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Computing a single test in Section 5.2 takes roughly 10 minutes. Computing a single test in Section 5.3 takes roughly 30
seconds. The runtime can be further reduced with parallelization.

A. Additional details regarding our test

A.1. The covariance estimator Σ̂(q)

For any ` = 1, · · · ,L, j ∈ I(`) and 0 < t < T − q, define vectors λR,q,j,t, λI,q,j,t ∈ RB such that the b-th element of
λR,q,j,t, λI,q,j,t correspond to the real and imaginary part of

{exp(iµ>Sj,t+q+1)− ϕ̂(−`)(µ|Xj,t+q)}{exp(iν>Xj,t−1)− ψ̂(−`)(ν|Xj,t)},

respectively. The matrix Σ̂(q) is defined by

L∑
`=1

∑
j∈I(`)

T−q−1∑
t=1

(λ>R,q,j,t, λ
>
I,q,j,t)

>(λ>R,q,j,t, λ
>
I,q,j,t)

n(T − q − 1)
. (A.1)

A.2. Validity of our test without the stationary assumption

When (C2) is violated, the relation ψ1 = ψ2 = · · · = ψT−1 might no longer hold. However, under (C1), (C3) and
H0, the marginal distribution function of Xt can be well-approximated by some F on average. As a result, ψt’s can be
well-approximated by some ψ∗ on average. Let Ft denote the distribution function of Xt. As long as the prediction error
satisfies

max
1≤b≤B

1

T

T∑
t=1

∫
x

|ψ̂(−`)(νb|x)− ψt(νb|x)|2Ft(dx) = Op((nT )−c0),

for some c0 > 1/2, our test remains valid.

B. More on the OhioT1DM dataset
B.1. Detailed definitions of actions and rewards

We define Ai,t as follows:

Ai,t =


0, Ini,t = 0;

m, 4m− 4 < Ini,t ≤ 4m (m = 1, 2, 3);

4, Ini,t > 12.

The Index of Glycemic Control is chosen as the immediate reward Ri,t, defined by
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Ri,t =


− 1

30 (80− Gi,t+1)2, Gi,t+1 < 80;

0, 80 ≤ Gi,t+1 ≤ 140;

− 1
30 (Gi,t+1 − 140)1.35, 140 ≤ Gi,t+1.

B.2. Detailed procedure for value evaluation in simulations

In Section 5.2, we compare the policies learned with the selected order κ̂0 and fixed orders k ∈ {1, · · · , 10}. Below, we
provide more details on computing the value V (l)(k).

1. In the l-th simulation, generate n trajectories {(Sj,t, Aj,t)}1≤j≤n,0≤t≤1344, and apply Algorithm 2 with α = 0.01 and
K = 10 to estimate an order κ̂(l)

0 . Also generate 100 trajectories of length 10 with the model described in Section 5.2,
denoted by {(Sej,t, Aej,t)}1≤j≤100,0≤t<10.

2. For k = 1, . . . , 10, apply FQI (see below) to the concatenated data {(Sj,t(k), Aj,t(k), Rj,t(k))}1≤j≤n,0≤t≤1344−k to
learn an optimal policy π̂(l)(k).

3. For each initial trajectory {(Sej,t, Aej,t)}0≤t<10, generate the data {(Sej,t, Aej,t, Rej,t)}10≤t<60 following π̂(l)(k). Com-
pute the value V (l)(k) by

V (l)(k) =
1

100

100∑
j=1

50∑
t=10

γt−10Rej,t,

with γ = 0.9.

Algorithm 1 Fitted-Q iteration

0: Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, function class F , decay rate γ, action space A
0: Randomly pick Q0 ∈ F
0: For k = 1, . . . ,K:
0: Update target values Zj,t = Rj,t + γmaxa∈AQk−1(Sj,t+1, a) for all (j, t);
0: Solve a regression problem to update the Q-function:

Qk = arg minQ∈F
1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

0: Output: The estimated optimal policy π̂(·) = arg maxa∈AQK(·, a)

In our experiment,we use random forests to estimate the Q function during each iteration. The number of trees are set as 100
and the other hyperparameters are selected by 5-fold cross-validation. The decay rate γ is set to 0.9.

B.3. Detailed procedure for value evaluation in real data analysis

In Section 5.2, we compare policies learned by assuming the data follows a k-th order MDP for k ∈ {1, · · · , 10}. The
policies are estimated by FQI. To evaluate the values of these policies based on the real dataset, we apply the Fitted-Q
evaluation (FQE) algorithm. Similar to FQI, it is an iterative algorithm based on the Bellman equation. We recap the steps
below.

Algorithm 2 Fitted-Q evaluation

0: Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, policy π, function class F , decay rate γ
0: Randomly pick Q0 ∈ F
0: For k = 1, . . . ,K
0: Update target values Zj,t = Rj,t + γQk−1(Sj,t+1, π(Sj,t+1)) for all (j, t);
0: Solve a regression problem to update the Q-function:

Qk = arg minQ∈F
1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

0: Output: The estimated value V̂ (·) = QK(·, π(·))
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Denote the trajectories for the six patients in the OhioT1DM dataset by {(Si,t, Ai,t)}1≤i≤6,1≤t≤1100, and let the index set
I = {1, 2, 3, 4, 5, 6}. We now describe the evaluation procedure in more details:

1. In l = 1, . . . , 20, divide I into a training set D(l)
1 and an validation set D(l)

2 = (D(l)
1 )c with |D(l)

1 | = |D
(l)
2 | = 3.

2. For each l ∈ {1, . . . , 20}, k ∈ {1, . . . , 10}, apply FQI to the data {(Sj,t(k), Aj,t(k), Rj,t(k))}
j∈D(l)

1 ,0≤t≤1100−k+1
to

learn an optimal policy π̂(l)(k).

