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Abstract
Coastal communities are at high risk of natural
hazards due to unremitting global warming and
sea level rise. Both the catastrophic impacts, e.g.,
tidal flooding and storm surges, and the long-term
impacts, e.g., beach erosion, inundation of low ly-
ing areas, and saltwater intrusion into aquifers,
cause economic, social, and ecological losses.
Creating policies through appropriate modeling
of the responses of stakeholders, such as govern-
ment, businesses, and residents, to climate change
and sea level rise scenarios can help to reduce
these losses. In this work, we propose a Markov
decision process (MDP) formulation for an agent
(government) which interacts with the environ-
ment (nature and residents) to deal with the im-
pacts of climate change, in particular sea level
rise. Through theoretical analysis we show that a
reasonable government’s policy on infrastructure
development ought to be proactive and based on
detected sea levels in order to minimize the ex-
pected total cost, as opposed to a straightforward
government that reacts to observed costs from
nature. We also provide a deep reinforcement
learning-based scenario planning tool considering
different government and resident types in terms
of cooperation, and different sea level rise projec-
tions by the National Oceanic and Atmospheric
Administration (NOAA).

1. Introduction
The consequences of global warming and sea level rise have
been widely documented, examined, and forecasted (Sal-
lenger Jr et al., 2012; Hapke et al., 2013; Pachauri et al.,
2014; Plant et al., 2016; Hine et al.; Burke et al., 2019). The
coastal communities will undergo multiple threats, includ-
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ing recurring hurricanes, storm surge, and heavy rainfall as
a result of sea level rise (Wahl et al., 2015). This intensifies
social vulnerability, especially in underprivileged neighbor-
hoods (Kashem et al., 2016; Schrock et al., 2015); induces
coastal hazards (Nicholls, 2011; Wahl et al., 2014); and
affects regional economies by influencing property values,
taxation, and the insurance cost (Fu et al., 2016). Due to sea
level rise, coastal inhabitants are exposed to many of these
consequences and need to develop the adaptive capability
and resilience frameworks to counter these stressors through
adequate planning and decision support (Beatley, 2012).

The governments, planners, coastal administrators, and
personnel in a variety of agencies require substantial in-
formation for effective interaction, decision making, and
adaptation planning (Beatley, 2012; Fu et al., 2017; Re-
search Council, 2009). This demands the support of key
actors to relate the science, the variability, and the hazard
of various outlines to stakeholders (Tribbia & Moser, 2008).
Explicitly modeling these agents’ reaction to sea level rise
scenarios can serve in the creation of strategies tailored to
local impacts and resilience management and requires a
mixture of social engagement and planning tools, including
scenario planning (Berke & Stevens, 2016; Drogoul, 2015;
Potts et al., 2017).

In this paper, for planning sea level rise scenarios, we study
the interactions between a government, residents, and the
nature around the sea level rise problem. Specifically, we
use probabilistic models to simulate their behaviors and in-
teractions between them. Focusing on the economic cost of
the sea level rise-related natural events (e.g., flooding, hurri-
cane) and government investments (e.g., infrastructure im-
provement) we propose a Markov decision process (MDP)
framework to analyze the decision policies for government
together with the reactions of the nature and residents.

We specialize the proposed MDP framework to the sea level
rise problem and illustrate it using available economic data,
sea level projections, and community partner feedbacks 1

for the Tampa Bay region in Florida. However, the proposed
MDP framework can be easily adapted to simulating other

1A list of community partners can be seen at Acknowledge-
ments.
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natural and socioeconomic systems under the impacts of
climate change.

