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Computing a single test in Section 5.2 takes roughly 10 minutes. Computing a single test in Section 5.3 takes roughly 30
seconds. The runtime can be further reduced with parallelization.
A. Additional details regarding our test

A.1. The covariance estimator >.(9)

Forany ¢ = 1,---,L,j € I and 0 < t < T — q, define vectors Ar g j ¢, A4t € R such that the b-th element of
AR,q,5,t» M,q,5,t correspond to the real and imaginary part of

{exp(in Sjasqr1) — B (| X erq) Hexp(iv X 1) — 0O (VX))

respectively. The matrix $(@ is defined by

T 1 T T T T
Z Z Zq: /\qut’)‘f,q,jﬁ) (Aqut’)‘Ith)' (A1)
=1 jeTv) t=1 n(T—q-1)
A.2. Validity of our test without the stationary assumption
When (C2) is violated, the relation ¥ = ¥y = --- = ¥p_; might no longer hold. However, under (C1), (C3) and

Hy, the marginal distribution function of X, can be well-approximated by some F on average. As a result, 1;’s can be
well-approximated by some ©* on average. Let [F; denote the distribution function of X;. As long as the prediction error
satisfies

max *Z/W( /) (vo|@) — e (vp|2) PFe(da) = O, ((nT) =),

1<6<B T
for some ¢g > 1/2, our test remains valid.
B. More on the OhioT1DM dataset

B.1. Detailed definitions of actions and rewards

We define A; ; as follows:

0, Il’l,‘7t = O;
Aijg={m, dm—4<In,; <4m (m=1,2,3);
4, Ingy > 12,

The Index of Glycemic Control is chosen as the immediate reward R; ;, defined by
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_%(80 - Gi,t+1)2a G141 < 805
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—35(Gi g1 — 140)1%5, 140 < Gy 441

B.2. Detailed procedure for value evaluation in simulations

In Section 5.2, we compare the policies learned with the selected order K¢ and fixed orders k € {1,--- ,10}. Below, we
provide more details on computing the value V() (k).

3. For each initial trajectory {(S75;, A5 ;) fo<i<10, generate the data {(S5

1. In the {-th simulation, generate n trajectories {(S;¢, 4;+)}1<j<n,0<t<1344, and apply Algorithm 2 with o = 0.01 and

K = 10 to estimate an order Eél). Also generate 100 trajectories of length 10 with the model described in Section 5.2,

denoted by {(S%;, AS ;) }1<j<100,0<t<10-

=J LU0

learn an optimal policy 7 (k).

Ae

$ 0 15 1) ho<i<eo following 70 (k). Com-

It

pute the value V) (k) by

100 50

1 _
V(l)(k) = 100 Z Z Vt 10R;,ta

j=1t=10

with v = 0.9.

Algorithm 1 Fitted-Q iteration

e

: Input: Data {S;;, A+, Rj+,Sj++1}j, function class F, decay rate v, action space A

Randomly pick Qg € F
Fork=1,...K:
Update target values Z; ; = R; ; + ymaxqae 4 Qk—1(Sj,t4+1,a) for all (j,1);
Solve a regression problem to update the Q-function:
Qi = argminge z 5+ 3 {Q(Sj.0 Ajn) — Z.}?
Output: The estimated optimal policy 7(-) = argmax,c 4 @k (-, a)

In our experiment,we use random forests to estimate the Q function during each iteration. The number of trees are set as 100
and the other hyperparameters are selected by 5-fold cross-validation. The decay rate + is set to 0.9.

B.3. Detailed procedure for value evaluation in real data analysis

In Section 5.2, we compare policies learned by assuming the data follows a k-th order MDP for k € {1,---,10}. The
policies are estimated by FQI. To evaluate the values of these policies based on the real dataset, we apply the Fitted-Q
evaluation (FQE) algorithm. Similar to FQI, it is an iterative algorithm based on the Bellman equation. We recap the steps
below.

Algorithm 2 Fitted-Q evaluation

el

Input: Data {S; ;, A, ., R;, S;1+1};1 policy m, function class F, decay rate -y
Randomly pick Qg € F
Fork=1,....K
Update target values Z; ; = R; ¢ + vQr—1(S;¢+1, m(S;j+41)) for all (4,t);
Solve a regression problem to update the Q-function:

Qr = argminge r 5 33 {Q(Sji, Aje) — Zj.4}?
Output: The estimated value V() = Qg (-, 7(-))
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7 =11,2,3,4,5,6}. We now describe the evaluation procedure in more details:

1. Inl=1,...,20, divide Z into a training set Dg) and an validation set Dél) = (Dgl))c with |D§l)| = \Dél)| =3.

2. Foreachl € {1,...,20}, k € {1,...,10}, apply FQI to the data {(S, . (k), A; .(k), R, +(k))} to
learn an optimal policy 7 (k).