3. For each l ∈ {1, . . . , 20}, k ∈ {1, . . . , 10}, apply FQE to the data {(Sj,t(k), Aj,t(k), Rj,t(k))}
j∈D(l)

2 ,0≤t≤1100−k+1

to estimate the state-value function of π̂(l)(k), denoted by V̂ (l)
k (·). Generate 100 trajectories of length 10 according to

the simulation model in Section 5.2. Denote them by {(Sej,t, Aej,t)}1≤j≤100,0≤t<10. Calculate the value under π̂(l)(k)
by

V (l)(k) =
1

100

100∑
j=1

V̂
(l)
k (Sej,(10−k)(k)).

4. Average over the 20 splits to compute the average value for each k by V (k) =
∑20
l=1 V

(l)(k)/20.

For both FQI and FQE, we use random forests to estimate the regression function. The number of trees are set to 75 and the
other hyperparameters are selected by 5-fold cross-validation. We set γ = 0.9 in our experiments.

B.4. More on the estimated values in real data analysis

We report the value difference between the 4-order MDP model and models with other orders and their associated standard
errors in the following table. The standard errors are calculated according to the sample variance estimator of values obtained
from 20 different combinations. Using a one-sided Z-test,we find that the gain of the value under the 4-order MDP model is
not significant compared to model with 5-th or 8-th order. However, it is significant compared to all other models under the
0.1 significance level.

Table 1. Value difference for the OhioT1DM dataset.
k 1 2 3 5 6 7 8 9 10
Value difference -38.25 -4.96 -11.20 -3.66 -7.48 -11.13 -2.28 -12.51 -7.02
Standard error 4.65 3.17 6.89 2.88 2.7 4.33 1.86 3.05 2.54

C. Technical proofs
C.1. Proof of Lemma 1

Consider a policy π = {πt}t≥0 ∈ HR. Suppose there exists some {π∗t }t≥0 such that πt(·|S̄t) = π∗t (·|St) almost surely
for any t ≥ 0. We refer to such a policy π as a Markov policy. In addition, π is a deterministic policy if and only if
πt(a|S̄t) ∈ {0, 1} almost surely for any t ≥ 0 and a ∈ A. Let MR denotes the set of Markov policies and SD denote the set
of deterministic stationary policies, we have SD ⊆ SR ⊆ MR ⊆ HR. In the following, we focus on proving

sup
π∈HR

V (π; s) = sup
π∈SD

V (π; s), ∀s ∈ S.

Since SD ⊆ SR, the assertion in Lemma 1 is thus satisfied.

We begin by providing an outline of the proof. Our proof is divided into three steps. In the first step, we show

sup
π∈HR

V (π; s) = sup
π∈MR

V (π; s), ∀s ∈ S.

To prove this, we show in Section C.1.1 that for any such π ∈ HR and any s, there exists a Markov policy π∗ = {π∗t }t≥0

where each π∗t depends on St only such that

Pπ(At = a, St ∈ S|S0 = s) = Pπ
∗
(At = a, St ∈ S|S0 = s), (C.1)
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for any t ≥ 0, a ∈ A, S ⊆ S and s ∈ S where the probabilities Pπ and Pπ∗ are taken by assuming the system dynamics
follow π and π∗, respectively. Under MA, we have

Eπ(R0,t|S0 = s) = Eπ{Eπ(R0,t|At, St, S0 = s)|S0 = x} = Eπ{r(At, St)|S0 = x},

for some function r. This together with (C.1) yields that

Eπ(R0,t|S0 = s) = Eπ
∗
(Y0,t|S0 = s), ∀t ≥ 0,

and hence V (π; s) = V (π∗; s). This completes the proof for the first step.

With a slight abuse of notation, for any π ∈ SD, we denote by π(s) the action that the agent chooses according to π, given
that the current state equals s. In the second step, we show for any bounded function ν(·) on S that satisfies the optimal
Bellman equation

ν(s) = sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}
, ∀s ∈ S,

it satisfies

ν(s) = sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (C.2)

The proof of (C.2) is given in Section C.1.2.

For any function ν, define the norm ‖ν‖∞ = sups∈S |ν(s)|. We have for any ν1 and ν2 that

sup
x

∣∣∣∣ sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν1(s′)P(ds′;π(s), s)

}
− sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν2(s′)P(ds′;π(s), s)

}∣∣∣∣
≤ γ sup

π∈SD
sup
s∈S

∣∣∣∣∫
s′
ν1(s′)P(ds′;π(s), s)−

∫
s′
ν2(s′)P(ds′;π(s), s)

∣∣∣∣
≤ γ sup

π∈SD
sup
s∈S

∣∣∣∣∫
s′
‖ν1 − ν2‖∞P(ds′;π(s), s)

∣∣∣∣ ≤ γ‖ν1 − ν2‖∞.

By Banach’s fix point theorem, there exists a unique value function ν0 that satisfies the optimal Bellman equation. Combining
this together with the results obtained in the first two steps, we obtain that ν0 satisfies ν0(s) = supπ∈HR V (π; s) for any
s ∈ S. The proof is thus completed if we can show there exists a deterministic stationary policy π∗∗ that satisfies

ν0(s) = V (π∗∗; s), ∀s ∈ S. (C.3)

We put the proof of (C.3) in Section C.1.3.

C.1.1. PROOF OF (C.1)

Apparently, (C.1) holds with t = 0. Suppose (C.1) holds for t = k. We now show (C.1) holds for t = k+ 1. Under MA, we
have

Pπ(Sk+1 ∈ S|S0 = s) = Eπ{Pπ(St+1 ∈ S|At, St, S0 = s)|S0 = x}

= Eπ{P(S;At, St)|S0 = x} = Eπ
∗
{P(S;At, St)|S0 = x} = Pπ

∗
(Sk+1 ∈ S|S0 = s)

∆
= Gk+1(S; s).

