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Abstract

The Markov assumption (MA) is fundamental
to the empirical validity of reinforcement learn-
ing. In this paper, we propose a novel Forward-
Backward Learning procedure to test MA in se-
quential decision making. The proposed test does
not assume any parametric form on the joint dis-
tribution of the observed data and plays an im-
portant role for identifying the optimal policy in
high-order Markov decision processes (MDPs)
and partially observable MDPs. Theoretically, we
establish the validity of our test. Empirically, we
apply our test to both synthetic datasets and a
real data example from mobile health studies to
illustrate its usefulness.

1. Introduction

Reinforcement learning (RL) is a general technique that
allows an agent to learn and interact with an environment.
In RL, the state-action-reward triplet is typically modelled
by the Markov decision process (MDP, see e.g. Puterman,
1994). Central to the empirical validity of various RL algo-
rithms is the Markov assumption (MA). Under MA, there
exists an optimal stationary policy that is no worse than
any non-stationary or history dependent policies (Puterman,
1994; Sutton & Barto, 2018). When this assumption is vio-
lated, the optimal policy might depend on lagged variables
and any stationary policy can be sub-optimal. Thus, MA
forms the basis for us to select the set of state variables to
implement RL algorithms. The focus of this paper is to test
MA in sequential decision making problems.
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1.1. Contributions and Advances of Our Test

First, our test is useful in identifying the optimal policy in
high-order MDPs (HMDPs). Under HMDPs, the optimal
policy at time ¢ depends not only on the current covari-
ates S;, but also the past state-action pairs (S;—1, Ai—1),
ooy (St—ko+1, At—ro+1) for some ko > 1. In real-world
applications, it remains challenging to properly select the
look-back period xo. On one hand, ¢ shall be sufficiently
large to guarantee MA holds. On the other hand, including
too many lagged variables will result in a very noisy policy.
To determine ¢, we propose to construct the state by con-
catenating measurements taken at time points ¢, - - - ,t—k+1
and sequentially apply our test for k = 1,2,--- | until the
null hypothesis MA is not rejected. Then we use existing
RL algorithms based on the constructed state to estimate the
optimal policy. We apply such a procedure to both synthetic
and real datasets in Section 5.2. Results show that the esti-
mated policy based on our constructed states achieves the
largest value in almost all cases.

Second, our test is useful in detecting partially observable
MDPs (POMDPs). Suppose we concatenate measurements
over sufficiently many decision points and our test still re-
jects MA. Then we shall consider modelling the system
dynamics by POMDPs or other non-Markovian problems.
Applying RL algorithms designed for these settings has
been shown to outperform those for standard MDPs (see e.g.
Hausknecht & Stone, 2015). In Section 5.3, we illustrate
the usefulness of our test in detecting POMDPs.

Third, we propose a novel testing procedure to test MA. To
the best of our knowledge, this is the first work on devel-
oping valid statistical tests for MA in sequential decision
making. Major challenges arise when the state vector is
moderate or high-dimensional. This is certainly the case
as we convert the process into an MDP by concatenating
data over multiple decision points. Modern machine learn-
ing (ML) algorithms are well-suited for prediction tasks in
high dimensions. Yet, the large bias of the resulting esti-
mates makes statistical inference (e.g., hypothesis testing)
extremely difficult. The key ingredient of our test lies in
constructing a doubly robust estimating equation to allevi-
ate the biases. This ensures our test statistic has a tractable
limiting distribution even in high dimensions. Consequently,
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the proposed test well controls the type-I error rate (see
Theorem 3).

Lastly, our test is valid as either the number of trajectories
n or the number of decision points 7' in each trajectory
diverges to infinity. It can thus be applied to a variety of
sequential decision making problems ranging from the Fram-
ingham heart study (Tsao & Vasan, 2015) with over two
thousand trajectories to the OhioT1DM dataset (Marling &
Bunescu, 2018a) that contains eight weeks’ worth of data
for six trajectories. Our test can also be applied to appli-
cations from video games where both n and T' approach
infinity.

1.2. Related Work

There exists a huge literature on developing RL algorithms.
Some recent popular methods include fitted Q-iteration
(Riedmiller, 2005), deep Q-network (Mnih et al., 2015),
double Q-learning (Van Hasselt et al., 2016), asynchronous
advantage actor-critic (Mnih et al., 2016), etc. All the above
mentioned methods model the sequential decision making
problems by MDPs. When the Markov assumption is vio-
lated, the foundation of these algorithms is shaking hence
may lead to deterioration of their performance to different
degrees.