MDP provides a suitable theoretical framework for creating
agent-based scenarios (Howard, 1960; Bellman, 1957; Fi-
lar & Vrieze, 2012). The MDP agent (government in our
case) interacts with the environment (nature and residents
in our case) by taking action at each time and receiving a
reward/cost from the environment in return. The objective
of the agent is to optimize the return over time by choos-
ing actions from a list of available actions. Each time, the
system moves to a new state based on the agent’s action
according to a probability distribution. The optimal policy
determines which action to take in which state by map-
ping system states to actions. It can be either found using
dynamic programming or learned from experience using re-
inforcement learning (RL) (Sutton & Barto, 2018), which is
also known as approximate dynamic programming. In deep
reinforcement learning, a neural network structure is used
to approximate the expected value for each action at each
state. Deep RL is suitable for problems where the system
states are many or continuous in nature (Mnih et al., 2015).

1.1. Related Works

As an impact of climate change, sea level change is neither
globally nor regionally uniform (Hine et al.; Sallenger Jr
et al., 2012), and can vary spatially and temporally (Ezer,
2013; Hine et al.; Wahl et al., 2015). This leads to a degree
of uncertainty to the projection of sea level rise impacts
at the local level, as well as planning for adaptation and
resilience. The implications of this uncertainty for coastal
community planning and adaptation are many, and have
led to a variety of efforts to constrain, refine, and bench-
mark sea level rise projections for purposes of assessing risk
(Buchanan et al., 2016; Hinkel et al., 2015; Le Cozannet
et al., 2017; Sweet & Park, 2014; Tyler & Moench, 2012).
Similarly, in this work, in addition to proposing a general
scenario planning model, we also tailor our model to a spe-
cific region, Tampa Bay, FL, using NOAA projections and
economic data for the region.

Agent-based modeling has been a popular choice for sim-
ulating complex systems including transportation systems
(Faboya et al., 2018), disaster recovery (Eid & El-Adaway,
2018), and climate change (Patt & Siebenhüner, 2005). Dif-
ferent than existing works, in this paper we propose a novel
scenario planning model based on MDP and deep RL for a
realistic setup with arbitrary number of actions and continu-
ous sea level rise values. Furthermore, as a major contribu-
tion, we theoretically analyze the optimal decision policy,
and illustrate the proposed model for the Tampa Bay region.

1.2. Contributions

In our model, MDP agent is the government in an urban
setup, which interacts with the nature and residents by mak-
ing investment decisions for the sea level rise problem to
minimize the incurred economic cost. Our contributions can
be summarized as follows.

• We theoretically show that the government should base
its investment decision on the observed sea level in-
stead of the incurred cost from the nature. Making
investment decisions based on the natural cost corre-
sponds to the straightforward policy that any sensitive
but shortsighted government would adopt. Through
mathematical analysis of the proposed MDP model,
we show that proactive actions triggered by the rising
sea levels are more effective in reducing the cumulative
cost than reactive actions triggered by the cost from
the nature.

• Using the proposed MDP model we provide a deep
RL-based scenario planning framework that takes into
account arbitrary number of (discrete) government ac-
tions, continuous sea level rise values, different sea
level projections by NOAA, and different government
and resident prototypes in terms of being responsive to
the sea level rise problem.

• Using the available economic data and the regionally
adjusted NOAA sea level projections we present sce-
nario simulations for Tampa Bay, FL. For each sce-
nario, we consider different government and resident
prototypes using cooperation indices that represent
how responsive they are to the sea level rise problem.
Finally, we show that the optimal (proactive) policy
learned by the proposed deep RL algorithm achieves
40% less economic cost than the best reactive policy
in 100 years in three different sea level projections by
NOAA.

The rest of the paper is organized as follows. Section 2
explains the proposed MDP model. In Section 3.1, we char-
acterize the optimal policy through function analysis. Then,
we present a deep RL algorithm for finding the optimal
policy in Section 3.2. The scenario simulations for Tampa
Bay region are provided in Section 4. Discussions about
the proposed model is given in Section 5, and the paper is
concluded in Section 6. For interested readers, we provide
the proofs in the accompanying supplementary file.