3. Foreachl € {1,...,20}, k € {1,...,10}, apply FQE to the data {(S;.(k), 4,+(k), R;.(k))}

to estimate the state-value function of 7 (k), denoted by ‘A/k(l) (). Generate 100 trajectories of length 10 according to
the simulation model in Section 5.2. Denote them by {(S5;, A5 ;) }1<j<100,0<t<10- Calculate the value under 70 (k)
by

jeD 0<t<1100—k+1

jeDP 0<t<1100—k+1

100
1 7 e
VO (k) = 100 ka(l)(sj,(lofk)(k))'

j=1
4. Average over the 20 splits to compute the average value for each k by V (k) = 221 VO (k)/20.

For both FQI and FQE, we use random forests to estimate the regression function. The number of trees are set to 75 and the
other hyperparameters are selected by 5-fold cross-validation. We set v = 0.9 in our experiments.

B.4. More on the estimated values in real data analysis

We report the value difference between the 4-order MDP model and models with other orders and their associated standard
errors in the following table. The standard errors are calculated according to the sample variance estimator of values obtained
from 20 different combinations. Using a one-sided Z-test,we find that the gain of the value under the 4-order MDP model is
not significant compared to model with 5-th or 8-th order. However, it is significant compared to all other models under the
0.1 significance level.

Table 1. Value difference for the OhioT1DM dataset.
k 1 2 3 5 6 7 8 9 10

Value difference | -38.25 | -4.96 | -11.20 | -3.66 | -7.48 | -11.13 | -2.28 | -12.51 | -7.02
Standard error 4.65 3.17 6.89 2.88 2.7 4.33 1.86 3.05 2.54

C. Technical proofs
C.1. Proof of Lemma 1

Consider a policy 7 = {m; }+>0 € HR. Suppose there exists some {7} };>0 such that m;(-|S;) = 7} (-|S;) almost surely
for any ¢ > 0. We refer to such a policy 7 as a Markov policy. In addition, 7 is a deterministic policy if and only if
7¢(a|S;) € {0, 1} almost surely for any ¢+ > 0 and a € A. Let MR denotes the set of Markov policies and SD denote the set
of deterministic stationary policies, we have SD C SR C MR C HR. In the following, we focus on proving

sup V(m;s) = sup V(m;s), VseS.
m€HR weSD

Since SD C SR, the assertion in Lemma 1 is thus satisfied.

We begin by providing an outline of the proof. Our proof is divided into three steps. In the first step, we show

sup V(m;s) = sup V(m;s), VseS.
wEHR mTEMR

To prove this, we show in Section C.1.1 that for any such 7 € HR and any s, there exists a Markov policy 7* = {7} };>0
where each 7} depends on S; only such that

P™(A; = a,S; € 8|Sy = s) =P™ (A; = a,S; € 8|S = s), (C.1)
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foranyt > 0,a € A, S C Sand s € S where the probabilities P™ and P™ are taken by assuming the system dynamics
follow 7 and 7*, respectively. Under MA, we have

E™(Ro,|So = s) = ET{E™ (R | A¢, St, So = 5)|So = z} = E™{r(A, S¢)|So = =},
for some function r. This together with (C.1) yields that
E™(Ro|So = ) = E™ (You|So =s), Vt>0,
and hence V (m; s) = V(7*; s). This completes the proof for the first step.

With a slight abuse of notation, for any = € SD, we denote by 7(s) the action that the agent chooses according to 7, given
that the current state equals s. In the second step, we show for any bounded function v(-) on S that satisfies the optimal
Bellman equation

v(s) = sup {r<7r<s>,s> o

TeSD s’

v(s"YP(ds';m(s), s)} , VseS,

it satisfies

v(s) = sup V(r*;s), VseS. (C2)

m*EMR
The proof of (C.2) is given in Section C.1.2.
For any function v, define the norm ||v/||oc = sup,cg |¥(s)|. We have for any v and v that

sup

x weSD s’

sup {r(ah) 7 [ (9Pt 0 b - sup frn(e)s) 4 [ nlsipiasineo |

<y sup sup
weSD seS

/S / v1(s")YP(ds';m(s),s) — / Vo (s YP(ds'; w(s), 5)

s/

<~y sup sup <Allv1 — v co-

7w€eSD seS

/ r — vl P(ds's 7(s), 8)

By Banach'’s fix point theorem, there exists a unique value function v that satisfies the optimal Bellman equation. Combining
this together with the results obtained in the first two steps, we obtain that vy satisfies vy (s) = sup,cgr V (7; s) for any
s € S. The proof is thus completed if we can show there exists a deterministic stationary policy 7** that satisfies

vo(s) =V(r™;s), VseS. (C.3)
We put the proof of (C.3) in Section C.1.3.