In the economics literature, Chen & Hong (2012) developed
a test for testing the Markov property of a multivariate time
series. Constructing their test statistic requires to estimate
the conditional characteristic function (CCF) of the current
measurements given those taken in the past. Chen & Hong
(2012) proposed to estimate the CCF based on local poly-
nomial regression (Stone, 1977). We note their method
cannot be directly used to test MA in MDP. Even though
we can extend their method to our setup, the resulting test
will perform poorly in moderate or high-dimensions, since
local polynomial fitting suffers from the curse of dimension-
ality. Naively replacing local polynomial fitting with ML
estimates will invalidate their test due to the large bias of
the estimator.

Our work is also related to the literature on conditional
independence testing (see e.g. Zhang et al., 2012; Su &
White, 2014; Wang et al., 2015; Huang et al., 2016; Wang
& Hong, 2018; Shah & Peters, 2018; Berrett et al., 2020;
Shi et al., 2020). However, all the above methods require
observations to be independent and are not suitable to our
settings where measurements are time dependent.

1.3. Organization of the Paper

The rest of the paper is organized as follows. In Section
2, we introduce the MDP, HMDP and POMDP models,
and establish the existence of the optimal stationary policy
under MA. In Section 3, we introduce our testing procedure

Model 1: MDP
Rt—l

RH—]

Model 3: POMDP

Figure 1. Causal diagrams for MDPs, HMDPs (second order) and
POMDPs. The solid lines represent the causal relationships and
the dashed lines indicate the information needed to implement the
optimal policy.

for MA and prove the validity of our test. In Section 4,
we introduce a forward procedure based on our test for
model selection. Empirical studies are presented in Section
5. Finally, we conclude our paper in Section 6.

2. Model Setup

2.1. MDP and Existence of the Optimal Stationary
Policy

Consider a single trajectory {(S:, A¢, Rt)}t>0 where
(St, Ag, R;) denotes the state-action-reward triplet col-
lected at time t. For any integer ¢ > 0, let S, =
(So, Ag, S1, A1, -+ ,S;)T denote the state and action his-
tory. Similarly define R; = (R, Ry, -, R;) . For sim-
plicity, we assume the action set .A is finite and the rewards
are uniformly bounded. In MDPs, it is typically assumed
that the following Markov assumption holds,

]P)(StJrl € S,Rt (S R|At,‘§t,Rt) = P(S,R, At,St),
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for some Markov transition kernel P and any S C S, R C
R, t > 0 where S € RP denotes the state space.

A history-dependent policy m is a sequence of decision
rules {m; };>0 where each 7, maps S; to a probability mass
function 7;(-|S;) on .A. When there exists some function 7*
such that 7;(-|S;) = 7*(+|S;) for any ¢ > 0 almost surely,
we refer to 7 as a stationary policy.

For a given discounted factor 0 < v < 1, the objective of RL
is to learn an optimal policy m = {m, };>0 that maximizes
the value function

—+oo
V(mis) =Y A'E™ (RS, = s),

t=0

for any s € S, where the expectation E”* is taken by assum-
ing that the system follows 7;. Let HR and SR denote the
class of history-dependent and stationary policies, respec-
tively. The following lemma forms the basis of existing RL
algorithms.

Lemma 1 Under MA, there exists some 7°P* € SR such
that V (m°P'; s) = sup,cpg V (5 8) for any s € S.

Lemma 1 implies that under MA, it suffices to restrict at-
tention to stationary policies. This greatly simplifies the
estimating procedure of the optimal policy. When MA is
violated however, we need to focus on history-dependent
policies as they may yield larger value functions.

When the state space is discrete, Lemma 1 is implied by
Theorem 6.2.10 of Puterman (1994). For completeness,
we provide a proof in Section C.1 of the supplementary
article assuming S belongs to a general vector space. In the
following, we introduce two variants of MDPs, including
HMDPs and POMDPs. These models are illustrated in
Figure 1.

2.2. HMDP

It can be seen from Figure 1 that HMDPs are very
similar to MDPs. The difference lies in that in
HMDPs, S;;+1 and R; depend not only on (S, A;), but
(St—1,A¢-1),+ , (St—ro+1, At—ro+1) for some integer
ko > 1 as well. Formally, we have

P(St+1 S S, R; € RlAt7 S'ta Rt)
:'P(S, R; {Aj}t7m0<j§t7 {Sj}tfno<j§t)7

for some P, kg and any S C S, R C R, t > kg. For any
integer k > 0, define a new state variable

T T
7St+k:—l) .

Let A;(k) = Ayyx—1 and Ry(k) = Ryyp—1 forany ¢, k. It
follows from (1) that the new process formed by the triplets
(St(lio), At(lio), Rt(ﬁo))tzo satisfies MA.

