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Proof of Theorem 1
Nondecreasing and Concave:

We will first show that if V (sn, `n) is nondecreasing and concave in `n, then so is

Fm(sn, `n) = E [mα− βyn + zn + agV (sn−1 +m, `n−1 + rn)] ,

for m = 0, 1, . . . , q. Assume

• ∂
∂`n

V (sn, `n) ≥ 0 (nondecreasing),

• ∂2

∂`2n
V (sn, `n) < 0 (concavity).

Using the nondecreasing monotonicity of V (sn, `n) we can write

∂

∂`n
Fm(sn, `n) =

ηa`a−1n−1
(1− k)sbn−1

+ agE

[
∂

∂`n
V (sn, `n)

]
≥ 0,

where the derivative can be brought inside the integral due to the monotone convergence theorem. Since 0 < a < 1, for the
second derivative we have

∂2

∂`2n
Fm(sn, `n) =

ηa(a− 1)`a−2n−1
(1− k)sbn−1

+ agE

[
∂2

∂`2n
V (sn, `n)

]
< 0.

Hence, it is sufficient to show that V (sn, `n) is nondecreasing and concave.

Finding the value function iteratively (i.e., value iteration) is a common approach which is known to converge (Sutton &
Barto, 2018): limi→∞ Vi(s, `) = V (s, `). For brevity, we drop the time index from now on. We will next prove that V (s, `)
is nondecreasing and concave iteratively. Initializing all the state values as zero, i.e., V 0(s, `) = 0,∀s, `, after the first
iteration we get

V1(s, `) = min
x

{
E[αx− βy(x, z) + z(s, `) + agV

0(s+ x, `+ r)]
}
,

= E[z(s, `)] = θ +
σ

1− k
= θ +

η`a

(1− k)sb
,

where we used the fact that E[y] = 0 when x = 0 for all states. Differentiating with respect to `, we get

∂

∂`
V1(s, `) = ηa

`a−1

(1− k)sb
≥ 0, ∀s, (S1)

∂2

∂`2
V1(s, `) = ηa(a− 1)

`a−2

(1− k)sb
< 0, ∀s,
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since η > 0, a ∈ (0, 1), b > 0, k < 0. Thus,V1(s, `) is nondecreasing and concave in ` for all s. Next, value function after
the second iteration becomes

V2(s, `) = min
x

{
E[αx− βy(x, z) + z(s, `) + agV1(s+ x, `+ r)]

}
= min

x

{
E[αx− βy(x, z)] + θ +

η`a

(1− k)sb
+ agθ + agE

[
η(`+ r)a

(1− k)(s+ x)b

]}
.

Denoting the optimum action with x̄ we will show that V2(s, `) is nondecreasing and concave for any x̄. Moreover, the
pointwise minimum of nondecreasing and concave functions is also nondecreasing and concave. The residents’ probability
of support E[y(x, z)] depends on past values of x and z, but not ` directly, so taking the derivative with respect to ` we get

∂

∂`
V2(s, `) =

∂

∂`

{
η`a

(1− k)sb
+ ag

ηE[(`+ r)a]

(1− k)(s+ x̄)b

}
= ηa

`a−1

(1− k)sb
+ agηa

E[(`+ r)a−1]

(1− k)(s+ x̄)b
≥ 0, ∀s

∂2

∂`2
V2(s, `) = ηa(a− 1)

`a−2

(1− k)sb
+ agηa(a− 1)

E[(`+ r)a−2]

(1− k)(s+ x̄)b
< 0, ∀s.

Hence, V2(s, `) is nondecreasing and concave. Now, for any i, given that Vi−1(s, `) is nondecreasing and concave, we can
write

∂

∂`
Vi(s, `) = ηa

`a−1

(1− k)sb
+ agE

[
∂

∂`
Vi−1(s+ x̄, `)

]
≥ 0, ∀s (S2)

∂2

∂`2
Vi(s, `) = ηa(a− 1)

`a−2

(1− k)sb
+ agE

[
∂2

∂`2
Vi−1(s+ x̄, `)

]
< 0, ∀s.

Consequently, by mathematical induction, V (s, `) is nondecreasing and concave.

Comparison of Derivatives:

Similarly, if we show that
∂

∂`
V (s+m, `) <

∂

∂`
V (s+m− 1, `),

we can conclude that ∂
∂`Fm(s, `) < ∂

∂`Fm−1(s, `) since

∂

∂`n
Fm(sn, `n) =

ηa`a−1n−1
(1− k)sbn−1

+ agE

[
∂

∂`n
V (sn−1 +m, `n)

]
∂

∂`n
Fm−1(sn, `n) =

ηa`a−1n−1
(1− k)sbn−1

+ agE

[
∂

∂`n
V (sn−1 +m− 1, `n)

]
.

Starting again with V0(s, `) = 0,∀s, `, from (S1) we can write the following inequality for the first iteration

∂

∂`
V1(s+m, `) = ηa

`a−1

(1− k)(s+m)b
<

∂

∂`
V1(s+m− 1, `) = ηa

`a−1

(1− k)(s+m− 1)b
.

For any i, given that ∂
∂`Vi−1(s+m, `) < ∂

∂`Vi−1(s+m− 1, `), from (S2) we have

∂

∂`
Vi(s+m, `) = ηa

`a−1

(1− k)(s+m)b
+ agE

[
∂

∂`
Vi−1(s+m+ x̄, `)

]
<

∂

∂`
Vi(s+m− 1, `) = ηa

`a−1

(1− k)(s+m− 1)b
+ agE

[
∂

∂`
Vi−1(s+m− 1 + x̄, `)

]
.

As a result, by mathematical induction we can conclude that ∂
∂`V (s+m, `) < ∂

∂`V (s+m− 1, `).
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