Set π∗k+1 to be the decision rule that satisfies

Pπ(Ak+1 = a|Sk+1, S0 = s) = Pπ
∗
k+1(Ak+1 = a|Sk+1), ∀a ∈ A,

it follows that

Pπ(Ak+1 = a, Sk+1 ∈ S|S0 = s) =

∫
s′
Pπ(Ak+1 = a|Sk+1 = s′, S0 = s)Gk+1(ds′; s)

=

∫
s′
Pπ
∗
(Ak+1 = a|Sk+1 = s′, S0 = s)Gk+1(ds′; s) = Pπ

∗
(Ak+1 = a, Sk+1 ∈ S|S0 = s).

Thus, (C.1) holds for t = k + 1 as well. The proof is hence completed.
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C.1.2. PROOF OF (C.2)

We first show for any bounded function ν that satisfies

ν(s) ≥ sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}
, ∀s ∈ S, (C.4)

we have

ν(s) ≥ sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (C.5)

Then, we show for any bounded function ν that satisfies

sup
s∈S

[
ν(s)− sup

π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}]
≤ 0,

we have

ν(s) ≤ sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (C.6)

The proof is hence completed.

Proof of (C.5): Consider an arbitrary deterministic Markov policy π∗ = {π∗t }t≥0. With a slight abuse of notation, we
denote by π∗t (s) the action that the agent chooses following π∗t , given that the current state equals s. It follows from (C.4)
that

ν(s) ≥ r(π∗0(s), s) + γ

∫
s′
ν(s′)P(ds′;π∗0(s), s), ∀s ∈ S.

By iteratively applying (C.4), we have

ν(s) ≥ r(π∗0(s), s) +

K∑
k=1

γkEπ
∗
{r(Ak, Xk)|S0 = x}+ γK+1Eπ

∗
{ν(XK+1)|S0 = x}, ∀s ∈ S.

Since ν is bounded, the last term on the right-hand-side (RHS) converges to zero uniformly in x, as K →∞. Let K →∞,
we obtain ν(s) ≥ V (π∗; s), for any s ∈ S and any deterministic Markov policy π∗. Using Lemma 4.3.1 of Puterman (1994),
we can similarly show ν(s) ≥ V (π∗; s) for any s ∈ S and π∗ ∈ MR. This completes the proof of (C.5).

Proof of (C.6): By definition, we have

inf
π∈SD

sup
s∈S

[
ν(s)−

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}]
≤ 0.

Thus, for any ε > 0, there exists some π0 ∈ SD that satisfies

sup
s∈S

[
ν(s)−

{
r(π0(s), s) + γ

∫
s′
ν(s′)P(ds′;π0(s), s)

}]
≤ ε. (C.7)

Consider the following bounded linear operator L0,

L0ν(s) =

∫
s′
ν(s′)P(ds′;π0(s), s),

defined on the space of bounded functions. Let I0 denote the identity operator. Since γ < 1, the operator I0 − γL0 is
invertible and its inverse equals

∑+∞
k=0 γ

kLk0 . It follows from (C.7) that

ν(s) ≤
+∞∑
k=0

γkLk0{r(π0(s), s) + ε}, ∀s ∈ S.

Since V (π0; s) =
∑+∞
k=0 γ

kLk0r(π0(s), s) and
∑+∞
k=0 γ

kLk0ε ≤ ε/(1− γ), we obtain

ν(s) ≤ V (π0; s) +
ε

1− γ
.

Let ε→ 0, we obtain ν(s) ≤ supπ∗∈MR V (π∗; s) for any x. The proof is hence completed.
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C.1.3. PROOF OF (C.3)

Since ν0(·) satisfies the optimal Bellman equation, we have

ν0(s) = arg max
π∈SD

{
r(π(s), s) + γ

∫
s′
ν0(s′)P(ds′;π(s), s)

}
.

Let As be the available set of actions at a given state s. As a result, we have

ν0(s) = arg max
a∈As

{
r(a, s) + γ

∫
s′
ν0(s′)P(ds′; a, s)

}
.

Since A is finite, so is As. As a result, the above argmax is achievable. Let π∗∗(s) be the action such that the above argmax
is achieved, we have

ν0(s) = r(π∗∗(s), s) + γ

∫
s′
ν0(s′)P(ds′;π∗∗(s), s).

Similar to the proof of (C.2), we can show ν0(s) = V (π∗∗; s), for all s ∈ S. The proof is hence completed.

C.2. Proof of Lemma 2

Let Z̃1, Z̃2 be independent copies of Z1, Z2 such that Z̃1|Z3
d
= Z1|Z3, Z̃2|Z3

d
= Z2|Z3 and that Z̃1 ⊥⊥ Z̃2|Z̃3. Consider

any µ1 ∈ Rq1 , µ2 ∈ Rq2 , µ3 ∈ Rq3 , we have

E exp(iµ>1 Z̃1 + iµ>2 Z̃2 + iµ>3 Z3) = E[exp(iµ>3 Z3)E{exp(iµ>1 Z̃1 + iµ>2 Z̃2)|Z3}] (C.8)

= E[exp(iµ>3 Z3)E{exp(iµ>1 Z̃1)|Z3}E{exp(iµ>2 Z̃2)|Z3}]
= E[exp(iµ>3 Z3)E{exp(iµ>1 Z1)|Z3}E{exp(iµ>2 Z2)|Z3}].

Under the condition in Lemma 2, we have

E[exp(iµ>3 Z3)E{exp(iµ>1 Z1)|Z3}E{exp(iµ>2 Z2)|Z3}] = E[exp(iµ>3 Z3)E{exp(iµ>1 Z1 + iµ>2 Z2)|Z3}]
= E exp(iµ>1 Z1 + iµ>2 Z2 + iµ>3 Z3).