(D

St(k) = (StTaAhS;-hAt-‘rla e

Similar to Lemma 1, there exists an optimal stationary policy
that depends on S; only through S;(kg). This suggests
that in HMDPs, identification of the optimal policy relies
on correct specification of the look-back period xg. To
determine kg, we can sequentially test whether the triplets
{(Se(k), Ar(k), Ri(k))}e>o satisfy MA for k = 1,2, -+,
until the null of MA is not rejected.

2.3. POMDP

The POMDP model can be described as follows. At time
t—1, suppose the environment is in some hidden state H;_.
The hidden variables { H; };>¢ are unobserved. Suppose the
agent chooses an action A;_;. Similar to MDPs, this will
cause the environment to transition to a new state H; at
time ¢. At the same time, the agent receives an observation
S; € S and a reward R; that depend on H; and A; 1. The
goal is to estimate an optimal policy based on the observed
state-action pairs.

The observations in POMDPs do not satisfy the Markov
property. To better illustrate this, consider the causal dia-
gram for POMDP depicted in Figure 1. The path S;_;
H, - H — H;1 1 — Siy1 connects Sy and S
without traversing Sy and A;. As a result, S;y1 and Sy
are not d-separated (see the definition of d-separation on
Page 16, Pearl, 2000) given S; and A;. Under the faithful-
ness assumption (see e.g. Kalisch & Biithlmann, 2007), S;_1
and S;,, are mutually dependent conditional on Sy and A;.
Similarly, we can show Sy and S;_; are mutually depen-
dent conditional on {(S;, A;)}+<j<t+x forany k > 1. Asa
result, the Markov assumption will not hold no matter how
many past measurements the state variable includes. This
suggests in POMDPs, the optimal policy could be history
dependent.

3. Testing the Markov Assumption
3.1. A CCF-based Characterization of MA

We introduce our testing procedure in this section. To moti-
vate our test, we begin by presenting an equivalent charac-
terization of MA based on the notion of CCF. For simplicity,
suppose R; is a deterministic function of Sy 1, A; and S;.
This condition automatically holds if we include R; in the
set of state variables S;;1. It is also satisfied in our real
dataset (see Section 5.2.1 for details). Under this condition,
MA is equivalent to the following,

P(Sprl S S|At, St) = P(S, At, St)7 (2)

forany S C S and ¢ > 0. The observed data consists
of n trajectories. Specifically, let {(.S;+, Ai+, Rit) bo<i<T
be the data from the i-th trajectory where T is the ter-
mination time. We assume {(S1:, A1, Rit)}o<i<r,

<y {(Snts Ants Rnt) fo<i<r are iid.  copies of
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{(St, A¢, Ri) Yo<i<r. Given the observed data, we focus
on testing the following pair of hypotheses:

Hy: The system is a MDP, i.e, (2) holds v.s
H;: The system is a HMDP or POMDP.

The Markov property is closely related to the notion of
conditional independence. Informally speaking, it implies
that the past and future states are independent conditional
on the present. To be more specific, for any random vectors
Zy1, Zs, Z3, we use the notation Z; L Z5|Zs to indicate
that Z; and Z5 are independent conditional on Z3. To test
Hy, it suffices to test the following assumptions:

Strgr1 L (Se—1, A1) {(S), Aj) be<j<tras 3)

forany ¢ > O and ¢ > 0.
Next, we present an equivalent presentation for conditional

independence based on CCFE.

Lemma 2 For any 71,7 and Zs, 7y L Z5|Zs if
and only if Elexp(in] 2:)|25VE{exp(ip] )| Zs} =
E{exp(ip] Z1 +ipug Z2)| Z3} for any py, po almost surely.

For any ¢, let X; = (5,7, A;) T denote the state-action pair.
For any p € RP, define the CCF of S;;; given X; by
ot (plz) = E{exp(in' Si41)| Xy = z}. Based on Lemma
2, we present an equivalent representation for (3) below.

Theorem 1 (3) is equivalent to the following: for anyt > 0,
q>0,p€RP, veRPHL

Prrq (1 Xirq) Elexp(iv T Xo_1) [{X; }i<j<irq]
= Elexp(ipt" Sepqir + v X)) { X h<j<etql-

Under Hj, there exists some * such that ¢, = ¢* for
any t. Take another expectation on both sides of the above
equation, we obtain

E{exp(ip” Seiq11) — " (1l Xerq) } exp(iv’ Xi1) = 0,

for any ¢, q, u,v. This motivates us to consider the test
statistic based on

n T—q—1
1

_ exp(ip’ S;
n(T—q—l); tz:; { p( K ,t+q+1)

—P(u Xj4q)} x {expliv' Xj—1) — @)},

4)

where © denotes some estimator for ¢* and @g(v) =
n~HT+1)7! 2 1<j<n,0<t<T exp(iv" X ;1)

Modern machine learning (ML) algorithms are well-suited
to estimating ¢* in moderate or high-dimensional cases.
However, naively plugging ML estimators for ¢ will cause
a heavy bias in (4). Because of that, the resulting estimating

equation does not have a tractable limiting distribution. Ker-
nel smoothers (Hérdle, 1990) or local polynomial regression
can be used to reduce the estimation bias by properly choos-
ing the bandwidth parameter. However, as commented in
Section 1.2, these methods suffer from the curse of dimen-
sionality and will perform poorly in cases as we concatenate
data over multiple decision points.