C.1.1. PROOF OF (C.1)

Apparently, (C.1) holds with ¢ = 0. Suppose (C.1) holds for ¢ = k. We now show (C.1) holds for ¢ = k£ + 1. Under MA, we
have

}P”T(Skﬂ € S‘So = S) = EW{PW(St+1 S S‘At, S, Sp = S)|SO = JU}
= E™{P(S; Ay, S))|S0 = 2} = E™ {P(S; A, S1)[So = 2} = P (Sis1 € SIS = 5) 2 Gpy1(S; 9).
Set ;| to be the decision rule that satisfies
Pﬂ(AkJrl = a‘SkJrl, So = S) = ]PTF’:*l (Ak+1 = a|Sk+1), Ya € A,
it follows that

P"(Apt1 = a, Sk41 € S[S0 = 5) = / P"(Ag+1 = a|Sk1 = 5", So = 5)Gr11(ds’; 5)

s/

= / IP’W* (Ak—i-l = a|Sk.+1 = Sl, So = S)Gk+1(dsl; S) = ]ngr* (Ak+1 = a, Sk+1 S S|S() = S).

Thus, (C.1) holds for t = k + 1 as well. The proof is hence completed.
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C.1.2. PROOF OF (C.2)

We first show for any bounded function v that satisfies

(o) 2 sup {r(n(s).s) 4 [ v(s)Plsin(e)o) |, s, €4
weSD s’/
we have
v(s) > sup V(r*;s), VseS. (C.5)
MR

Then, we show for any bounded function v that satisfies
sup |:I/(S) — sup {r(w(s),s) +7/ V(S’)P(ds’;w(s),s)” <0,
ses 7€SD s

we have

v(s) < sup V(r*;s), VseS. (C.6)

m*€MR

The proof is hence completed.

Proof of (C.5): Consider an arbitrary deterministic Markov policy 7* = {7} };>0. With a slight abuse of notation, we
denote by 7} (s) the action that the agent chooses following 7}, given that the current state equals s. It follows from (C.4)
that

v(s) > r(my(s),s) + ’y// v(s"YP(ds';mi(s),s), VseES.

By iteratively applying (C.4), we have

K
v(s) = r(mg(s),s) + Y AE™ {r(Ax, Xi)|So = 2} + v TET {v(Xk11)|So =x}, Vs€S.
k=1

Since v is bounded, the last term on the right-hand-side (RHS) converges to zero uniformly in z, as K — co. Let K — oo,
we obtain v(s) > V(7*;s), for any s € S and any deterministic Markov policy 7*. Using Lemma 4.3.1 of Puterman (1994),
we can similarly show v(s) > V(7*; s) for any s € S and 7* € MR. This completes the proof of (C.5).

Proof of (C.6): By definition, we have
inf sup { (s) — {r(w(s),s) +’7/ V(S')P(ds’;w(s),s)H <.
TESD ge§ s’
Thus, for any € > 0, there exists some g € SD that satisfies
sup |:V(S) - {T‘(ﬂ'o(s)78) + ’y/ v(s")P(ds'; mo(s), S)H <e. (C.7)
sES s’

Consider the following bounded linear operator Lo,

Lov(s) = /, v(s")P(ds'; mo(s), s),

defined on the space of bounded functions. Let Z; denote the identity operator. Since v < 1, the operator Zg — vL is
invertible and its inverse equals Z oo YR LE. Tt follows from (C.7) that

+oo
$) <Y A LE{r(mo(s),s) + ¢},  Vs€ES.
k=0

Since V(o3 8) = Y10 Y*LEr(mo(s), s) and 32725 vF Lke < €/(1 — 7), we obtain

€
v(s) < V(mo;s) + T

Let e — 0, we obtain v(s) < sup,..cyr V(7*; s) for any . The proof is hence completed.
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C.1.3. PROOF OF (C.3)

Since v (+) satisfies the optimal Bellman equation, we have
vo(s) = argerélDaX {T(ﬂ'(s), s) + 7// vo(s)P(ds'; m(s), s)} .
Let A; be the available set of actions at a given state s. As a result, we have
vo(s) = argelilax {7"(a7 s)+ ’y// vo(s')P(ds'; a, s)} .

Since A is finite, so is Ag. As a result, the above argmax is achievable. Let 7**(s) be the action such that the above argmax
is achieved, we have

() = (7 (5),5) +1 [ ol P('s7 (5, ).
Similar to the proof of (C.2), we can show vy(s) = V(7**;s), for all s € S. The proof is hence completed.