This together with (C.8) yields

E exp(iµ>1 Z̃1 + iµ>2 Z̃2 + iµ>3 Z3) = E exp(iµ>1 Z1 + iµ>2 Z2 + iµ>3 Z3).

As a result, (Z̃1, Z̃2, Z3) and (Z1, Z2, Z3) have same characteristic functions. Therefore, we have (Z̃1, Z̃2, Z3)
d
=

(Z1, Z2, Z3). By construction, we have Z̃1 ⊥⊥ Z̃2|Z3. It follows that Z1 ⊥⊥ Z2|Z3.

C.3. Proof of Theorem 3

We focus on proving Theorem 3 in the more challenging setting where T →∞. The number of trajectories n can be either
bounded or growing to∞. The case where T is bounded can be proven using similar arguments. We begin by providing an
outline of the proof. For any q, µ, ν, define

Γ∗(q, µ, ν) =
1

n(T − q − 1)

n∑
j=1

T−q−1∑
t=1

{exp(iµ>Sj,t+q+1)− ϕ∗(µ|Xj,t+q)}{exp(iν>Xj,t−1)− ψ∗(ν|Xj,t)}.

Denote by Γ∗R and Γ∗I the real and imaginary part of Γ∗, respectively.

We break the proof into three steps. In the first step, we show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|Γ̂(q, µb, νb)− Γ∗(q, µb, νb)| = op(log−1/2(nT )). (C.9)

Proof of (C.9) relies largely on Condition (C4) which requires ϕ̂ and ψ̂ to satisfy certain uniform convergence rates. This
further implies that

Ŝ = S∗ + op(log−1/2(nT )), (C.10)
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where

S∗ = max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1) max(|Γ∗R(q, µb, νb)|, |Γ∗I(q, µb, νb)|).

In the second step, we show for any z ∈ R and any sufficiently small ε > 0,

P(S∗ ≤ z) ≥ P(‖N(0, V0)‖∞ ≤ z − ε log−1/2(nT ))− o(1),

P(S∗ ≤ z) ≤ P(‖N(0, V0)‖∞ ≤ z + ε log−1/2(nT )) + o(1),

where the matrix V0 is defined in Step 2 of the proof. This together with (C.10) yields that

P(Ŝ ≤ z) ≥ P(‖N(0, V0)‖∞ ≤ z − 2ε log−1/2(nT ))− o(1), (C.11)

P(Ŝ ≤ z) ≤ P(‖N(0, V0)‖∞ ≤ z + 2ε log−1/2(nT )) + o(1). (C.12)

The proposed Bootstrap algorithm repeatedly generate random variables from ‖N(0, V̂ )‖∞ where the detailed form of V̂
is given in the third step of the proof. The critical values ĉα is chosen to be the upper α-th quantile of ‖N(0, V̂ )‖∞. In
the third step, we show ‖V0 − V̂ ‖∞,∞ = O((nT )−c

∗∗
) for some c∗∗ > 0 with probability tending to 1, where ‖ · ‖∞,∞

denotes the elementwise max-norm. Combining this upper bound with some arguments used in proving (C.11) and (C.12),
we can show with probability tending to 1 that

P(Ŝ ≤ z) ≥ P(‖N(0, V̂ )‖∞ ≤ z − 2ε log−1/2(nT )|V̂ )− o(1),

P(Ŝ ≤ z) ≤ P(‖N(0, V̂ )‖∞ ≤ z + 2ε log−1/2(nT )|V̂ ) + o(1),

for any sufficiently small ε > 0 where P(·|V̂ ) denotes the conditional probability given V̂ . Set z = ĉα. It follows from that

P(Ŝ ≤ ĉα) ≥ P(‖N(0, V̂ )‖∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ )− o(1), (C.13)

P(Ŝ ≤ ĉα) ≤ P(‖N(0, V̂ )‖∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ ) + o(1), (C.14)

with probability tending to 1. Under the given conditions in Theorem 3, the diagonal elements in V0 are bounded away from
zero. With probability tending to 1, the diagonal elements in V̂ is bounded away from zero as well. It follows from Theorem
1 of (Chernozhukov et al., 2017) that conditional on V̂ ,

P(‖N(0, V̂ )‖∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ )− P(‖N(0, V̂ )‖∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ )

≤ O(1)ε log1/2(BQ) log−1/2(nT ),

with probability tending to 1, whereO(1) denotes some positive constant that is independent of ε. Under the given conditions
on B and Q, we obtain with probability tending to 1 that,

P(‖N(0, V̂ )‖∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ )− P(‖N(0, V̂ )‖∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ ) ≤ C∗ε,

for some constant C∗ > 0. This together with (C.13) and (C.14) yields

|P(Ŝ ≤ ĉα)− P(‖N(0, V̂ )‖∞ ≤ ĉα|V̂ )| ≤ C∗ε+ o(1),

with probability tending to 1. Notice that ε can be made arbitrarily small. The validity of our test thus follows.

In the following, we present our proof for each of the step. Suppose {µb, νb}1≤b≤B are fixed throughout the proof. Denote
by ϕ̂(`)

R , ϕ̂(`)
I the real and imaginary part of ϕ̂(`) respectively. Without loss of generality, we assume the absolute values of

ϕ̂
(`)
R , ϕ̂(`)

I are uniformly bounded by 1.