2. MDP Problem Formulation
We propose an MDP framework to model the behaviors of
stakeholders (government, residents, and nature), and the in-
teractions between them. As shown in Figure 1, government,



An MDP Model for Socio-Economic Systems Impacted by Climate Change

Government ResidentsNature

xn ∈ {0, 1, . . . , q} zn(sn−1, ℓn−1) ≥ 0 yn

(

{xm, zm}
n−1

m=1

)

∈ {0, 1}

Agent Environment

Markov State

Cost

cn(xn, yn, zn) ≥ 0

Sn = (sn−1 + xn, ℓn−1 + rn)

rn ≥ 0xn

xn

cn

Sn

zn yn
xn

Figure 1. Proposed MDP framework.
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Figure 2. MDP state transition. The state space consists of a con-
tinuous horizontal dimension for sea level and discrete vertical
dimension for infrastructure state. Three possible state transitions
are shown in the figure. Note that rn can take any nonnegative
value.

the central decision maker in dealing with the sea level rise
problem, at each time step n takes an action (i.e., investment
decision) xn and receives responses from the residents yn
and the nature zn through the cost cn. Then, this natural and
socioeconomic system moves to a new state Sn based on the
previous state Sn−1, government’s action xn, and the sea
level rise rn. The system state consists of the pair of city’s in-
frastructure state sn and the sea level `n, i.e., Sn = (sn, `n).
The government’s investment decisions also determine the
state of the city infrastructure sn, which is modeled as
sn = s0 +

∑n
m=1 xm = sn−1 + xn. Likewise, the sea

level at step n is given by the cumulative sea level rise val-
ues: `n = `0 +

∑n
m=1 rm = `n−1 + rn. Here s0 and l0 are

respectively the initial infrastructure state and the initial sea
level of the city. In terms of simulations, these are two user-
defined numbers representing the existing states at the be-
ginning of the simulations. The system state clearly satisfies
the Markov property: P(Sn|Sn−1, . . . ,S0) = P(Sn|Sn−1).
The state transition is illustrated in Figure 2, and the param-
eters of the proposed MDP framework are summarized in
Table 1. We next explain our proposed models for the gov-
ernment, nature, and residents under the MDP framework.

Table 1. Model parameters.
Initial sea level `0 ≥ 0
Sea level rise at time n rn ≥ 0
Sea level at time n `n = `0 +

∑n
m=1 rm

Initial infrastructure state s0 ∈ {1, 2, ...}
Infrastructure decision at time n xn ∈ {0, 1, . . . , q}
Infrastructure state at time n sn = s0 +

∑n
m=1 xm

Residents’ decision at time n yn ∈ {0, 1}
Cost from nature at time n zn ≥ 0
Total cost at time n cn = αxn − βyn + zn

2.1. Government Model

At each time step, e.g., a year, the government decides the
degree of its investment xn ∈ {0, 1, 2, ...., q} for infras-
tructure development, where q is a finite positive integer.
xn = 0 means no investment at step n. Hence, there are
q + 1 possible actions for the government at each time step.
The numerical value of xn = m can be interpreted as spend-
ing m unit money towards the infrastructure development
or the mth action among q different actions with increasing
cost and effectiveness. Possible government actions include
but are not limited to building seawalls, raising roads, widen-
ing beach, building traditional or horizontal levees, placing
stormwater pumps, improving sewage systems, relocating
seaside properties, etc. (Sergent et al., 2014; mar, 2016;
Xia et al., 2019). The range of xn is designed to cover the
real world costs from the cheapest investment like clean-
ing the pipes to the most expensive investment like buying
lands and property to relocate the seaside inhabitants and
businesses.