C.2. Proof of Lemma 2

Let Zl, 75 be independent copies of Z;, Z5 such that 21|Z3 4 71|73, Z2|Z3 4 Z5|Z5 and that 7 L 22|23. Consider
any (1 € R uy € R, ug € R%, we have
Eexp(ip] Z1 +ipig Zo + ipa Zs) = Elexp(ipg Zs)E{exp(ip] Z1 + iug Z2)|Z3}] (C.8)
= Elexp(ipg Zs)E{exp(ip] 21)|Zs}E{exp(ing Z2)|Z3}]
= Elexp(ing Za)E{exp(in{ Z1)|Z3}E{exp(ipy Z2)| Z3}].
Under the condition in Lemma 2, we have
Elexp(ips Z3)E{exp(ip; Z1)|Zs}E{exp(iug Z2)|Z3}] = Elexp(ipg Z3)E{exp(in] Z1 + ipg Z2)|Z3}]
= Eexp(ip] Z1 +ipg Zo +ipg Zs).
This together with (C.8) yields
Eexp(ip] Z1 + ipg Zs + ipg Zs) = Bexp(ip] Z1 + ipg Za + ipg Zs)-
d

As a result, (Zy, Zy, Z3) and (24, Zs, Z3) have same characteristic functions. Therefore, we have (Zy, Za, Z3)
(Z1, Z2, Z3). By construction, we have 21 A1 ZQ|Z3 It follows that Z; L Z5|Zs.

C.3. Proof of Theorem 3

We focus on proving Theorem 3 in the more challenging setting where T" — co. The number of trajectories n can be either
bounded or growing to co. The case where 7" is bounded can be proven using similar arguments. We begin by providing an
outline of the proof. For any g, 1, v, define

n T—q—1
(g, p,v) = Z Z {exp(in" Sjvqr1) — ¢ (1 Xj ) Hexp(iv " X e1) — 0 (v| X))

Denote by I';; and I'; the real and imaginary part of I'*, respectively.

We break the proof into three steps. In the first step, we show

\/ —q — D)|T(q, oy ) — T*(q, 1o )| = 0p(log /2 (nT)). (C.9)

max
be{l,---,B} qE{O

Proof of (C.9) relies largely on Condition (C4) which requires ¢ and 12 to satisfy certain uniform convergence rates. This
further implies that

5 = 5* 4+ 0,(log~V?(nT)), (C.10)
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where

St = max max \% TL(T —q— 1) maX(|FE(qaub7Vb)‘7 ‘F?(qaubaybﬂ)'

be{l,---,B} qe{0,---,Q}

In the second step, we show for any z € R and any sufficiently small € > 0,

P(S* < 2) > P(|IN(0, Vo)l < 2 — elog™/2(nT)) — 0(1),
P(S* < 2) < P(|N(0,Vo)|loo < 2+ log™/2(nT)) + o(1),

where the matrix V} is defined in Step 2 of the proof. This together with (C.10) yields that

P(S < 2)

< P(|[N(0, Vo)l < 2 — 2elog™"/*(nT)) — o(1), (C.11)
P(S < z)

>
< P(IN(0, Vo)lloo < 2+ 2¢log™/2(nT)) + o(1). (C.12)

The proposed Bootstrap algorithm repeatedly generate random variables from || N (0, V) |loo Where the detailed form of 1
is given in the third step of the proof. The critical values &, is chosen to be the upper a-th quantile of || N(0, V)| s. In
the third step, we show ||V — \A/HOO,OO = O((nT)=¢"") for some c¢** > 0 with probability tending to 1, where || - ||oo 00
denotes the elementwise max-norm. Combining this upper bound with some arguments used in proving (C.11) and (C.12),
we can show with probability tending to 1 that

P(S < 2) > P(|IN(0, V)|loo < 2z — 2elog™ 2 (nT)|V) — 0(1),
P(S < 2) < P(||N(0,V)]|loo < 2 + 2elog™/2(nT)|V) + o(1),

for any sufficiently small € > 0 where P(|‘7) denotes the conditional probability given V. Set z = ¢,. It follows from that

P(S <) > P(IN(0, V)] < E — 2¢log™ /2 (nT)|V) = o(1), (C.13)
P(S < 2,) < P(IN(0,V)||oc < Ca + 2elog™2(nT)|[V) + o(1), (C.14)

with probability tending to 1. Under the given conditions in Theorem 3, the diagonal elements in Vj are bounded away from
zero. With probability tending to 1, the diagonal elements in V is bounded away from zero as well. It follows from Theorem
1 of (Chernozhukov et al., 2017) that conditional on V

P(|N(0, V)||lso < @a + 2elog™2(nT)|V) = P(|N(0, V)]s < Ca — 2elog™2(nT)|V)
< O(1)elog"?(BQ)log™"/*(nT),

with probability tending to 1, where O(1) denotes some positive constant that is independent of . Under the given conditions
on B and (), we obtain with probability tending to 1 that,

B[N (0, V)[loe < 2 + 2¢log™/2(nT)[V) = BIN(0, V)]s < G — 2clog™2(nD)|V) < C",

for some constant C* > 0. This together with (C.13) and (C.14) yields

~

IP(S < o) — P(IN(0, V)]l < E|V)| < C*e +0(1),

with probability tending to 1. Notice that € can be made arbitrarily small. The validity of our test thus follows.