In the next section, we address these concerns by present-
ing a doubly-robust estimating equation to alleviate the
estimation bias. When observations are time independent,
our method shares similar spirits with the double machine
learning method proposed by Chernozhukov et al. (2018)
for statistical inference of the average treatment effects in
causal inference.

3.2. Forward-Backward Learning
We begin by introducing the following conditions.

(C1) Actions are generated by a fixed behavior policy.
(C2) Suppose the process {.S; };>o is strictly stationary.

Condition (C1) requires the agent to select actions based on
information contained in the current state variable only. It
is commonly assumed in the literature on off-policy policy
evaluation (see e.g., Jiang & Li, 2016). Under Hy, the pro-
cess { X }+>o forms a time-invariant Markov chain. When
its initial distribution equals its stationary distribution, (C2)
is automatically satisfied. This together with (C1) implies
{X}t>0 is strictly stationary as well.

Define another CCF of X;_; given X; by
Ye(v|x) = E{exp(inXt_lﬂXt =z}.

Under stationarity, we have ¢, = ¥* for some 1* and
any ¢t > 0. The following theorem forms the basis of our
procedure.

Theorem 2 Suppose Hy, (C1) and (C2) hold. Then for any
t>0,¢>0 uc€RP,vecRPY we have

ETo(q, pt, v) = Efexp(ip | Seqi1) — ¢ (1| Xi1q)}
x{exp(iv' X;—1) — ¢*(v|X,)} = 0.

Moreover, the above equation is doubly-robust. That is, for
any CCFs ¢ and ), the following holds as long as either

© =" ory =1y~

E{exp(ip Siyqr1) — o1 Xi1q)}

5
x{exp(inXt_l) — Y| Xy} =0. ©)

Proof: When ¢ = ©*, we have

Elexp(ip' Sirqr1) — @ (1l Xe4q) {X; }i<t4q) = 0,
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under MA. Assertion (5) thus follows. Under (C1), we have
Xio1 L {X;}jse| Xy for any t > 1. When ¢ = ¢*, we
can similarly show that

Elexp(iv' Xi—1) — " (v| X)) [{X;}j5¢] = 0

The doubly-robustness property thus follows.

The proposed algorithm estimates both ¢* and ¥* using
ML methods without specifying their parametric forms. Let
@ and 12 denote the corresponding estimators. Note that
computing ¢* is essentially estimating the characteristic
function of Sy given X;_;. This corresponds to a forward
prediction task. Similarly, estimating ¢)* is a backward pre-
diction task. Thus, we refer to ¢ and 1Z as forward and
backward learners, respectively. Our proposed method is
referred to as the forward-backward learning algorithm.
It is worth mentioning that although we focus on the prob-
lem of testing MA in this paper, the proposed method can be
applied to more general estimation and inference problems
with time-dependent observations.

The following estimating equation corresponds to an esti-
mate of T'g(q, p, V),

n T—q—1

mz > {exp(in Sjirqrn)

j=1 t=1

~ Bl X erq) Hexp(iv T Xj 1) — (V] X))
Unlike (4), the above estimating equation is doubly robust.
As such, (6) is consistent when either the bias of  or 12)\ is
negligible. In addition, its bias decays to zero at a faster rate
than that of @ and {b\ (see Appendix C.3.1 for details). In
contrast, the bias of (4) will be of the same order as that of
@. As such, the test based on (6) requires a much weaker

and practically more feasible condition on the ML estimates
(see Condition (C4) for details).

(6)

Our test statistic is constructed based on a slightly modified
version of (6) with cross-fitting. The use of cross-fitting
allows us to establish the limiting distribution of the estimat-
ing equation under minimal conditions.

Suppose we have at least two trajectories, i.e, n > 2.
We begin by randomly dividing {1,---,n} into L sub-
sets Z(W ... TM) of equal size. Denote by Z(— =
{1, ,n}—ZWOWfort =1,--- L. Let (=9 and 72(7@)
denote the forward and backward learners based on the data
in Z(=9)_ For any p, v, g, define

T—q—1

q—lz Z Z {exp(ip Sjt+q+1)

=1 ez t=1
~ B0 (] X0 Hexp(iv T Xjum1) = 000 (v] X))

Notice that Tisa complex-valued function. We use r r and
I'; to denote its real and imaginary part.