The total cost cn to the agent at each time n consists of the
investment cost, cost from nature, and the residents’ contri-
bution to the investment. Since the government’s investment
decision and the residents’ contribution decision have inte-
ger values, we model the total cost as cn = αxn−βyn+zn
using parameters α and β to map the decisions to monetary
values. The three different entities in the cost definition are
combined by adjusting the parameters α, β and the param-
eters of the probabilistic model introduced for the nature’s
cost zn in Section 2.2. In Section 4, we discuss how to set
these parameters to obtain realistic costs for the Tampa Bay
region. The discounted cumulative cost for the government
in N time steps is given by

CN =

N∑
n=0

ang [αxn − βyn + zn], (1)

where the discount factor ag ∈ (0, 1) defines the weight
of future costs in the agent’s decisions. Apart from being
a standard parameter in MDP cost function, ag has an im-
portant contextual significance in this research. It indicates
how much the government values the future costs due to
sea level rise in its decision making process. Hence, in this
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Figure 3. Adjusted NOAA projections (solid lines) and our fittings
(dashed lines) for relative sea level change for Tampa Bay, FL.

work, ag is termed as the government’s cooperation index.
The government’s objective is to minimize the expected
cumulative cost E[CN ] by taking investment actions {xn}
over time.

2.2. Nature Model

Hurricanes, floods, and stagnant water are some of the many
sea level rise-related natural events that cause cost in differ-
ent ways such as loss of properties, jobs, taxes, and tourism
incomes due to submerged areas. To model this cost zn, we
begin with modeling the sea level rise rn. Recently, three
different regionally adjusted NOAA projections for sea level
rise have been proposed for the Tampa region (Burke et al.,
2019), as shown in Fig. 3.

We take these projections as mean sea level rise values,
and model the uncertainty around them using the Gamma
distribution, i.e., rn ∼ Gamma(µ, φ), since it is a flexible
two-parameter probability distribution used for modeling
positive variables including environmental applications, e.g.,
daily rainfall (Aksoy, 2000). We set the scale parameter
φ = 0.5 and vary the shape parameter µ in a range to match
the mean relative sea level, given by

∑n
m=1 E[rm], with

the NOAA projection curves. The successful curve fitting,
shown in Fig. 3, is achieved by increasing µ from 11.2
to 12.388 with 0.012 increments for the intermediate-low
projection; from 13 to 34.78 with 0.22 increments for the
intermediate projection; and from 14.6 to 87.86 with 0.74
increments for the high projection.

Then, we model nature’s cost zn using the generalized
Pareto distribution, which is commonly used to model catas-
trophic losses, e.g., (Cebrián et al., 2003; Uchiyama &
Watanabe, 2006; Daspit & Das, 2012). It is known that
the storm- and flooding-related costs have been increasing

with the sea level rise (nce, 2020). Thus, we model the
scale parameter of generalized Pareto distributed zn directly
proportional to the most recent sea level `n−1 and inversely
proportional to the most recent infrastructure state sn−1.
The proposed model for zn is given by

zn ∼ GeneralizedPareto(k, σn, θ)

θ ≥ 0, σn =
η(`n−1)

a

(sn−1)b
, k < 0, (2)

where θ, σ, k are the standard parameters of generalized
Pareto: location, scale, and shape parameters, respectively;
and η > 0, a ∈ (0, 1), b > 0 are our additional model pa-
rameters. The parameters k, θ, η, a, b helps to regulate the
impact of most recent sea level `n−1 over nature’s cost zn
relative to the most recent infrastructure state sn−1. Choos-
ing an appropriate set of parameters depends on the region
considered for simulations. We explain how to set the pa-
rameters for the Tampa Bay region in Section 4. Our prefer-
ence for modeling the scale parameter and not the location
parameter is due to the fact that the scale parameter can con-
trol both the mean and the variance, whereas the location
parameter appears only in the mean.

2.3. Residents Model

In our framework, government requests a contribution from
residents to the sea level rise investments, e.g., through
an additional tax referendum; and residents make a binary
decision yn ∈ {0, 1} whether to support the government.
The model is flexible in terms of the frequency of voting.
For instance, residents may vote every 5 years and the voting
decision remains constant until the next voting.