In the following, we present our proof for each of the step. Suppose { s, 1 }1<p< p are fixed throughout the proof. Denote
by @%), cp(le) the real and imaginary part of 3() respectively. Without loss of generality, we assume the absolute values of

@%), <p§ ) are uniformly bounded by 1.

C.3.1. STEP 1

With some calculations, we can show that for any ¢, u, v,

(g, i, v) = T*(q, 1, v) + Ra(q, j1, V) + Ra(q, i, v) + Rs(q, i, v),
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where the remainder terms R, Ry and I3 are given by
T—q—1

Y — Z Yo D e X ) = BTl X ) HY (] X ) — 070 (W] X)),

e 1 jez(@ t=1

L —q—1 R
Relan) =T o 2, Z {exp(in” Sjarqs1) = ¢ (W Xsar ) HY" (01 X50) = 2O w100},

J
L T—q—1

Rs(q,p,v) = W Z Z {o" (1l Xj4q) — @(4) (M|Xj,t+q)}{eXp(iVTXj,t—l) =V (X))

=1jez® t=1

Ri(q,p,v) =

It suffices to show

max max \/n(T —q—1)|Rm(q, o, vp)| = op(log_l/Q(nT))7 (C.15)

be{1,--- ,B} qe{0,-

for m = 1,2, 3. In the following, we show (C.15) holds with m = 1, 2. Using similar arguments, one can show (C.15)
holds with m = 3.

Proof of (C.15) with m = 1: Since L is fixed, it suffices to show

max max /(T —q—1)|R1(q, o, )| = op(log_1/2(nT)), (C.16)

be{l,-,B} q€{0,,Q}
where Ry ¢(g, f4, vp) is defined by

T—q—1

P — Z > e (1l X arq) = B0 (6| X 1) HE" (61 X.0) — 00 (1) X0}

jg(e) =1

Similarly, let ¢}, and <p} denote the real and imaginary part of ¢*. We can rewrite Ry ¢(g, pp, 1) as R% (q, o, vp) —
Rg e(% b, Vp) + le g(q, [, Vp) + le g(% Mo, V) Where

1 T—q—1
1 n ~(—¢ * (=4
RO (@) = o S 3 ekl X itra) — B (16| X e40) HER I X1.0) — 0 (] X5.0)),
(T q 1) jerw t=1
T—
2 ~(—0) —
RY)(q, v, ) = T 1 Z Z {05 (| X 040) — B (] X ) HUT 0] X50) — 050 (0] X500},
Jezm t=1
3 -
RP) (4, 1) = T a1 Z Z {0r (] Xjerq) — 8% (o] X o) HOT 0] X0) — 030 (] X0,
Jezw t=1
4 —f
R (g, vy 1) = Z Z {0r (] Xjerq) — B (1 X o) HOF 0] X0) — 95 () X))
Jezu) t=1

To prove (C.16), it suffices to show

max | max \/n(T —q— DR (4., )| = 0, (log™"/*(nT)), (C.17)

be{1,---,B} q€{0,-
for s = 1,2, 3, 4. For brevity, we only show (C.17) holds with s = 1.

By the Cauchy-Schwarz inequality, it suffices to show

T
* X _ ’\(_Z) X 2 = 0 10 _1/2 nT s C.18
o fax ma ’Q}\/ijgu);{%{(ﬂﬂ it) = Pr o (] X50)} p(log™ " =(nT)) (C.18)
T

=0,(logY2(nT)).  (C.19)

* (=0 2
E E vyl X)) — vp| X5
be{l B} qe{O 7Q} \/7361(2) tzl{wR( b| Lt) ,l/}R ( b| ]’t)}
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In the following, we focus on proving (C.18). Proof of (C.19) is similar and is thus omitted.

Under (C2) and (C3), it follows from Theorem 3.7 of (Bradley, 2005) that { X, };>¢ is exponentially S-mixing, that is, the
B-mixing coefficient of {X;}:>0 Bo(-) satisfies By(t) = O(p?) for some p < 1 and any ¢ > 0. Let ng = [Z9)| = n/L
and suppose Z() = {1, 0y,--- ,£,,}. Since {Xe, 120, {Xey t 1130, -+, { X0, 1 }e>0 are i.1.d copies of {X,;};>0, the
[B-mixing coefficient of

nQ»

{Xe 1, Xy 2, Xoy s Xep 1, Xep 20 Xy o0 s Xy 1, Xy 20005 Xoy 1}
satisfies 8(¢t) = O(p*) for any t > 0 as well.
Let ¢; ;5 denote ¢, (1| X 1) — @S{e) (] X¢). By (C2), we have
EXitgt, <4 -6 2F(dz) = A C.20
max Gt < e {qlaXB}/{soR polz) — B 7 (usl) P (d) = A, (C.20)

where the expectation EXi.¢ is taken with respect to X; ;. Notice that A is a random variable that depends on {1, Vb}lgbg B
and {Xj7t}j€I(—e)’0StST. By (C.20), we have