(g, p,v) =

Algorithm 1 Forward-Backward Learning

Input: B, @, L, a and the observed data.

Step 1: Randomly generate i.i.d. pairs {(us, ) b1<b<B
from N (0, I); Randomly divide {1, ,n} into | J, Z("
for¢=1,--- ,L,setZ9 = {1,.-- ,n} — 7.

Step 2: Compute the forward and backward learners

(1/0\(_2) (Qa b ) and 72(_[) (qa Vp, ) for q= 07 e 7Q7 b=
1,---, B based on modern ML methods.
Step 3: Compute I'(q, pup,vp) for g = 0,---,Q, b =

, B; Compute S according to (7).
Step 4 Forg=0,---,Q, compute an estimated covari-
ance matrix %(?) accordmg to (A.1) (see Appendix A.1
of the supplementary article for details).
Step 5: Use Monte Carlo to simulate the upper «/2-th
critical value of max,co,.... 0} ||{E J}1/2Z,4)| o0 where
ZLy,--- ,Lq are iid. 2B- dimensional random vectors
with identity covariance matrix. Denote this critical value
by Cq.-
Reject Hy if Sis greater than ¢,,.

To implement our test, we randomly sample i.i.d. pairs
{(4v> ¥») }1<b< B according to a multivariate normal distri-
bution with zero mean and identity covariance matrix, where
B is allowed to diverge with the number of observations.
Let ) be some large integer that is allowed to be proportion
to T' (see the condition in Theorem 3 below for detalls) We
calculate I‘R(q, b, V) and I‘I(q, Wy, vp) forb=1,--- B,
qg=20,---,Q. Under Hy, I‘R(q,ub,yb) and Fl(q,ub,yb)
are close to zero. Thus, we reject Hy when one of these
quantities has large absolute value. Our test statistic is given
by
§ = max max

be{l,--,B} qe{0,,Q}

max(|Cr (g, 2o, )], [T1 (g 2 1))

n(T —q—1)x
)

Under H, each fR(q, Ly, Vp) (OT fl(q, by Vp)) 18 asymp-
totically normal. As a result, S converges in distribution to a
maximum of some Gaussian random variables. For a given
significance level @ > 0, we reject Hy when S > ¢, for
some threshold ¢, computed by wild bootstrap (Wu, 1986).
We detail our procedure in Algorithm 1.

Step 2 of our algorithm requires to estimate P~ (1)
and @(*f)(yb” for b = 1,---,B. The integer B shall
be large enough to guarantee that our test has good power
properties. Our method allows B to grow at an arbitrary
polynomial order of n x T (see the condition in Theorem 3
below for details). Separately applying ML algorithms B
times to compute these leaners is computationally intensive.
In Section 5.1, we use the random forests (Breiman, 2001)
algorithm as an example to illustrate how these leaners can
be simultaneously calculated. Other ML algorithms could
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also be used.

3.3. Bidirectional Asymptotics

In this section, we prove the validity of our test under a
bidirectional-asymptotic framework where either n or T’
grows to infinity. We begin by introducing some conditions.

(C3) Under Hy, suppose the Markov chain { X, }+>¢ is geo-
metrically ergodic when T" — co.
(C4) Suppose there exists some c¢g > 1/2 such that

1<b<B

1<b<B

where [ denotes the distribution function of Xg. In addition,
suppose 3 and ¥~ are bounded functions.

Condition (C3) enables us to establish the limiting distri-
bution of our test under the setting where 7' — co. Notice
that this condition is not needed when 7" is bounded. The
geometric ergodicity assumption (see e.g. Tierney, 1994, for
definition) is weaker than the uniform ergodicity condition
imposed in the existing reinforcement learning literature
(see e.g. Bhandari et al., 2018; Zou et al., 2019). There exist
Markov chains that are not uniformly ergodic but may still
be geometrically ergodic (Mengersen & Tweedie, 1996).

The first part of Condition (C4) requires the prediction errors
of estimated CCFs to satisfy certain uniform convergence
rates. This is the key condition to ensure valid control of
the type-I error rate of our test. In practice, the capacity of
modern ML algorithms and their success in prediction tasks
even in high-dimensional samples make this a reasonable
assumption. In theory, the uniform convergence rates in (C4)
can be derived for popular ML methods such as random
forests (Biau, 2012) and deep neural networks (Schmidt-
Hieber, 2020). The boundedness assumption in (C4) is
reasonable since ¢* and " are bounded by 1.

