(m, o) — E[Wi(m,a)]| = 0 as..

a€la/2,2a])

Therefore, we further have

sup (a log (Wn(ﬂ', a)) + a6> — (alog (E[W;(m, a)]) + ad)| — 0 a.s.

a€la/2,2al)

given E[W;(m, )] is bounded away from zero in (A.2)). Let
e = min {a/2log (E[W;(7, a/2)]) + ad/2, 2alog (E[W;(7, 2a)]) + 2ad } —(a* log (E[W;(7, a™)]) + a™d) > 0.

Then, given the event

{ae[i%?ga]) (a log (Wn(ﬂ', a)) + aé) — (alog (E[W;(m, a)]) + aé)‘ < 6/2} ’

we have
o log <Wn(7r, a)> + a*§ < min {g/2 log (Wn(w,gﬂ)) + ad/2,2alog (Wn(w, 26)) + 265} ,

which means Qpro(7) = —V (W, (m,a)) by the convexity of alog (Wn(ﬂ', a)) + ad.
Finally, we complete the proof by Slutsky’s lemma:

~

Vit (Qoro(m) = Qoro(m)) = v (Qoro(m) + V(Wa(r,a))) + v (V(EIWi(m,))) = V(Wa(r,0)))
= 0+ N (0,(a") (E[Wi(r,a")] > Var [Wi(r,a")]))

- N (o, ()2 (E [Wi(r, a*)] 2 Var [Wi(r, a*)])) .

Appendix A.4 Proof of lemma (3.5

We use a similar technique as presented in [5, Lemma 5].



Consider the function f(8) = log Ep, [exp(—BY (7(X))]. The following equalities hold
£(0) =0, f'(0) = —Ep, [Y((X))] and, f"(0) = Var (Y (r(X))).

Therefore, by second-order Taylor expansion around 0 and 5 = 1/a, we have

B Var (Y (7(X)))
2c

¢ (m,a) =E[Y(r(X))] —ad+o(l/a).

Then, the optimal solution is

o = \/V&r (};(;(X))) +0(1/5).

Appendix A.5 Proof of Proposition 4.1

We first show the upper bound of empirical optimal dual variable for both direct and stable formu-

lations.
Lemma A4. Let the empirical optimal dual variables &, and dffable be defined as &y, = arg max,>o {q@n (m, oz)}
and dffable = argmaxqy>0 {q@ffable(ﬁ,a)}, respectively. Suppose that Assumption is imposed, we
have M
G < ———  and OA[stable < =,
"~ log (ST) + 0 )

if log (S7) + 0 > 0.

Proof. Notice that we have

lim —alogWy(m,0) —ad >  min  (Y;) >0, and lim —alog W5P(1 o) — ad > 0.
a—0 i€{1,2,....,n} a—0

In fact, in view of the following inequalities

—alog Wy (m,a) —ad < M — alog (ST) — ad, and — alog WS (r o) — ad < M — ad,

we have the desired results.

Proof of Proposition [{.1. Notice that

QI () = sup { ~alog 1, (r,0) — a6 + alox (57}
a>0

By Lemma [A4] if ST > exp(—d/2), we have

~stable
ay, <



and further

2M
)Q%%g QDRO()’S‘iffbg(ng

Notice that |log (z)| < 2|z — 1| when x > 1. Hence, we have when ST > 1.
@5 () — Qorom)| < 23 17 ~11. (A3)

Recall that §7 = Y7, HEX0-Ad wieh B [%} =1 and 228024 € [0,1/7]. By Hoeffd-

ing’s inequality (see, for example, Theorem 2.8 in [3]), we have
P (ST —1| > t) < 2exp (—2n*t*n).
for ¢ > 0. Let t =log(2/€)/ (V2nn) and t < 1 — max {1/4,exp(—4/2)}, which is equivalent to

n > (log(2/€)/ (1 — max {1/4,exp(~6/2)}) /n)° /2.

2
Finally, when n > % ((kmax {i(;i(i{ ;)(7 5 /2)})77) , with probability 1 — €, we obtain

2v2M log(2/e)
on  V/n

‘Q%%’(lae — Qpro(r )‘
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