C.3.1. STEP 1

With some calculations, we can show that for any q, µ, ν,

Γ̂(q, µ, ν) = Γ∗(q, µ, ν) +R1(q, µ, ν) +R2(q, µ, ν) +R3(q, µ, ν),
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where the remainder terms R1, R2 and R3 are given by

R1(q, µ, ν) =
1

n(T − q − 1)

L∑
`=1

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗(µ|Xj,t+q)− ϕ̂(−`)(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−`)(ν|Xj,t)},

R2(q, µ, ν) =
1

n(T − q − 1)

L∑
`=1

∑
j∈I(`)

T−q−1∑
t=1

{exp(iµ>Sj,t+q+1)− ϕ∗(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−`)(ν|Xj,t)},

R3(q, µ, ν) =
1

n(T − q − 1)

L∑
`=1

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗(µ|Xj,t+q)− ϕ̂(−`)(µ|Xj,t+q)}{exp(iν>Xj,t−1)− ψ∗(ν|Xj,t)}.

It suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|Rm(q, µb, νb)| = op(log−1/2(nT )), (C.15)

for m = 1, 2, 3. In the following, we show (C.15) holds with m = 1, 2. Using similar arguments, one can show (C.15)
holds with m = 3.

Proof of (C.15) with m = 1: Since L is fixed, it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|R1,`(q, µb, νb)| = op(log−1/2(nT )), (C.16)

where R1,`(q, µb, νb) is defined by

1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗(µb|Xj,t+q)− ϕ̂(−`)(µb|Xj,t+q)}{ψ∗(νb|Xj,t)− ψ̂(−`)(νb|Xj,t)}.

Similarly, let ϕ∗R and ϕ∗I denote the real and imaginary part of ϕ∗. We can rewrite R1,`(q, µb, νb) as R(1)
1,`(q, µb, νb) −

R
(2)
1,`(q, µb, νb) + iR

(3)
1,`(q, µb, νb) + iR

(4)
1,`(q, µb, νb) where

R
(1)
1,`(q, µb, νb) =

n−1

(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗R(µb|Xj,t+q)− ϕ̂(−`)
R (µb|Xj,t+q)}{ψ∗R(νb|Xj,t)− ψ̂(−`)

R (νb|Xj,t)},

R
(2)
1,`(q, µb, νb) =

n−1

(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗I(µb|Xj,t+q)− ϕ̂(−`)
I (µb|Xj,t+q)}{ψ∗I (νb|Xj,t)− ψ̂(−`)

I (νb|Xj,t)},

R
(3)
1,`(q, µb, νb) =

n−1

(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗R(µb|Xj,t+q)− ϕ̂(−`)
R (µb|Xj,t+q)}{ψ∗I (νb|Xj,t)− ψ̂(−`)

I (νb|Xj,t)},

R
(4)
1,`(q, µb, νb) =

n−1

(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{ϕ∗R(µb|Xj,t+q)− ϕ̂(−`)
R (µb|Xj,t+q)}{ψ∗I (νb|Xj,t)− ψ̂(−`)

I (νb|Xj,t)}.

To prove (C.16), it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|R(s)

1,`(q, µb, νb)| = op(log−1/2(nT )), (C.17)

for s = 1, 2, 3, 4. For brevity, we only show (C.17) holds with s = 1.

By the Cauchy-Schwarz inequality, it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

1√
n(T − q − 1)

∑
j∈I(`)

T∑
t=1

{ϕ∗R(µb|Xj,t)− ϕ̂(−`)
R (µb|Xj,t)}2 = op(log−1/2(nT )), (C.18)

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

1√
n(T − q − 1)

∑
j∈I(`)

T∑
t=1

{ψ∗R(νb|Xj,t)− ψ̂(−`)
R (νb|Xj,t)}2 = op(log−1/2(nT )). (C.19)
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In the following, we focus on proving (C.18). Proof of (C.19) is similar and is thus omitted.

Under (C2) and (C3), it follows from Theorem 3.7 of (Bradley, 2005) that {Xt}t≥0 is exponentially β-mixing, that is, the
β-mixing coefficient of {Xt}t≥0 β0(·) satisfies β0(t) = O(ρt) for some ρ < 1 and any t ≥ 0. Let n0 = |I(`)| = n/L
and suppose I(`) = {`1, `2, · · · , `n0

}. Since {X`1,t}t≥0, {X`2,t}t≥0, · · · , {X`n0 ,t
}t≥0 are i.i.d copies of {Xt}t≥0, the

β-mixing coefficient of

{X`1,1, X`1,2, · · · , X`1,T , X`2,1, X`2,2, · · · , X`2,T , · · · , X`n0
,1, X`n0

,2, · · · , X`n0
,T }

satisfies β(t) = O(ρt) for any t ≥ 0 as well.

Let φj,t,b denote ϕ∗R(µb|Xj,t)− ϕ̂(−`)
R (µb|Xj,t). By (C2), we have

max
j,t,b

EXj,tφ4
j,t,b ≤ 4 max

b∈{1,··· ,B}

∫
x

{ϕ∗R(µb|x)− ϕ̂(−`)
R (µb|x)}2F(dx) ≡ ∆, (C.20)

where the expectation EXj,t is taken with respect to Xj,t. Notice that ∆ is a random variable that depends on {µb, νb}1≤b≤B
and {Xj,t}j∈I(−`),0≤t≤T . By (C.20), we have

max
j,t,b

EXj,t(φ2
j,t,b − EXj,tφ2

j,t,b)
2 ≤ ∆.

Under the boundedness assumption, we have |φj,t,b| ≤ 2 and hence |φ2
j,t,b − EXj,tφ2

j,t,b| ≤ 4.