Theorem 3 Assume (CI)-(C4) hold. Suppose log B =
O((nT)¢") for any finite ¢* > 0 and Q < max(poT, T —2)
for some constant py < 1. In addition, suppose there ex-
ists some €y > 0 such that the real and imaginary part
of To(q, 1, v) have variances greater than € for any u,v
and q € {0,--- ,Q}. Then we have as either n — oo or
T — 00, P(§ > 4) = o + o(1).

Theorem 3 implies the type-I error rate of our test is well-
controlled. Our proof relies on the high-dimensional mar-
tingale central limit theorem that is recently developed by
Belloni & Oliveira (2018). This enables us to ShO\/)\V the
asymptotic equivalence between the distribution of .S and
that of the bootstrap samples given the data, under settings
where B diverges with n and 7. It is worthwhile to mention

max /I@(*@(m)\l‘) = @™ (|)’F(dzx) = Op((nT) ™),

max /W’”(Vb\x) =" () *F(dz) = Op((nT) ™),

that the stationarity condition in (C2) is imposed to simplify
the presentation. Our test remains valid when (C2) is vio-
lated. To save space, we move the related discussions to
Appendix A.2 of the supplementary article.

4. Model Selection

Algorithm 2 RL Model Selection

Input: B, Q, L, a, K and the observed data.
fork=1,2,--- K do
Apply algorithm 1 with B, @, L, « specified above to

if Hy is not rejected then
Conclude the system is a k-th order MDP; Break.
end if
end for
Conclude the system is most likely a POMDP.

Based on our test, we can choose which RL model to use to
model the system dynamics. For any j, k, ¢, let

_ T T T T
Sj,t(k) = (Sj7t7 Aj,t’ Sj,t+1’ Aj,t-‘rl’ e 7Sj7t+k71) )

and A; (k) = Ajr. Given a large integer K, our pro-
cedure sequentially tests the null hypothesis MA based on
for k = 1,--- , K. Once the null is not rejected, we can
conclude the system is a k-th order MDP and terminate
our procedure. Otherwise, we conclude the system is most
likely a POMDP. We summarize our method in Algorithm
2.

5. Numerical Examples

This section is organized as follows. We discuss some
implementation details in Section 5.1. In Section 5.2, we
apply our test to mobile health applications. We use both
synthetic and real datasets to demonstrate the usefulness of
our test in detecting HMDPs. In Section 5.3, we apply our
test to a POMDP problem to illustrate its consistency.

5.1. Implementation Details

We first describe the algorithm we use to simultaneously
compute {P(~9 (up|-)}1<p< 5. The algorithm for comput-
ing backward learners can be similarly derived. Our method
is motivated by the quantile regression forest algorithm
(Meinshausen, 2006). We detail our procedure below.

1. Apply the random forests algorithm with the response-
predictor pairs { (S, Xjt—1)}jez-0 1<i<7 tO grow
M trees T(0,,) form = 1,..., M. Here 6,, denotes
the parameters associated with the m-th tree. Denote
by {(x, 8,,) the leaf space of the m-th tree that predic-
tor z falls into.
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2. Forany m € {1,--- T}, (4,t) € Z(-9 and z, com-

pute the weight w§;€) (z,0,,) as

]I{Xj7t € Z(QZ, Gm)}
#{(l13l2) : ll S I(_é)7Xll,l2 S l(xaa’rn)}'

Average over all trees to calculate the weight of each

training data as wﬁt[) (x) = Zﬁf:l wj(-;e) (2,0m)/M.
3. For any « and b € {1,...,B}, compute the for-
ward learner (=9 (uy|x) as the weighted average

—¢ .
ZjeI(*D,lgtST wj(',t )(37) eXP(WbTSj,t)~

When the above random forests algorithm is applied to com-
pute the forward and backward learners, the computational
complexity of Algorithm 1 is dominated by

O(N?Q(B + M) + p*Nlog?(N)LMQ? + Naye B?Q).

Here N = nT is the total number of observations, M is the
number of trees, p* is the dimension of the state-action pair
and Njsc is the number of Monte Carlo samples generated
in Step 5 of Algorithm 1. Such a result is derived based on
the existing literature on random forests.

To implement this algorithm, the number of trees M is set
to 100 and other tuning parameters are selected via 5-fold
cross-validation. To construct our test, the hyperparameters
B, @ and L are fixed as 100, 8 and 3 respectively. All state
variables are normalized to have unit sampling variance
before running the test. Normalization will not affect the
Type I error rate of our test but helps improve its power.
Our experiments are run on an c5d.24xlarge instance on the
AWS EC2 platform, with 96 cores and 192GB RAM. It takes
roughly 15 hours to complete all numerical experiments .