An appropriate model for yn requires social modeling for
the residents’ voting behavior. While the residents of a re-
gion in general form a heterogeneous community in terms
of social and psychological factors, it is sufficient to model
the aggregate response in this work since we consider a
referendum in which the majority vote wins. Similar to the
government’s cooperation index, we define the residents’ co-
operation index ar ∈ (0, 1) to quantify how responsive the
residents are to the sea level rise problem. These cooperation
indices are helpful in simulating different government and
resident profiles, as illustrated in Section 4. As explained
by the social exchange theory (Homans, 1974; Rasinski &
Rosenbaum, 1987), some individuals’ votes are motivated
by what benefit they receive in exchange. A high percentage
of such individuals in a community is represented by a low
ar value in our model. According to another perspective,
voter behavior is determined by non-self-interested factors
such as a sense of civic duty (Katosh & Traugott, 1982),
moral obligation (Rasinski et al., 1985), and psychological
sense of community (Davidson & Cotter, 1993). In our
model, a high ar value corresponds to a community which
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is dominantly composed of this type of individuals who
value non-self-interested factors.

We use ar to obtain a score function that gives the proba-
bility of support from the residents. In addition to internal
factors, represented by ar, voters’ decision is also affected
by external factors, government’s actions {xn} and nature’s
cost {zn} in our case. We hypothesize that the probability
of a positive voting outcome, P(yn = 1), is high when both
nature’s cost and government’s efforts are high (i.e., high
xn and zn) in the recent history. In other words, when either
nature’s cost has been low or government is not responsive,
residents lack the main reason for accepting an additional
tax. Hence, we propose the following score function and
the Bernoulli model for yn:

hn =

n−1∑
m=1

an−mr xmzm, (3)

yn ∼ Bernoulli(pn), pn = σ(hn) =
1

1 + e−(hn−h0)
,

where σ(·) is the logistic sigmoid function used for mapping
the score hn to probability pn. High hn means a high likeli-
hood of support from the residents. The sigmoid’s midpoint
h0 is empirically obtained as the average value of hn. In
addition to being a cooperation index, another interpreta-
tion for ar is the concept of discount (or forgetting) factor
for past events, similar to the government’s ag coefficient.
For high ar values, residents have a longer memory, and
they consider also the past disasters and government efforts
with an exponentially decaying weight in their decision.
Whereas, for a community with low ar, residents have a
short memory and only care about the most recent cost and
government effort. In an extreme case where ar is close to
zero, they may not be even motivated to contribute by a very
recent disaster and government’s high efforts.

3. Optimal Policy
In this section, we first analyze the optimal policy for gov-
ernment investments, and then provide a practical algorithm
to find the optimal policy.

3.1. Optimal Policy Analysis

In the proposed MDP framework, the objective of a rational
government is to minimize the expected total cost E[CN ]
in N time steps by following an optimal investment policy.
Central to MDP is the optimal value function

V (sn, `n) = min
{xn}

E[CN |{xn}],

which gives the minimum expected total cost possible at
each state (sn, `n), denoted as the optimal value of that
state, by choosing the best action policy {xn}. To find the

optimal policy, the Bellman equation

V (sn−1, `n−1) = min
xn

E[cn + agV (sn, `n)|xn]

provides a recursive approach by focusing on finding the
optimal action xn at each time step using the successor state
value, instead of trying to find the entire policy {xn} at once.
Using the cost definition given by (1) and considering possi-
ble q actions for xn this iterative equation can be rewritten
as

V (sn−1, `n−1) = min
{

E
[
− βyn + zn + agV (sn−1, `n−1 + rn)

]︸ ︷︷ ︸
F0(sn,`n)

,

E
[
α− βyn + zn + agV (sn−1 + 1, `n−1 + rn)

]︸ ︷︷ ︸
F1(sn,`n)

,

E
[
2α− βyn + zn + agV (sn−1 + 2, `n−1 + rn)

]︸ ︷︷ ︸
F2(sn,`n)

,

... ,

E
[
qα− βyn + zn + agV (sn−1 + q, `n−1 + rn)

]︸ ︷︷ ︸
Fq(sn,`n)

}
, (4)

where Fm(sn, `n) is defined as the expected total cost of
taking action xn = m at state (sn, `n).