By Theorem 4.2 of Chen & Christensen (2015), we have for any integers τ ≥ 0 and 1 < d < n0T/2 that

P

∣∣∣∣∣∣
∑
j∈I(`)

T∑
t=1

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 ≤ n0T

d
β(d) + P

∣∣∣∣∣∣
∑

(j,t)∈Ir

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣
2

≥ τ

∣∣∣∣∣∣∆


+4 exp

(
− τ2/2

n0Td∆ + 4dτ/3

)
,

where Ir denotes the last n0T − dbn0T/dc elements in the list

{(`1, 1), (`1, 2), · · · , (`1, T ), (`2, 1), (`2, 2), · · · , (`2, T ), · · · , (`n0
, 1), (`n0

, 2), · · · , (`n0
, T )}, (C.21)

and bzc denote the largest integer that is smaller than or equal to z for any z. Suppose τ ≥ 4d. Notice that |Ir| ≤ d. It
follows that

P

∣∣∣∣∣∣
∑

(j,t)∈Ir

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣
2

≥ τ

∣∣∣∣∣∣∆
 = 0.

Notice that β(t) = O(ρt). Set d = −(c∗ + 3) log(n0T )/ log ρ, we obtain n0Tβ(d)/d = O(n−2
0 T−2B−1) =

O(B−1Q−1n−2T−2), since Q ≤ T , B = O((nT )c∗) and n0 = n/L. Here, the big-O notation is uniform in
b ∈ {1, · · · , B} and q ∈ {0, · · · , Q}. Set τ = max{3

√
∆n0Td log(Bn0T ), 11d log(Bn0T )}, we obtain that

τ2

4
≥ 2n0Td∆ log(BTn0) and

τ2

4
≥ 8dτ log(BTn0)/3 and τ ≥ 4d,

as either n→∞ or T →∞. It follows that τ2/(2n0Td∆ + 8dτ/3) ≥ 2 log(Bn0T ) and hence

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

P

∣∣∣∣∣∣
∑
j∈I(`)

T∑
t=1

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 = O(B−1Q−1n−1T−1).

By Bonferroni’s inequality, we obtain

P

 max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

∣∣∣∣∣∣
∑
j∈I(`)

T∑
t=1

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 = O(n−1T−1).
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Thus, with probability 1−O(n−1T−1), we have

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

∣∣∣∣∣∣
∑
j∈I(`)

T∑
t=1

(φ2
j,t,b − EX0φ2

j,t,b)

∣∣∣∣∣∣ = O(
√

∆n0T log(Bn0T ), log2(Bn0T )). (C.22)

Under the given conditions on Q, we have T − q − 1 is proportional to T for any q ≤ Q. Combining (C4) and the condition
on B with (C.22) yields (C.18).

Proof of (C.15) with m = 2: Similar to the proof of (C.16), it suffices to show maxq,b
√
n(T − q − 1)|R2,`(q, µb, νb)| =

op(log−1/2(nT )), or maxq,b
√
n(T − q − 1)|R(r)

2,`(q, µb, νb)| = op(log−1/2(nT )) for any ` = 1, · · · ,L and r = 1, 2, 3, 4
where

R2,`(q, µ, ν) =
1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{exp(iµ>Sj,t+q+1)− ϕ∗(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−`)(ν|Xj,t)},

R
(1)
2,`(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{cos(µ>Sj,t+q+1)− ϕ∗R(µ|Xj,t+q)}{ψ∗R(ν|Xj,t)− ψ̂(−`)
R (ν|Xj,t)},

R
(2)
2,`(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{sin(µ>Sj,t+q+1)− ϕ∗I(µ|Xj,t+q)}{ψ∗I (ν|Xj,t)− ψ̂(−`)
I (ν|Xj,t)},

R
(3)
2,`(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{cos(µ>Sj,t+q+1)− ϕ∗R(µ|Xj,t+q)}{ψ∗I (ν|Xj,t)− ψ̂(−`)
I (ν|Xj,t)},

R
(4)
2,`(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(`)

T−q−1∑
t=1

{sin(µ>Sj,t+q+1)− ϕ∗I(µ|Xj,t+q)}{ψ∗R(ν|Xj,t)− ψ̂(−`)
R (ν|Xj,t)}.

In the following, we only show maxq,b
√
n(T − q − 1)|R(1)

2,`(q, µb, νb)| = op(log−1/2(nT )) to save space.

Define the list

{(`1, 1), (`1, 2), · · · , (`1, T − q), (`2, 1), (`2, 2), · · · , (`2, T − q) · · · , (`n0
, 1), (`n0

, 2), · · · , (`n0
, T − q)}.

For any 1 ≤ g ≤ n0(T−q), denote by (ng, Tg) the g-th element in the list. LetF (0)
q = {X`1,1, X`1,2, · · · , X`1,1+q}∪{Xj,t :

0 ≤ t ≤ T, j ∈ I(−`)} ∪ {µ1, · · · , µB , ν1, · · · , νB}. Then we recursively define F (g)
q as

F (g)
q =

{
F (g−1)
q ∪ {Xng,tg+q+1}, if g = 1 or ng = ng−1;

F (g−1)
q ∪ {Xng−1,T , Xng,1, Xng,2, · · · , Xng,1+q}, otherwise.

Let φ∗g,q,b = {cos(µ>b Sng,tg+q+1)− ϕ∗R(µb|Xng,tg+q)}{ψ∗R(νb|Xng,tg )− ψ̂(−`)
R (νb|Xng,tg )}. Under MA, R(1)

2,`(q, µb, νb)

can be rewritten as {n(T − q − 1)}−1
∑n0(T−q)
g=1 φ∗g,q,b and forms a sum of martingale difference sequence with respect to

the filtration {σ(F (g)
q ) : g ≥ 0} where σ(F (g)

q ) denotes the σ-algebra generated by variables in F (g)
q . In the following, we

apply concentration inequalities for martingales to bound maxq,b |R(1)
2,`(q, µb, νb)|.