5.2. Applications in HMDP Problems
5.2.1. THE OHIOT1DM DATASET

There has been increasing interest in applying RL algorithms
to mobile health (mHealth) applications. In this section, we
use the OhioT1DM dataset (Marling & Bunescu, 2018b) as
an example to illustrate the usefulness of our test in mHealth
applications. The data contains continuous measurements
for six patients with type 1 diabetes over eight weeks. In
order to apply RL algorithms, it is crucial to determine how
many lagged variables we should include to construct the
state vector.

In our experiment, we divide each day of follow-up into
one hour intervals and a treatment decision is made every
hour. We consider three important time-varying variables
to construct .Sy, including the average blood glucose levels

'Code available at
RunzheStat/TestMDP

https://github.com/

G during the one hour interval (¢ — 1, t], the carbohydrate
estimate for the meal C; during (¢ — 1,¢] and Ex; which
measures exercise intensity during (¢ — 1,¢]. At time ¢, we
define A; by discretizing the amount of insulin In; injected
and define R; according to the Index of Glycemic Control
(Rodbard, 2009) that is a deterministic function G¢41. To
save space, we present detailed definitions of A; and R; in
Appendix B.1 of the supplementary article.

5.2.2. SYNTHETIC DATA

We first simulate patients with type I diabetes to mimic the
OhioT1DM dataset. According to our findings in Section
5.2.3, we model this sequential decision problem by a fourth
order MDP. Specifically, we consider the following model
for Gy:

4
Gt =+ Z(,@?St_i + CiAt—i) + Et7
=1

where o, {3;}%_, and {¢;}1_, are computed by least-square
estimation based on the OhioT1DM dataset. The error term
E, is set to follow N (0, 9).

At each time point, a patient randomly chooses to consume
food with probability p; and take physical activity with prob-
ability p2, where the amounts and intensities are indepen-
dently generated from normal distributions. The initial value
Gy is also randomly sampled from a normal distribution.
Actions are independently generated from a multinoulli dis-
tribution. Parameters p1, p2 as well as other parameters in
the above distributions are all estimated from the data.

For each simulation, we generate n = 10, 15 or 20 trajec-
tories according to the above model. For each trajectory,
we generate measurements with 7" = 1344 time points (8
weeks) after an initial burn-in period of 10 time points. For
k€ {1,...,10}, we use our test to determine whether the
system is a k-th order MDP. Under our generative model,
we have H( holds when k£ > 4 and H; holds otherwise.

Empirical rejection rates of our test with different combi-
nations of k, n and the significance level « are reported in
Figure 2. Results are aggregated over 500 simulations. It
can be seen that the Type I error rate of our test is close to
the nominal level in almost all cases. In addition, its power
increases with n, demonstrating the consistency of our test.

To further illustrate the usefulness of our test, we apply
Algorithm 2 with @ = 0.01, K = 10 for model selec-
tion and evaluate the policy learned based on the selected
model. Specifically, let Eél) denote the order of MDP es-
timated by Algorithm 2 in the [-th simulation. For each
ke {1,---,10}, we apply the fitted-Q iteration algorithm
(Ernst et al., 2005, see Section B.2 for details) to the data

SJSIVLUSLS

the [-th simulation to learn an optimal policy 7" (k) and
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Table 1. Policy evaluation results for the OhioT1DM dataset.

k 1 2 3 4 5 6 7 8 9 10
Estimated value Vj, | -90.82 | -57.53 | -63.77 | -52.57 | -56.23 | -60.05 | -63.70 | -54.85 | -65.08 | -59.59
10- 1.0 e order MDP. To apply Algorithm 2 for model selection, we
i Zz set a« = 0.01. Our algorithm stops after the fourth iteration.
é 07- 07- : N The first four p-values are 0, 0, 0.001 and 0.068, respectively.
g o 051 | 10 Thus, we conclude the system is a 4-th order MDP.
2 05 0. 5-A|ternat|vei Null - 15
g’?z‘;i Z‘; 20 Next, we use cross-validation to evaluate our selected model.
02- 02 _ Specifically, we split the six trajectories into training and
1 0:1- e, testing sets, with each containing three trajectories. This

BT AV B R S iz‘é'iékéfééfo

Figure 2. Empirical rejection rates aggregated over 500 simulations
with different combinations of o, n and k. & = (0.05,0.1) from
left plot to right plot. When k < 4, the alternative hypothesis
holds, the empirical rejection rates correspond to the power of the
test. When k£ > 4, the null holds, the empirical rejection rates

corresponds to the type-I error rate.
1

o
1
'
'
'
'