At each time step n, the action xn shapes the instant
cost cn and moves the system to the next state, which
determines the discounted future cost agV (sn, ln). The
optimum policy chooses among the investment actions
xn ∈ {0, 1, 2, ...., q} that has the minimum expected to-
tal cost, minm{Fm(sn, `n)}, as shown in (4). Since the
functions {F0(sn, `n), . . . , Fq(sn, `n)} determine the opti-
mal policy, we next analyze them to characterize the optimal
government policy.

Theorem 1. For m = 0, 1, . . . , q, Fm(sn, `n) is nonde-
creasing and concave in `n for each sn; and the deriva-
tive of Fm(sn, `n) with respect to `n is lower than that of
Fm−1(sn, `n) for m = 1, . . . , q.

Proof is provided in the Supplementary file. For
a specific infrastructure state sn, expected costs
F0(sn, `n), F1(sn, `n), . . . , Fq(sn, `n) for all the q + 1
actions are illustrated in Figure 4 according to Theorem 1.
The optimum policy picks the minimum of the q + 1 curves
at each time, which is shown with the solid curve in Figure
4. As a result of Theorem 1, we next give the outline of
optimum policy in Corollary 1.

Corollary 1. The optimum policy, at each infrastructure
state sn, compares the sea level `n with at most q thresholds
where each threshold signifies a change of optimal action.
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Figure 4. Expected total costs as a function of sea level for an
example case with q = 3. The expected total costs intersect each
other only once for any given infrastructure state according to
Theorem 1.

To prove Corollary 1, note that

Fm−1(sn, `n = 0) < Fm(sn, `n = 0)

for m ∈ {1, 2, ...., q} because `n = 0 corresponds to
the fictional case of zero sea level where there is no
risk. That is, Fm−1(sn, `n) starts at a lower point than
Fm(sn, `n), but increases faster than Fm(sn, `n) since its
derivative is higher (Theorem 1). Also from Theorem 1, it
is known that both of them are concave and bounded, hence
Fm−1(sn, `n) and Fm(sn, `n) intersect exactly at one point
for m ∈ {1, 2, . . . , q}. While for `n less than the inter-
section point the action xn = m is less effective than the
action xn = m−1 in terms of immediate cost and expected
future cost, it becomes more effective when `n exceeds the
intersection point.

Figure 4 gives an example case where there are q = 3
thresholds `thr1(sn−1), `thr2(sn−1), `thr3(sn−1) which de-
pend on sn−1 and indicate change points of optimal action.
However, depending on the slopes of {Fm(sn, `n)} curves
at each infrastructure state sn−1, there may be less than q
change points.

To summarize, for a given state (sn−1, `n−1), the optimum
policy chooses xn based on the relative value of the current
sea level `n = `n−1 + rn, where rn is the rise on top
of `n−1, with respect to the existing infrastructure state
sn−1 =

∑n−1
m=1 xm.

The thresholds also depend on the cooperation indices ag
and ar. Higher cooperation indices set the thresholds lower
and vice versa. Notably, the government’s cooperation in-
dex ag is dominant in shaping the thresholds. Intuitively,
as ag grows, the government becomes more cautious about
(i.e., sees more objectively without severely discounting) the
expected future natural costs and sets a lower threshold for
investment actions. On the contrary, small ag implies under-
estimated future costs and thus overemphasized investment
costs, which results in a high threshold for investment.

3.2. Finding the Optimal Policy

We showed that the optimal policy is given by a number
of thresholds on the current sea level; however completely
specifying the optimal policy with analytical expressions for
thresholds does not seem tractable due to a large number of
parameters involved in the problem. Hence, we next propose
a reinforcement learning (RL) algorithm to find the optimal
policy for simulated scenarios. Specifically, to learn the
optimal policy here, a deep RL algorithm is needed due to
the continuous sea level values, which cause infinite number
of possible states. The deep Q network (DQN) algorithm
(Mnih et al., 2015), which is a popular choice for deep RL,
addresses well the infinite dimensional state space problem.
It leverages a deep neural network to estimate the optimal
action-value function

Q(sn, `n, xn) = E[cn + ag min
x
Q(sn +xn, `n+1, x) | xn].

where V (sn, `n) = minxn
Q(sn, `n, xn). In Algorithm 1,

we present a DQN algorithm for learning the optimal policy
on government’s infrastructure investment actions.