Under the boundedness condition, we have |φ∗g,q,b|2 ≤ 4{ψ∗R(νb|Xng,tg )− ψ̂(−`)
R (νb|Xng,tg )}2. In addition, we have by

MA that

E{(φ∗g+1,q,b)
2|σ(F (g)

q )} = E[{cos(µ>b Sng,tg+q+1)− ϕ∗R(µb|Xng,tg+q)}2|Xng,tg+q]

×{ψ∗R(νb|Xng,tg )− ψ̂(−`)
R (νb|Xng,tg )}2 ≤ 4{ψ∗R(νb|Xng,tg )− ψ̂(−`)

R (νb|Xng,tg )}2.

It follows from Theorem 2.1 of Bercu & Touati (2008) that

P

∣∣∣∣∣∣
n0(T−q)∑
g=1

φ∗g,q,b

∣∣∣∣∣∣ ≥ τ,
n0(T−q)∑
g=1

4{ψ∗R(νb|Xng,tg )− ψ̂(−`)
R (νb|Xng,tg )}2 ≤ y

 ≤ 2 exp

(
− τ

2

2y

)
, ∀y, τ,
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and hence

P

∣∣∣∣∣∣
n0(T−q)∑
g=1

φ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(`)

T∑
t=1

{ψ∗R(νb|Xj,t)− ψ̂(−`)
R (νb|Xj,t)}2 ≤

y

4

 ≤ 2 exp

(
− τ

2

2y

)
, ∀y, τ,

By Bonferroni’s inequality, we obtain

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑
g=1

φ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(`)

T∑
t=1

{ψ∗R(νb|Xj,t)− ψ̂(−`)
R (νb|Xj,t)}2 ≤

y

4

 ≤ 2BQ exp

(
− τ

2

2y

)
,

for any y, τ . Set y = 4ε
√
nT , we obtain

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑
g=1

φ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(`)

T∑
t=1

{ψ∗R(νb|Xj,t)− ψ̂(−`)
R (νb|Xj,t)}2 ≤

√
nT


≤ 2BQ exp

(
− τ2

2
√
nT

)
,

It follows from (C.19) that

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑
g=1

φ∗g,q,b

∣∣∣∣∣∣ ≥ τ
 ≤ 2BQ exp

(
− τ2

2
√
nT

)
+ o(1). (C.23)

Set τ = (nT )1/4
√

2 log(BQnT ), the right-hand-side (RHS) of (C.23) is o(1). Under the given conditions on B and Q, we
obtain maxq,b

√
n(T − q − 1)|R(1)

2,`(q, µb, νb)| = op(log−1/2(nT )).

C.3.2. STEP 2

For any j ∈ I(`) and 0 < t < T − q, define vectors λ∗R,q,j,t, λ
∗
I,q,j,t ∈ RB such that the b-th element of λ∗R,q,j,t, λ

∗
I,q,j,t

correspond to the real and imaginary part of

1√
n(T − q − 1)

{exp(iµ>b Sj,t+q+1)− ϕ∗(µb|Xj,t+q)}{exp(iν>b Xj,t−1)− ψ∗(νb|Xj,t)},

respectively. Let λ∗q,j,t denote the (2B)-dimensional vector (λ∗>R,q,j,t, λ
∗>
I,q,j,t)

>. In addition, we define a (2B(Q+1))-
dimensional vector λ∗j,t as (λ∗>0,j,t, λ

∗>
1,j,t−1I(t > 1), · · · , λ∗>Q,j,t−QI(t > Q))>. Define the list

(1, 1), (1, 2), · · · , (1, T − 1), (2, 1), (2, 2), · · · , (2, T − 1), · · · , (n, 1), (n, 2), · · · , (n, T − 1). (C.24)

For any 1 ≤ g ≤ n(T − 1), let (ng, tg) be the g-th element in the list. Let F (0) = {X1,0} ∪ {µ1, · · · , µB , ν1, · · · , νB} and
recursively define F (g) as

F (g) =

{
F (g−1) ∪ {Xng,tg}, if g = 1 or ng = ng−1;
F (g−1) ∪ {Xng−1,T , Xng,0}, otherwise.

The high-dimensional vector Mn,T =
∑n(T−1)
g=1 λ∗ng,tg forms a sum of martingale difference sequence with respect to

the filtration {σ(F (g)) : g ≥ 0}. Notice that S∗ = ‖
∑n(T−1)
g=1 λ∗ng,tg‖∞. In this step, we apply the high-dimensional

martingale central limit theorem developed by Belloni & Oliveira (2018) to establish the limiting distribution of S∗.

For 1 ≤ g ≤ n(T − 1), let

Σg =

n(T−1)∑
g=1

E
(
λ∗ng,tgλ

∗>
ng,tg

∣∣∣F (g−1)
)
.
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Let V ∗ =
∑n(T−1)
g=1 Σg. Using similar arguments in proving (C.22), we can show ‖V ∗ − V0‖∞,∞ =

O((nT )−1/2 log(BnT )) + O((nT )−1 log2(BnT )), with probability 1 − O(n−1T−1), where V0 = EV ∗. Under the
given conditions on B, we have ‖V ∗ − V0‖∞,∞ ≤ κB,n,T for some κB,n,T = O((nT )−1/2 log(nT )), with probability
1−O(n−1T−1).

In addition, under the boundedness assumption in (C4), all the elements in V ∗ and V0 are uniformly bounded by some
constants. It follows that

E‖V ∗ − V0‖∞,∞ ≤ κB,n,T + P(‖V ∗ − V0‖∞,∞ > κB,n,T ) = O((nT )−1/2 log(nT )).

By Theorem 3.1 of Belloni & Oliveira (2018), we have for any Borel setR and any δ > 0 that

P(S∗ ∈ R) ≤ P(‖N(0, V0)‖∞ ∈ RCδ)| (C.25)

≤ C

 1

nT
+

log(BnT ) log(BQ)

δ2
√
nT

+
log3(BQ)

δ3
√
nT

+
log3(BQ)

δ3

n(T−1)∑
g=1

E‖ηg‖3∞

 ,

for some constant C > 0.