X 2 Xt 42 2
I.?tai(E a (¢jvtab o E JYtQS]‘vt,b) g A

Under the boundedness assumption, we have |¢; ¢, 2w —EXre? 1 <4

By Theorem 4.2 of Chen & Christensen (2015), we have for any integers 7 > 0 and 1 < d < nT'/2 that

T
P ZZ 2 —EX62)| 267/ A ) S ZB@) 4B (| DD (63, —EV67,,)| 27|A

FeT® t=1 (4:t)eL, 2

+4e _¢
P\ T noTdA +4drj3)

where Z,. denotes the last noT — d|noT/d| elements in the list

{(élvl)a(glvz)"" ,(61,T),(€2,1),(€2,2),~-~ a(é%T)?"' ’(€n071)7(€no’2)7"' ’(g’m)?T)}’ (C21)

and | z] denote the largest integer that is smaller than or equal to z for any z. Suppose 7 > 4d. Notice that |Z,.| < d. It
follows that

P Z (th EX jtb) ZTA =0.
G)et, )

Notice that 3(t) = O(p!). Set d = —(c* + 3)log(ngT)/logp, we obtain ngTB(d)/d = O(nyg*T~2B~!) =
O(B71Q 'n=2T72), since Q < T, B = O((nT)*) and ny = n/L. Here, the big-O notation is uniform in
be{l,---,B}andq e {0, --,Q}. Set 7 = max{3/AngTdlog(BnoT), 11dlog(BnoT)}, we obtain that

7_2 2

s > 2noT'dAlog(BTng) and TZ > 8drlog(BTng)/3 and 7 > 4d,

as either n — oo or T' — oo. It follows that 72 /(2noTdA + 8d7/3) > 21og(BnoT) and hence

max max P Z Z it ?,t | >6rA | =0(B7IQ InTI T,
be{l,--,B} qg€{0,--,Q} i€z t=1

By Bonferroni’s inequality, we obtain

P max max Z Z it quﬁtb) >67|A| =0(n T,
be{l,-,B} qe{0,,Q} jez t=1
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Thus, with probability 1 — O(n~1T~1), we have

—EXog = O(v/AnoT log(BnoT),log?(BngT)). Cc.22
be{l B}QE{O ,Q} gz); b jtb ( " g( " ) g( " )) ( :

Under the given conditions on ), we have T'— ¢ — 1 is proportional to 7" for any ¢ < (). Combining (C4) and the condition
on B with (C.22) yields (C.18).
Proof of (C.15) with m = 2: Similar to the proof of (C.16), it suffices to show maxg p \/n(T — ¢ — 1)|Ra.¢(q, i, vb)| =

op(log_1/2(nT ), or maxgp /n(T —q— |R2z q, tbs Up)| —op(log_l/Q(nT)) forany/=1,--- ,Landr =1,2,3,4
where

T—q—1
1 . * * (=
Ro (g, p,v) = 2T —g=1) S0 {explinT Sirqi) — @ (WX s HY" (V1 Xa) — 00 (V| X50)},
jezw t=1
T—q—1
* * (=4
Ropla.mr) = ooy 2o D {eosln Siavarn) = h(ulXar HVRWIXGa) = O O (01X},
q jEI(Z) t=1
T—q—1
* * (=2
B v) = o q_1 Do D0 (st Sjeegnn) — (X ) HOTWIX) = 070 (01X},
jer® t=1
1 T—q—1
* * (=4
Bip(an) = sy 2o 2 e0sl Siran) = Rl X er) HYT 0150) = 9170 01X},

—

JET®

b I
_QH

-1

3 Z {sin(1 7 8 qr1) — 05 (X i) HYR W1 X50) — 0% O (0] X0}

jezw t=1

In the following, we only show maxgp /n(T — ¢ — 1) |R2 (a4 )| = op(log_l/2 (nT)) to save space.
Define the list
{(glv 1)7 (6172)7 Tty (ElaT - q)a (627 1)a (6272% Tty (627T - Q) Tty (enov 1)7 (€n072)7 Ty (gnoaT - q)}

Forany 1 < g < no(T—q), denote by (ny, T;) the g-th element in the list. Let F 0 — {Xp1 1, X0 2, Xoya4qUH{ X
0<t<T,j€eZ9YU{p1,--- ,pp,v1,--- ,vp}. Then we recursively define .7-'q

4
Ry (g pv) =~ s _q_1

]‘—(!J) — ]:ég 1) Y {Xngytg+q+1}7 ifg=1lor Mg = Ng—1;
a Flo Dy {Xn, .7 Xny1s Xny 2, s Xy 149}, otherwise.