Algorithm 1 operates many episodes to iteratively compute
the weights of the DQN neural network that relates input
states and actions with the output Q(S, x) values. Each
episode consists of Monte-Carlo simulations in which sev-
eral states are visited according to the current policy defined
by the current value function. Selecting the actions always
using equation (4) may keep some of the states not explored
enough. To encourage the agent to explore the state space
adequately, we use a technique that explores frequently at
the beginning, but reduces exploration with gaining more
experience over time (Singh et al., 2000). After the weight
matrix values converge, the final weight matrix is used to
generate scenario simulations, as described in the following
section. The convergence of the weight matrix is depicted
in Fig. 5.

4. Scenario Simulations
In this section, we present scenario simulations for the
Tampa Bay region in Florida using our MDP model and
deep RL algorithm. Tampa Bay, situated along the Gulf of
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Algorithm 1 DQN algorithm for finding optimum policy
1: Input: ag, ar, α, β, θ, k, η, a, b
2: Initialize replay memory D to capacity N
3: Initialize action-value function Q with random weights
w and target action-value function Q′ with random
weights w′ = w

4: for episode = 1, 2, ... do
5: Initialize state S0 = (s0, `0)
6: for n = 1, 2, ..., N do
7: With probability ε select a random action xn, oth-

erwise select xn = argminxQ(Sn, x;w)
8: Execute action xn and observe cost cn = αxn −

βyn + zn (see (2) and (3))
9: Store transition (Sn, xn, cn,Sn+1) in D

10: Sample random minibatch of transitions
(Sj , xj , cj ,Sj+1) from D

11: Set target tj = cj + ag minxQ
′(Sj+1, x;w

′)
12: Perform a gradient descent step on [tj −

Q(Sj , xj ;w)] with respect to the weights w
13: Every d steps reset w′ = w
14: if Q(S, x) converges for all S, x then
15: break
16: end if
17: end for
18: end for

Mexico in Florida with more than 3 million residents, is
listed number seven among the most at-risk areas in terms
of risk of damaging floods on the globe by the World Bank
(wor, 2013). We have three different sea level rise projec-
tions by NOAA until the year 2100 for the area (Burke et al.,
2019), as shown in Fig. 3. The City of Tampa expects to
collect $14 M/year for 30 years from residents to improve
its stormwater system (sto, 2019). Thus, we set β = 14 with
the base unit of million dollars. According to the ongoing
improvement projects and regular stormwater services of
City of Tampa (sto, 2019), annual investment may range
between $ 25-75 M. Hence, we choose α = 25 and the
number of nonzero actions q = 3, i.e., xn ∈ {0, 1, 2, 3}. A
recent report by the Tampa Bay Regional Planning Coun-
cil (tbr, 2017) gives “the cost of doing nothing” for years
2020-2060 due to the sea level rise impacts under the
high sea level rise projections as $162 billion. We obtain∑2060

2020 zn = 162, 000 (in million dollars) by keeping the in-
frastructure state at the initial level s0 = 50, increasing the
sea level from the initial `0 = 100 according to the gamma
distribution following the high sea level projection (Section
2.2), and setting the parameters of generalized Pareto model
as k = −0.001, θ = 1, η = 25, a = 0.9, b = 1.1. All the
costs in the following figures are normalized by taking the
residents’ contribution 14 M as one unit. Vanilla DQN is
used with Huber loss and normalization on state and reward
values. The learning rate is tuned between 10−5 and 10−2,
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Figure 5. Convergence of weights in Algorithm 1.

and 10−3 gave the best result. Decaying exploration rate
is used with initial value 1, multiplying factor 0.99, and
minimum value 0.01.