- 10
- 15
- 20

mean value relative to the selected k
&

i 2 3 4 5 6 7 8 9 10
Figure 3. Value differences with different combinations of k£ and
n.

then simulate 100 trajectories following 7(!) (k) to compute
the average discounted reward V()(k) (see Section B.2
of the supplementary article for details). Finally, for each
k=1,---,10, we compute the value difference

500
1 ~
VD(k) = 55 > AV (k) - VO R},
=1

to compare the policy learned based on our selected model
with those by assuming the system is a k-th order MDP. We
report these value differences with different choices of n
in Figure 3. It can be seen that VD(k) is smaller than or
close to zero in almost all cases. When £ = 4, the value
differences are very close to zero for large n. This suggests
that our method is useful in identifying the optimal policy
in HMDPs.

5.2.3. REAL DATA ANALYSIS

The lengths of trajectories in the OhioT1DM dataset range
from 1119 to 1288. To implement our test, we set 7' = 1100
and apply Algorithm 1 to test whether the system is a k-th

yields a total of L = () = 20 combinations. Then for each
combination and k € {1,---,10}, we apply FQI to learn
an optimal policy based on the training dataset by assuming
the system is a k-th order MDP and apply the Fitted Q eval-
uation algorithm (Le et al., 2019) on the testing dataset to
evaluate its value (see Section B.3 of the supplementary ma-
terial for details). Finally, we aggregated these values over
different combinations and report them in Table 1. It can
be seen that the policy learned based on our selected model
achieves the largest value. In addition, the gain of value
under the 4-th order MDP model is significant compared to
most other models (see Appendix B.4 for more details).

5.3. Applications in POMDP Problems

We apply our test to the Tiger problem (Cassandra et al.,
1994). The model is defined as follows: at the initial time
point, a tiger is randomly placed behind either the left or
the right door with equal probability. At each time point,
the agent can select from one of the following three actions:
(1) open the left door; (ii) open the right; (iii) listen for
tiger noises. But listening is not entirely accurate. If the
agent chooses to listen, it will receive an observation .S; that
corresponds to the estimated location of the tiger. Let H;
denote the observed correct location of the tiger, we have
P(H; = S;) = 0.7 and P(H; # S;) = 0.3. If the agent
chooses to open one of two doors, it receives a penalty of
-100 if the tiger is behind that door or a reward R; of +10
otherwise. The game is then terminated.

We set T to 20. To generate the data, the behaviour pol-
icy is set to listening at time points t = 0,1,2,--- ;T — 1
and randomly choosing a door to open with equal proba-
bility at time 7'. For each simulation, we generate a total
of n trajectories and then apply Algorithm 1 to the data
{(S5,6(k), Aj () h<jeno<e<r—pr for k = 1,....10.
The empirical rejection rates with n = 50, 100 and 200 and
the significance level o = 0.05 and 0.1 are reported in the
top plots of Figure 4. It can be seen that our test has non-
negligible powers for detecting POMDPs. Take o = 0.1 as
an example. The rejection rate is well above 50% in almost
all cases. Moreover, the power of our test increases as either
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N increases or k decreases, as expected.

To evaluate the validity our test in this setting, we define
a new state vector S; = (S;, H;) " and repeat the above
experiment with this new state. Since the hidden variable is
included in the state vector, the Markov property is satisfied.
The empirical rejection rates with different combinations of
n, « and k are reported in the bottom plots of Figure 4. It
can be seen that the Type I error rates are well-controlled in
almost all cases.

o
3
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3
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200

Rejection rates
ttt =

o
N
]
o
N
&

0.00- 0.00

1234567 8910
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0.100-
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a
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Pttt =3

Rejection rates
2
g

0.025-

0.000- 0.050-

1723 4567 8 910

123 456 78 910

Figure 4. Empirical rejection rates aggregated over 500 simulations
with different combinations of c, K and n. a = (0.05,0.1) from
left plots to right plots. H holds in top plots. Hy holds in bottom
plots. Dashed lines correspond to y = o = 1.96MCE where MCE

denotes the Monte Carlo error /(1 — «)/500.

6. Discussion

In this paper, we propose a forward and backward learning
procedure for testing the goodness of fit of a MDP model.
Our test can be naturally coupled with existing state-of-the-
art RL algorithms to identify the optimal policy in sequen-
tial decision making. RL algorithms have made tremendous
achievements in video games, and have found extensive
applications in real-world problems including robotics (Kor-
mushev et al., 2013), bidding (Jin et al., 2018), ridesharing
(Xu et al., 2018), mobile health (Luckett et al., 2019), etc.
We show in our numerical studies that applying our method
can help improve the performance of existing RL algorithms
in mobile health applications. The proposed method has
extensive potential values in other real-world applications
as well.
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