* * * (=L 1
Let 67,45 = {008(] Sny 1y 0q+1) = 3| X, 1,00 HOR W6 X 2,) = O (4] X, 1, )} Under MA, By (g o, 1)
can be rewritten as {n(T — ¢ — 1)}~ Z"O(T 9 ¢} 4. and forms a sum of martingale difference sequence with respect to

the filtration {o(}'ég )) : g > 0} where a(]—'q(g )) denotes the o-algebra generated by variables in ]—'ég ) In the following, we
apply concentration inequalities for martingales to bound max ; |R§Z (g, v, vb) |-

Under the boundedness condition, we have \d);’q’b|2 < Hp(w| Xn, b,) — w( Z>(1/;,|Xng7tg)}2. In addition, we have by
MA that

]E{(¢;+1,q,b)2\0(]:¢§g))} = E[{COS(N;—Sng,tg+q+1) - SO*R(/"Lb|Xng,tg+q)}2‘Xng,tg“rq]
< {UR | X, 1,) = P 0] X, 1,012 < HOR Xy 0,) = 055 0 (0] X, 0,0}
It follows from Theorem 2.1 of Bercu & Touati (2008) that

no(T—q) no(T—q)

2
* * (—L T
P ; Goan| =7 > AR X, ) — Uk (] Xy )} <y | < 2exp (2y> vy, 7,

g=1
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and hence
no(T—q) T o y -2
* * (=2 2
P| X G| 2y e, 5 Y WaXe) — 0 lX0p < 4 | <2000 (1) o
g=1 jET® t=1
By Bonferroni’s inequality, we obtain
no(T—q) T s y 7_2
P| max Opgn| 27 max SN {Urm]X;e) = O )XY < T | <2BQexp (—5- )
ge{0,.Q} | = 0T be{l, B} = 4 2y
be{l, B} g=1 jeT® t=1
for any y, 7. Set y = 4e/nT', we obtain
no(T—q) T
* * (—L
P o |30 s 2 e Y S WalnlX0 - B4l X,0)7 < VAT
25%1::::,’3{ g=1 =
72
<2BQexp | — ,
< 2BQ p( 5 TT)
It follows from (C.19) that
no(T—q) 72
P max * >7| <2BQexp | — + o(1). (C.23)
ge{0.-.Q} Z; Poas < p( 2\/nT) o
be{l,-.B}| 97

Set 7 = (nT)'/*\/21og(BQnT), the right-hand-side (RHS) of (C.23) is o(1). Under the given conditions on B and Q, we
obtain maxg ;, \/n(T — ¢ — 1)|R§z (¢, o )| = 0, (log ™2 (nT)).
C.3.2. STEP 2

Forany j € Z() and 0 < t < T — ¢, define vectors ARqjtr Mgt € RE such that the b-th element of ARt Mgt
correspond to the real and imaginary part of

1 . " . *
N {exp(ipy Sjivqr1) — ¢ (1] Xjerq) Hexp(ivy Xje1) — 0% (1] X0},
respectively. Let \* ., denote the (2B)-dimensional vector (A% -, AT . )T In addition, we define a (2B(Q+1))-
q,5,t R,q,5,t> "1,q,5,t
dimensional vector A%, as (A5 T, A¥T, Tt >1),--- A5, SI(t > Q)) . Define the list
Jit 0,5,6» 71,5, —1 Q.Jt—Q

(1,1),(1,2),---,(1,T=1),(2,1),(2,2),--- ,(2,T = 1),--- ,(n,1),(n,2),- -+ ,(n, T —1). (C24)

Forany 1 < g < n(T — 1), let (n,,t,) be the g-th element in the list. Let () = {X; o} U {p1, -+ , B, 11, ,v5} and
recursively define F(9) as

J_'.(g) — ]:(9_1) U {Xn_tnty}’ lfg =lor ng = ngil;
Fle-1) {Xn, 1,7 Xn 0}, otherwise.

Z(_ji_l) AS forms a sum of martingale difference sequence with respect to

The high-dimensional vector M,, r = >~ ity

the filtration {o(F)) : g > 0}. Notice that S* = || Z;g-n Arvgity lloo- In this step, we apply the high-dimensional
martingale central limit theorem developed by Belloni & Oliveira (2018) to establish the limiting distribution of .S*.

Forl < g <n(T —1),let

n(T—-1)
So= > E(A s,
g=1

]:(9*1)) .
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Let V* = ng_l) Y, Using similar arguments in proving (C.22), we can show [|[V* — Vllco,c0 =
O((nT)~"?1log(BnT)) + O((nT)~'log®(BnT)), with probability 1 — O(n='T~"), where V; = EV*. Under the
given conditions on B, we have |[V* — Vp|loo.c0 < KB.n,1 for some kp 7 = O((nT)~'/2log(nT)), with probability

1-O0(n T

In addition, under the boundedness assumption in (C4), all the elements in V* and Vj are uniformly bounded by some
constants. It follows that

EIV* = Vollsowo < 6Bt + PV = Vollsose > kB nr) = O((nT) "2 log(nT)).