In Fig. 6, we analyze the effect of cooperation indices. We
obtain different scenarios by varying the cooperation indices
ag and ar for the government and residents, respectively,
and by considering different NOAA projections for sea level
rise. As expected, the average total cost decreases with
growing cooperation index for both the government (ag) and
residents (ar). The cost is significantly higher if both the
government and residents are not cooperative (ag = ar =
0.1) compared to the cooperative case (ag = ar = 0.9).

We next compare the proposed MDP-based government
policy, which proactively improves infrastructure based on
observed sea levels, with the shortsighted policy which re-
acts to significant costs from the nature by improving the
infrastructure. We model this shortsighted policy with a
threshold parameter for the cost from nature zn. When zn
exceeds the threshold, the shortsighted policy improves the
infrastructure by three units (xn = 3). Under the three
sea level projections, we find the optimum thresholds that
minimize the average total cost of shortsighted policy in
100 years as 34, 28, and 21 for the intermediate low, in-
termediate, and high projections, respectively (Figure 7).
The optimal thresholds in Figure 7 show that the infras-
tructure improvement is more urgent under higher sea level
projections, in accordance with the intuition.

Finally, in Fig. 8, we compare the best MDP-based policy
(ag = ar = 0.9) with the best shortsighted policy, which
uses the optimum threshold, in terms of average total cost in
100 years for all sea level projections. The same resident and
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Figure 6. Average total cost as a function of government cooperation index ag and resident cooperation index ar for different NOAA
projections: intermediate low (left), intermediate (middle), high (right).
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Figure 7. Average total cost for the shortsighted government policy
as a function of investment threshold under the three sea level
projections. The optimum thresholds for each projection are shown
in colored boxes.

nature models are used while simulating both policies. For
all the three sea level projections, the MDP-based proactive
policy, whose decisions are driven by the current sea level,
achieves around 40% less cost than the shortsighted reactive
policy, which decides based on the cost from nature.

5. Discussions and Future Work
To the best of our knowledge, we presented the first com-
prehensive MDP framework with theoretical and numerical
analysis for modeling socio-economic scenarios of the cli-
mate change-related sea level rise problem. Although we
strived for a realistic framework, we know that the presented
work can be improved in several aspects to obtain a more
realistic framework. For instance, a continuous action space
for the government can be integrated into the current model
by considering the monetary value of investments instead of
a discrete set of infrastructure improvement actions. Policy
gradient methods such as the actor-critic method can be
used instead of DQN to find the optimal policy with con-
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Figure 8. Comparison of the cumulative cost for threshold based
and agent based optimal policy.

tinuous actions. Moreover, multi-agent RL methods can be
used to actively model the decisions of other stakeholders,
such as residents and businesses, and interactions between
them. Modeling of each stakeholder would ideally need
a tailored approach that incorporates the characteristics of
stakeholder into designing cost function, actions, etc. Last
but not least, modeling the cooperation indices (ag, ar) is
an interesting research direction that would require an inter-
disciplinary effort. By decomposing them into a number of
fundamental traits, such as political, sociological, religious,
and ethical traits of governments and residents, one can
study how to obtain ag, ar, or another cooperation index for
a new stakeholder, for a given community.

6. Conclusion
A novel Markov Decision Process (MDP) model has been
proposed for simulating socio-economic scenarios of the
sea level rise problem. The optimal government policy
has been shown to rely on the observed sea levels through
analyzing the expected cost functions. We also provided a
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deep reinforcement learning (RL) algorithm for finding the
optimal policy, and presented scenario simulations for the
Tampa Bay region using available economic data from the
city government, regional sea level projections from NOAA,
and feedback from community partners who confirmed the
real-world utility of the proposed model. The simulations of
several scenarios corroborated the importance of supportive
residents and a proactive government that improves the
infrastructure according to the observed sea level and does
not undervalue the future cost of sea level rise. Finally, we
discussed several ways of improving the proposed model
for generating more realistic scenarios.
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