Under the boundedness assumption in (C4), the absolute value of each element in Σg is uniformly bounded by 16(n(T −
q − 1))−1 = O(n−1T−1). With some calculations, we can show that

∑n(T−1)
g=1 E‖ηg‖3∞ = O((nT )−1/2 log3/2(BQ)). In

addition, we have Q = O(T ) and B = O((nT )c∗). Combining these together with (C.25) yields

P(S∗ ∈ R) ≤ P(‖N(0, V0)‖∞ ∈ RCδ)|+O(1)

(
1

nT
+

log2(nT )

δ2
√
nT

+
log9/2(nT )

δ3
√
nT

)
, (C.26)

where O(1) denotes some positive constant.

SetR = (z,+∞) and δ = ε log−1/2(nT )/C, we obtain

P(S∗ ≤ z) ≥ P(‖N(0, V0)‖∞ ≤ z − ε log−1/2(nT ))− o(1).

SetR = (−∞, z], we can similarly show

P(S∗ ≤ z) ≤ P(‖N(0, V0)‖∞ ≤ z + ε log−1/2(nT )) + o(1).

This completes the proof of Step 2.

C.3.3. STEP 3

We break the proof into two parts. In Part 1, we show V0 is a block diagonal matrix. Specifically, let V0,q1,q2 denote the
(2B)× (2B) submatrix of V0 formed by rows in {2q1B+1, 2q1B+2, · · · , 2(q1 +1)B} and columns in {2q2B+1, 2q2B+
2, · · · , 2(q2 + 1)B}. For any q1 6= q2, we show V0,q1,q2 = O(2B)×(2B).

Let Σ(q) denote V0,q,q. In Part 2, we provide an upper bound for maxq∈{0,··· ,Q} ‖Σ(q) − Σ̂(q)‖∞,∞. Let V̂ be a block
diagonal matrix where the main diagonal blocks are given by Σ̂(0), Σ̂(1), · · · , Σ̂(Q), we obtain ‖V0 − V̂ ‖∞,∞
Part 1: Let λ∗R,q,j,t,b and λ∗I,q,j,t,b denote the b-th element of λ∗R,q,j,t and λ∗I,q,j,t, respectively. Each element in V0,q1,q2

equals E(
∑
j,t λ

∗
Z1,q1,j,t,b1

)(
∑
j,t λ

∗
Z2,q2,j,t,b2

) for some b1, b2 ∈ {1, · · · , B} and Z1, Z2 ∈ {R, I}. In the following, we
show

E

∑
j,t

λ∗R,q1,j,t,b1

∑
j,t

λ∗R,q2,j,t,b2

 = 0, ∀q1 6= q2.

Similarly, one can show E(
∑
j,t λ

∗
R,q1,j,t,b1

)(
∑
j,t λ

∗
I,q2,j,t,b2

) = 0 and E(
∑
j,t λ

∗
I,q1,j,t,b1

)(
∑
j,t λ

∗
I,q2,j,t,b2

) = 0 for any
q1 6= q2. This completes the proof for Part 1.
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Since observations in different trajectories are i.i.d, it suffices to show∑
j

E

(∑
t

λ∗R,q1,j,t,b1

)(∑
t

λ∗R,q2,j,t,b2

)
= 0, ∀q1 6= q2,

or equivalently,

E

(∑
t

λ∗R,q1,0,t,b1

)(∑
t

λ∗R,q2,0,t,b2

)
= 0, ∀q1 6= q2, (C.27)

By definition, we have

λ∗R,q,0,t,b =
1√

n(T − q − 1)
{cos(µ>b St+q+1)− ϕ∗R(µb|Xt+q)}{cos(ν>b Xt−1)− ψ∗R(νb|Xt)}.

Since q1 6= q2, for any t1, t2, we have either t1 + q1 6= t2 + q2 or t1 6= t2. Suppose t1 + q1 > t2 + q2. Under MA, we have

E[{cos(µ>b St1+q1+1)− ϕ∗R(µb|Xt1+q1)}|{Xj}j≤t1+q1 ] = 0, ∀b,

and hence

Eλ∗R,q1,0,t1,b1λ
∗
R,q2,0,t2,b2 = 0, ∀b1, b2. (C.28)

Similarly, when t1 + q1 < t2 + q2, we can show (C.28) holds as well.

Suppose t1 < t2, under (C1) and H0, we have

E[{cos(ν>b Xt1−1)− ϕ∗R(νb|Xt1)}|{Xj}j≥t1 ] = 0, ∀b,

and hence (C.28) holds. Similarly, when t1 > t2, we can show (C.28) holds as well. This yields (C.27).

Part 2: For any q ∈ {0, · · · , Q}, we can represent Σ̂(q) − Σ(q) by

L∑
`=1

∑
j∈I(`)

T−q−1∑
t=1

(λ>R,q,j,t, λ
>
I,q,j,t)

>(λ>R,q,j,t, λ
>
I,q,j,t)− (λ∗>R,q,j,t, λ

∗>
I,q,j,t)

>(λ∗>R,q,j,t, λ
∗>
I,q,j,t)

n(T − q − 1)
. (C.29)

Using similar arguments in Step 1 of the proof, we can show with probability tending to 1 that the absolute value of each
element in (C.29) is upper bounded by c∗0(nT )−c

∗∗
for any q ∈ {0, · · · , Q} and some positive constants c0, c∗ > 0. Thus

we obtain maxq∈{0,··· ,Q} ‖Σ̂(q) − Σ(q)‖∞,∞ = O((nT )−c
∗∗

), with probability tending to 1. The proof is hence completed.
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