By Theorem 3.1 of Belloni & Oliveira (2018), we have for any Borel set R and any § > 0 that

P(5* € R) < P(|N(0, Vo)]los € R (C.25)
n(T—1)
1 log(BnT)log(BQ) . log’(BQ) = log®(BQ) 3
< Ol —+ + E ,
= “lar 52T sver T 2 Pl

for some constant C' > 0.

Under the boundedness assumption in (C4), the absolute value of each element in 3, is uniformly bounded by 16(n(T" —
q—1))"t = O(n=1T~1). With some calculations, we can show that 22(211—1) Ellng|12, = O((nT)~"/?10g**(BQ)). In
addition, we have @) = O(T') and B = O((nT)°*). Combining these together with (C.25) yields

(C.26)

IP)(S* c R) < P(HN(O, ‘/O)Hoo c RC&)| + O(l) (1 n lOgQ(nT) 10g9/2(nT)> 7

nT  §2y/nT 83v/nT

where O(1) denotes some positive constant.

Set R = (2, +00) and § = £log™"/?(nT)/C, we obtain
P(S* < z) > P(IN(0, Vo) |lso < 2z — elog™?(nT)) — o(1).

Set R = (—o0, 2], we can similarly show

P(S* < z) < P(IN(0, Vo)l < 2 +elog™/*(nT)) + o(1).
This completes the proof of Step 2.

C.3.3.STEP 3

We break the proof into two parts. In Part 1, we show V} is a block diagonal matrix. Specifically, let V{4, 4, denote the
(2B) x (2B) submatrix of Vj formed by rows in {2¢1 B+1,2¢:B+2,--- ,2(¢q1 +1)B} and columns in {2¢2 B+ 1,2¢2 B +
2, ,2(q2 +1)B}. Forany q1 # g2, we show Vg 4, 4, = O2B)x(2B)-

Let (9 denote V; , . In Part 2, we provide an upper bound for maX,e(o,-.-,Q} 2@ — 5@ [loo,00- Let V be a block
diagonal matrix where the main diagonal blocks are given by (0, (1) ... $(@) we obtain Vo — ‘7”0000

Part 1: Let A, | ., and A} ., denote the b-th element of A, -, and A7 ., respectively. Each element in Vo q, 4,
equals (3, A% 0 o) (204 A%y ga,jitbe) TOr some by, bo € {1,--+, B} and Z1, Z € {R, I}. In the following, we
show

* * _
E (Y Negiin | | D raiite | =00 Va1 # o
it it

Similarly, one can show B(3_;; Mg g, 6.6, ) (2.6 AT gaugitb) = 0 a0 EQ; 0 AT, 6, ) (30 M g it,0,) = O for any
q1 # q2. This completes the proof for Part 1.
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Since observations in different trajectories are i.i.d, it suffices to show

B (z A) (zx> 0, Voo
j t t

or equivalently,

E (z A) (z A) 0, Vot o
t t

By definition, we have

1

m{ms(u;swqﬂ) — PR (1| Xiq) Heos(vy Xio1) — (] X0)}.

* —
R,q,0,t,b —

Since ¢1 # ¢o, for any t1, t2, we have either t1 + q1 # to + g2 or t1 # to. Suppose t1 + q1 > to + ¢2. Under MA, we have

E[{COS<MZ—7|—SH+¢I1+1) - (pj{(/ib|Xt1+Q1)}‘{Xj}j§t1+qJ = 07 va
and hence
EA}}#]lyO:tlybl)\E,qmoﬂfz,bz =0, Vb, bo. (C.28)
Similarly, when ¢; + ¢1 < t2 + ¢2, we can show (C.28) holds as well.
Suppose t1 < to, under (C1) and Hy, we have
E[{cos(vy X1, 1) — ¢ (| X1, }{X;} 50,1 =0, Vb,
and hence (C.28) holds. Similarly, when ¢; > to, we can show (C.28) holds as well. This yields (C.27).
Part 2: For any g € {0,--- , @}, we can represent $@ —x@ by

T—q—1 * * * *
L Mrg gt Moat) Mhgn Mage) = Mg Aggn) T Vilg o ATg)

L
1,q,5,t 1,q,5,t R,q,5,t> "*1,q,5,t
. C.29
>Y Y e UG ©2)

=1 jez® t=1

Using similar arguments in Step 1 of the proof, we can show with probability tending to 1 that the absolute value of each
element in (C.29) is upper bounded by cS(nT)*C** for any g € {0,--- ,Q} and some positive constants cg, ¢* > 0. Thus
we obtain max,e (o,... g} |29 — 89| o 00 = O((nT) =), with probability tending to 1. The proof is hence completed.
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